
A Rule-Based Component-Free Vector Algebra Package

(Thesis format: Monograph)

by

Songxin Liang

Graduate Program in Applied Mathematics

A thesis submitted in partial fulfilment

of the requirements for the degree of

Master of Science

Faculty of Graduate Studies

The University of Western Ontario

London, Ontario, Canada

April 2006

c⃝ Songxin Liang 2006

THE UNIVERSITY OF WESTERN ONTARIO

FACULTY OF GRADUATE STUDIES

CERTIFICATE OF EXAMINATION

Chief Supervisor

Dr. David Jeffrey

Co-Supervisor

Dr. Stephen Watt

Examining Board

Dr. Gerry McKeon

Dr. Xingfu Zou

Dr. Marc Moreno Maza

The thesis by

Songxin Liang

entitled

A Rule-Based Component-Free Vector Algebra Package

is accepted in partial fulfilment of the

requirements for the degree of

Master of Science

Date April 17, 2006 Dr. Christopher Essex

Chair of the Thesis Examining Board

ii

Abstract

This thesis presents a rule-based component-free vector algebra package which is

developed using computer programming language Aldor. Besides the general vector

algebra operations such as addition, scalar multiplication, scalar product and vector

product, this package provides simplification functionality which successfully over-

comes the difficulties encountered by existing packages. In chapter 2, we describe the

algebraic formulas needed for the package. In chapter 3, we discuss the implementa-

tion details of this package in Aldor. They include data representation, term order,

implementations of transformation rules, implementations of vector algebra opera-

tions, simplifications of vector expressions and proofs of vector identities. In chapter

4, we give some examples including the one used by Stoutemyer to test our package.

In the appendix A, we include the Aldor source code of the package for reference.

Keywords: Vector algebra package, component-free, transformation rules, simplifica-

tion

iii

Acknowledgement

I would like to express my sincere thanks to Dr. David Jeffrey and Dr. Stephen

Watt. Under their supervision, there are no pressures, there are only motivations. I

have learned a lot from them. They always know more than I can learn.

I appreciate the helpful suggestions coming from Dr. Marc Moreno Maza. His

suggestions greatly saved my time in my research.

Many thanks go to the staff in the Department of Applied Mathematics at UWO.

Special thanks should go to Pat Malone who always gives me helpful and instant

information about the graduate program.

Last but not least, I would like to take this opportunity to express my gratitude

to my wife Yanfei Wu. Without her understanding and support, this thesis would

not have been possible.

iv

Table of Contents

Page

CERTIFICATE OF EXAMINATION . ii

ABSTRACT . iii

ACKNOWLEDGEMENT . iv

TABLE OF CONTENTS . v

CHAPTER - 1 Introduction . 1

1.1 Basic Concepts and Notation . 2

1.2 Background and Motivation . 7

1.3 Outline of Thesis . 10

CHAPTER - 2 Transformation Rules . 12

2.1 Algebraic Formulas . 12

2.2 Normal Form . 15

CHAPTER - 3 Implementations in Aldor 17

3.1 Structure of the Package . 17

3.2 Data Representations . 20

3.3 Term Order . 22

3.4 Implementations of Transformation Rules 23

3.5 Simplifications and Proofs . 30

3.6 Vector Algebra Operations . 34

v

CHAPTER - 4 Examples . 35

APPENDIX - A Source Code . 42

BIBLIOGRAPHY . 79

vi

1

Chapter 1

Introduction

‘The numerical description of a vector requires three numbers, but nothing

prevents us from using a single letter for its symbolical designation. An

algebra or analytical method in which a single letter or other expression is

used to specify a vector may be called a vector algebra or vector analysis.’

J. Willard Gibbs [9]

This sentence introduced Gibbs’s notation for vectors in a privately printed pamphlet

that was dated 1881. It is interesting to compare the introduction of vectors in this

publication with the notation in a paper published 2 years earlier by Gibbs [8], in

which the equations of dynamics were presented entirely in component form. Gibbs’s

notation was not immediately accepted by all.

‘Even Prof. Willard Gibbs must be ranked as one of the retarders of

quaternion progress, in virtue of his pamphlet on Vector Analysis, a sort

of hermaphrodite monster, compounded of the notations of Hamilton and

Grassmann”.

Peter Guthrie Tait [19]

2

In spite of Tait’s resistance, vector algebra and vector calculus have found many

applications throughout engineering and science. Vector analysis often simplifies the

derivation of mathematical theorems and the statements of physical laws, while vector

notation can often clearly convey geometric or physical interpretations that greatly

facilitate understanding.

In section 1.1, some basic concepts about vector spaces and their operations are

introduced [14, 5, 15]. In section 1.2, some background on vector analysis packages

is presented and the reason why we want to develop the current package is discussed.

1.1 Basic Concepts and Notation

In this section, we define a vector-product space, which is an inner-product vector

space with an operation called vector product defined on it. We begin by defining

vector space and inner-product space.

A vector space V over a field F consists of a nonempty set V of objects called

vectors which can be added, multiplied by an element in F , and for which the

following axioms hold. If v and w are two vectors in V , their sum is expressed as

v + w, and the scalar product of v by a ∈ F is denoted as a ∗ v. These operations

are called addition and scalar multiplication respectively. Sometimes we simply

denote the vector space by (V,+, ∗). The axioms that (V,+, ∗) should satisfy are:

A1. If u,v ∈ V , then u+ v ∈ V .

A2. ∀u,v ∈ V , u+ v = v+ u.

A3. ∀u,v,w ∈ V , u+ (v+w) = (u+ v) +w.

A4. ∃0 ∈ V such that ∀v ∈ V,v+ 0 = v.

3

A5. ∀v ∈ V, ∃ -v ∈ V such that v+ (-v) = 0.

A6. ∀v ∈ V and ∀ a ∈ F , a ∗ v ∈ V .

A7. ∀ a ∈ F and ∀v,w ∈ V , a ∗ (v+w) = a ∗ v+ a ∗w.

A8. ∀ a, b ∈ F and ∀v ∈ V , (a+ b) ∗ v = a ∗ v+ b ∗ v.

A9. ∀ a, b ∈ F and ∀v ∈ V , a ∗ (b ∗ v) = (ab) ∗ v.

A10. ∀v ∈ V, 1 ∗ v = v.

There are many examples of vector spaces. For example, Rn with matrix addition

and scalar multiplication forms a vector space over R. Let V = {(x, y)| x, y ∈ C}. We

define the addition + and scalar multiplication ∗ as follows. For (x1, y1), (x2, y2) ∈ V ,

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2). For (x, y) ∈ V and a ∈ C, a ∗ (x, y) = (ay, ax).

It is easy to check that (V,+, ∗) is a vector space over C.

If V is a vector space over R, then an inner product on V is a function that

assigns a number ⟨v,w⟩ to every pair v,w of vectors in V in such a way that the

following axioms are satisfied.

P1. ∀v,w ∈ V, ⟨v,w⟩ ∈ R.

P2. ∀v,w ∈ V, ⟨v,w⟩ = ⟨w,v⟩.

P3. ∀u,v,w ∈ V, ⟨v+w,u⟩ = ⟨v,u⟩+ ⟨w,u⟩.

P4. ∀v,w ∈ V and ∀ r ∈ R, ⟨r ∗ v,w⟩ = r⟨v,w⟩.

P5. For all v ̸= 0 in V , ⟨v,v⟩ > 0.

4

For the vector space (Rn,+, ∗) over R, the most common inner product is defined

using components. If v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) with the standard

basis of Rn, then the inner product of v and w is

⟨v,w⟩ =
n∑

i=1

viwi .

For vector space (R3,+, ∗) over R, we can define a special inner product for it: scalar

product. This is usually denoted as a dot product. Let a,b be two non-zero vectors

in R3 and a, b and θ respectively be the magnitude of a, the magnitude of b, and the

angle between a and b, where 0 ≤ θ ≤ π. The scalar product of a and b is defined

by

a · b = a b cos θ.

If either a or b is zero, we define a · b to be zero. It is easy to check that the scalar

product is an inner product for (R3,+, ∗), and it is well known that the definition

using angle is equivalent to that using components. It should be noted that the inner

product is defined by axioms P1 to P5, and the component-based definitions are

particular possible realizations.

Although Gibbs originally called the product direct product, and although the

term scalar product is available, many books, and also Maple, call it dot product

after one particular notation.

We can now define vector product. We first give the common definition used in

physics and engineering that applies in the vector space (R3,+, ∗). Let a,b be non-

parallel vectors in R3 and again let a, b and θ respectively be the magnitude of a, the

magnitude of b, and the angle between a and b. Let n be the vector such that

• the magnitude of n is unity,

• n is perpendicular to both a and b,

5

• the system a,b,n is right-handed.

Then, n is uniquely determined by a and b. The vector product a∧b of the vectors

a and b is defined by

a ∧ b = (a b sin θ) ∗ n.

If a and b are parallel vectors, we define the vector product a ∧ b to be the zero

vector.

An equivalent definition in terms of components is that c = a ∧ b with

(c1, c2, c3) = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1) ,

where the standard basis of R3 is used.

It should be noted that this definition is different from the definitions given for an

inner-product vector space, in that for inner-product spaces, the component defini-

tions constituted a realization of the definitions, whereas here they are the common

primary definition. Abstract definitions of vector product have been attempted in

connection with the question of whether a vector product can be defined in dimen-

sions higher than 3, see for example [16, 17], but are still not standard. We note

that a vector product can be defined in 7 dimensions, but one of the properties must

be weakened. Therefore we confine ourselves here to the 3 dimensional case. Since

the object of this work is a component-free description of a vector-product space, we

deduce some abstract properties from the primary definitions. Note that if a different

component realization of the inner-product space were defined, then the component-

based definition of vector product would also have to be changed to retain the abstract

properties.

As with the scalar product, the vector product is often called cross product (again

Maple does this), however, in this thesis we follow an older notation due to Chap-

man [4, 13], and use the wedge.

6

The main properties of vector product are as follows, where a,b, c ∈ R3, and

r ∈ R.

• a ∧ b is a vector perpendicular to both a and b.

• a ∧ b = 0 if and only if a and b are parallel.

• a ∧ b = −(b ∧ a).

• (r ∗ a) ∧ b = r ∗ (a ∧ b) = a ∧ (r ∗ b).

• a ∧ (b+ c) = a ∧ b+ a ∧ c.

• In general, (a ∧ b) ∧ c ̸= a ∧ (b ∧ c).

Our package deals with the vector space (R3,+, ∗) together with the scalar prod-

uct · and vector product ∧. In other words, we deal with the algebraic structure

(R3,+, ∗, ·,∧).

Before ending the section, we would like to introduce the last, but not least con-

cept: scalar triple product. For a,b, c ∈ R3, the scalar triple product (abc) or

(a,b, c) of the vectors a,b, c is defined by

(abc) = (a ∧ b) · c.

There are some important properties for scalar triple product:

• (abc) ∈ R.

• (b ∧ c, c ∧ a, a ∧ b) = (a,b, c)2.

• a,b, c are independent if and only if (abc) ̸= 0.

7

1.2 Background and Motivation

Almost all well known computer algebra systems provide general vector operations.

Some of them even have built-in vector analysis packages. For example, the Vec-

torAnalysis package for Mathematica [22], the Vector33 package for Reduce [11] and

the VectorCalculus package for Maple. There are also many vector analysis packages

using the well known computer algebra systems. For example, the VecCalc package

uses Maple [3], the Vect package uses Macsyma [10] and the OrthoVec package uses

Reduce [6]. All these packages can provide all or most of the general vector algebra

operations such as addition, scalar multiplication, scalar product, vector product,

and vector calculus operations such as derivative, gradient, divergence and curl. The

following are some performances of the VectorCalculus package for Maple.

> with(VectorCalculus)

> CrossProduct(A, B)

Error, (in VectorCalculus:-CrossProduct) the first argument

must either be the differential operator Del, or a three

dimensional VectorField, got A

> DotProduct(A, B)

A . B

It is curious that Maple checks the arguments of CrossProduct and requires an

explicit set of components, but DotProduct does not. In any event, it is clear that

the package does not expect abstract vectors. Once explicit components are given,

the package is able to perform common tasks.

> A := <a, b, c>

A := a e_x + b e_y + c e_z

8

> B := <d, e, f>

B := d e_x + e e_y + f e_z

> CrossProduct(A, B)

(b f - c e) e_x + (c d - a f) e_y + (a e - b d) e_z

> DotProduct(A, B)

a d + b e + c f

However, almost all these packages can only perform component dependent oper-

ations; they cannot perform component-free operations. This means that before one

can do any vector operations, one should set the components for all vectors involved.

That would be a bad situation when one wants to deal with problems involving many

vectors and only wants to know the relationship among them, because the expansion

of vector expressions into specific components is usually tedious and full of oppor-

tunities for mistakes. If one has a component-free system, one will be free from the

distracting details of individual components and can concentrate on the meaningful

results of the problems.

Compared with component dependent systems which have a systematic method

for deriving mathematical statements, component-free systems are more difficult and

challenging because vector algebra has a strange and intriguing structure (see [18]):

• Vectors are not closed under the scalar product operation. If p, q are vectors,

then p · q is a scalar.

• The scalar product is commutative while the vector product is anticommutative.

If p, q are vectors, then p · q = q · p while p ∧ q = −q ∧ p.

• Neither is associative. If p, q, r are vectors, then p ∧ (q ∧ r) ̸= (p ∧ q) ∧ r,

whereas p · (q · r) and (p · q) · r are invalid.

9

• Neither has a multiplicative unit. There does not exist a fixed vector u such

that for any vector p, u ∧ p = p or p ∧ u = p or u · p = p or p · u = p.

• Both admit zero divisors. For any vector p, p ∧ p = 0; if q is a vector perpen-

dicular to p, then p · q = 0.

• Both are connected via ordinary scalar multiplication * by the strange side

relation p ∧ (q ∧ r) = (p · r) ∗ q− (p · q) ∗ r

There exist a lot of component dependent vector analysis packages. On the con-

trary, few component-free vector analysis packages are found due to the above reasons.

To our knowledge, only the packages by Fiedler [7], Qin et al. [20] and Stoutemyer

[18] involve component-free vector operations. However, the emphasis of these pack-

ages is still on component dependent operations, and only the package by Stoutemyer

provides non-trivial simplification examples. But even in Stoutemyer’s package, some

simplification problems still remain unsolved. For example, when he tried to simplify

the vector expression

(a ∧ b) ∧ (b ∧ c) · (c ∧ a)− (a · (b ∧ c))2

which should be simplified to zero, he only got

−a · c ∧ (a · b ∧ c ∗ b− a · b ∧ (b ∧ c))− (a · b ∧ c)2.

When he tried to simplify the resulting expression again, instead of getting the desired

result 0, he could only get

a · (a · b ∧ c ∗ b) ∧ c− (a · b ∧ c)2.

He explained that the scalar factor a · b ∧ c could be factored out, clearly revealing

that the expression is zero, but the built-in scalar-factoring-out mechanism does not

recognize that a · b ∧ c is a scalar despite its vector components.

10

Therefore, it is very necessary and meaningful to develop a component-free vector

analysis package. In order to achieve this goal, it is important to choose a proper

programming language, a good methodology and some suitable data representations.

1.3 Outline of Thesis

In computer algebra, there are at least two ways to compute with symbolic expres-

sions. One is zero recognition. Another is rewriting expressions in ways that the user

desires. We can illustrate this using polynomials, whose treatment in computer sys-

tems is more advanced than the treatment of abstract vector analysis. The expression

(x2 − 49)− (x− 7)(x+ 7) ,

is actually zero. It is obviously important for a system to be able to discover this,

and this is an example of the first type of computation. However, another type of

computation is to rewrite the polynomial

x3 + 7 x2 + 2 x− 40

in factored form. The expression is not zero, but the user wants us to rewrite it. This

is one example of another type of computation. In this thesis, we shall be concerned

with the first type of computation.

In this thesis, we present a rule-based component-free vector algebra package

[12] which is developed using computer programming language Aldor. Besides the

general vector algebra operations, this package provides simplification functionality

which successfully overcomes the difficulties encountered in Stoutemyer’s package. In

Chapter 2, we describe the basic algebraic formulas on which the transformation rules

of our package are based. Chapter 3 is the main part of the thesis. We discuss the

11

implementation details of this package in Aldor. They include data representation,

term order, implementations of transformation rules, implementations of vector alge-

bra operations, simplifications of vector expressions and proofs of vector identities.

In Chapter 4, we use some examples including the one used by Stoutemyer to test our

package. Some of these examples are quite complicated and big. In the Appendix A,

we include the Aldor source code of the package for reference.

12

Chapter 2

Transformation Rules

In some degree, our package is a production system in the terminology of artificial

intelligence [21]. It is important to choose a suitable set of transformation rules

(production rules) carefully. A suitable set of transformation rules is similar to a

complete set of axioms in geometry. But they are not the same. In a complete set of

axioms, any axiom is independent of the others, but in a suitable set of transformation

rules, a transformation rule may be dependent on the others. The reason is that

human beings use axioms while computers use transformation rules to think, and

human beings are smarter than computers!

2.1 Algebraic Formulas

The transformation rules for our package are based on a set of algebraic formulas.

In the following, we first choose a set of algebraic formulas which is needed for our

package. Then, we will prove those which are not always seen in the literature or not

obvious. The reasonableness of our choice will be given in chapter 3.

The algebraic formulas are as follows. If a, b, c, d, g and h are vectors, then

13

a ∧ a = 0 . (2.1)

a ∧ b = −b ∧ a ; a · b = b · a . (2.2)

(abc) = (bca) = (cab) = −(acb) = −(cba) = −(bac) . (2.3)

(aab) = (abb) = (aba) = 0 . (2.4)

a ∧ (b ∧ c) = (a · c) ∗ b− (a · b) ∗ c . (2.5)

(a ∧ b) ∧ (c ∧ d) = (abd) ∗ c− (abc) ∗ d . (2.6)

(a ∧ b) · (c ∧ d) = (a · c)(b · d)− (a · d)(b · c) . (2.7)

(abc) ∗ d = (d · a) ∗ (b ∧ c) + (d · b) ∗ (c ∧ a)

+(d · c) ∗ (a ∧ b) . (2.8)

(abc) ∗ (d ∧ h) = [(b ∧ c) · (d ∧ h)] ∗ a+ [(c ∧ a) · (d ∧ h)] ∗ b

+[(a ∧ b) · (d ∧ h)] ∗ c . (2.9)

(d · h)(abc) = (d · a)(hbc) + (d · b)(ahc) + (d · c)(abh) . (2.10)

(abc)(dgh) = [(b ∧ c) · (d ∧ g)](a.h) + [(c ∧ a) · (d ∧ g)](b · h)

+[(a ∧ b) · (d ∧ g)](c · h) . (2.11)

Proof. (2.1), (2.2), (2.3), (2.4) are obvious by the definitions of vector operations.

(2.5) can be seen in most of the literature. Note that in 7 dimensions, this trans-

formation is no longer valid [17].

For (2.6), replacing a with a∧b, b with c and c with d in (2.5), we get the result.

14

For (2.7), by(2.2), (2.3) and (2.5),

(a ∧ b) · (c ∧ d) = (a,b, c ∧ d) = (b, c ∧ d, a)

= (b ∧ (c ∧ d)) · a = a · (b ∧ (c ∧ d))

= a · [(b · d) ∗ c− (b · c) ∗ d] = (a · c)(b · d)− (a · d)(b · c)

= (a · c)(b · d)− (a · d)(b · c).

Now let’s prove (2.8). There are two cases. If a, b and c are non-coplanar, then

a∧b, b∧c, c∧a are also non-coplanar and we have (b∧c, c∧a, a∧b) = (a,b, c)2 ̸= 0.

So, we can express d as

d = x ∗ (b ∧ c) + y ∗ (c ∧ a) + z ∗ (a ∧ b). (2.12)

Taking scalar product of both sides of (2.12) with a, by (2.4) we get d·a = (abc)x, and

so, x = (d · a)/(abc). Similarly, we can get y = (d · b)/(abc) and z = (d · c)/(abc).

Therefore, by (2.12) we get the desired result.

If a, b and c are coplanar. Then (abc) = 0. Without loss of generality, we can

express c as c = x ∗ a + y ∗ b. Then, by (2.1) and (2.2), the right side of (2.8) =

x(d · a) ∗ (b ∧ a) + y(d · b) ∗ (b ∧ a) − [x(d · a) + y(d · b)] ∗ (b ∧ a) = 0 = the left

side of (2.8).

For (2.9), we only need to prove

(abc) ∗ g = (gbc) ∗ a+ (agc) ∗ b+ (abg) ∗ c

if we replace d ∧ h with g. We can use a similar method as in the proof of (2.8). So

we omit it.

For (2.10), taking scalar product of both sides of (2.8) with h, we get the result.

For (2.11), exchanging d and h in (2.10) we get

(h · d)(abc) = (h · a)(dbc) + (h · b)(adc) + (h · c)(abd).

15

That is

(d · h)(abc) = [(b ∧ c) · d](a · h) + [(c ∧ a) · d](b · h) + [(a ∧ b) · d](c · h).

Then replacing d with d ∧ g we get the desired result.

2.2 Normal Form

A common strategy for simplifying expressions in computer algebra is to define a

normal form. Taking again a polynomial as an example, to simplify p = (x2 − 49)−

(x + 7)(x − 7), we can rewrite it in a monomial basis by expanding all terms and

collecting like powers. Then we find p = 0x2 + 0x + 0, which we immediately see

is zero. Computer algebra systems use normal forms frequently, but not always. In

Maple, normal forms are often obtained using commands containing normal. For

example, the radnormal function performs normalization of expressions containing

algebraic numbers in radical notation, for example,
√
2 and

√
7 + 5

√
2, and radnormal

simplifies such a number to 0 if and only if it is mathematically equal to 0.

Frequently inMaple an expression is not reduced to a normal form automatically,

but only after a specific request. Furthermore, a normal form may not be the simplest

form of the expression. For example, the Maple commands expand and combine

can be used to convert a trigonometric expression to different normal forms, but in

the example below, neither is a single term, the way the original is. Which form is

better will depend upon the application.

sin3(3x) = 64 sin3 x cos6 x− 48 sin3 x cos4 x+ 12 sin3 x cos2 x− sin3 x

= −1/4 sin (9x) + 3/4 sin (3x)

16

In line with these considerations, we define a normal form for vector expressions

as follows.

The normal form of a vector expression is a sum of terms. Each term consists of

an underlying coefficient, a scalar part and a vector part. The vector part consists of

a empty list, or a single letter or a vector product. The components of a scalar part

are empty list, single letters, scalar products and scalar triple products. The order of

terms is determined by the term order defined in section 3.3.

In our vector algebra package, all input vector expressions will be transferred au-

tomatically into their normal forms. A vector expression can be presented in different

normal forms. For example, according to formula (2.8), we can present same expres-

sion in two different normal forms: (abc) ∗d and (c ·d) ∗ (a∧b)− (b ·d) ∗ (a∧ c) +

(a · d) ∗ (b ∧ c). However, by using advanced simplification (see section 3.5), we can

get the shortest normal form for a given vector expression.

17

Chapter 3

Implementations in Aldor

Aldor is a type-complete, strongly-typed, imperative programming language with

a two-level object model of categories and domains (similar to the concepts of in-

terfaces and classes in Java). Types and functions are first class entities allowing

them to be constructed and manipulated within Aldor programs just like any other

values. Aldor is an ideal tool for symbolic mathematical computations. For detailed

information, please see Aldor Compiler User Guide [1] and Algebra User Guide and

Reference Manual [2].

3.1 Structure of the Package

In our vector algebra package, we first define a vector space category VectorSpcCat-

egory as follows.

define VectorSpcCategory(R:Join(ArithmeticType, ExpressionType),

n:MI==3): Category==with

{

*: (R,%)->%;

18

*: (%,R)->%;

+: (%,%)->%;

-: (%,%)->%;

-: %->%;

=: (%,%)->Boolean;

default

{

import from R;

(x:%)-(y:%):%==x+(-1)*y;

(x:%)*(r:R):%==r*x;

-(x:%):%==(-1)*x;

}

}.

Here ArithmeticType and ExpressionType are two categories defined in the algebra

library of Aldor and n is the dimension of the space (the default dimension is 3).

R : Join(ArithmeticType, ExpressionType) means that the coefficient domain R is

an ArithmeticType and an ExpressionType. Many algebraic structures, such as ring

and field, are examples of R.

Then, based on VectorSpcCategory, we define a vector algebra category VectorAl-

gCategory as follows.

define VectorAlgCategory(R:Join(ArithmeticType,

ExpressionType)):Category == VectorSpcCategory(R) with

{

vector: Symbol->%;

scalarZero: ()->%;

19

vectorZero: ()->%;

realVector?: %->Boolean;

simplify: (%, advanced:Boolean==false)->%;

identity?: (%,%)->Boolean;

s3p: (%,%,%)->%;

*: (%,%)->%;

apply: (%,%)->%;

/\: (%,%)->%;

<<: (TextWriter,%)->TextWriter;

default

{

s3p(x:%,y:%,z:%):%==apply(x^y,z);

}

}.

Here with means that besides the exports of VectorSpcCategory,VectorAlgCategory

has additional exports (within the braces) which normally are related to component-

free vector operations. For example, apply is the scalar product, s3p is the scalar

triple product, and ∧ is the vector product.

Finally, we come to the point of implementing the vector algebra domain VectorAlg

in details.

VectorAlg(R:Join(ArithmeticType,ExpressionType)):

Join(ExpressionType,VectorAlgCategory R)== add

{

...

}.

20

Here Join(ExpressionType, VectorAlgCategory R) means that the return type of Vec-

torAlg is an ExpressionType and a VectorAlgCategory. The part within the braces

after add is the implementation details of the domain which composes the rest of this

chapter.

3.2 Data Representations

First of all, in order to express vector expressions in their normal forms, we have

to choose some suitable data structure. In our vector algebra package, a vector

expression is expressed internally as:

Rep==List Term, and

Term==Record (coe:R, sca:List List String, vec:List String),

where coe, sca and vec are respectively the underlying coefficient, the scalar part

and the vector part of a term. For example, the term −2(a · b)(abc) ∗ (c ∧ d) can

be expressed as [−2, [[“a”, “b”], [“a”, “b”, “c”]], [“c”, “d”]]. Inspired by Stoutemyer’s

unsolved problem, we adopt such data representation because we want to separate

the scalar part of a term from the vector part of the term.

In the scalar part sca, there are three different kinds of lists of strings. List

of length 1 stands for a scalar of single symbol, list of length 2 stands for a scalar

product, and list of length 3 stands for a scalar triple product. Similiarly, in the

vector part vec, list of length 0 means that the term is not really a vector, list of

length 1 stands for a vector of single symbol, and list of length 2 stands for a vector

of two symbols such as a ∧ b.

In the implementations of transformation rules, we also need another minor data

representation for a term. It is necessary when one wants to simplify a vector expres-

sion which contains terms with same vector parts.

21

mixTerm == Record(scal:scaList, vec2:List String), where

scaList == List scaTerm, and

scaTerm == Record(coe2:R, sca2:List List String).

Now it is time to discuss the reasonableness of our choice for algebraic formulas

(2.1)-(2.11). Some problems about the data representations arise naturally. For

example, how to represent the vector product of a and b∧c, or the vector product of

a ∧ b and c ∧ d since there are only two kinds of vectors in our data representation?

Well, formulas (2.5) and (2.6) solve this problem. Formula (2.7) fixes the problem as

how to represent the scalar product of a∧b and c∧d since there are only three kinds

of scalar factors in our data representation.

As we mentioned before, there are two kinds of vectors in our data representation

such as a and a∧b. In order to simplify vector expressions or prove vector identities,

it is necessary to establish the relationship between vectors of single symbol and

vectors of two symbols. That is the reason why formula (2.8) and formula (2.9) are

necessary. When taking scalar product for both sides of formula (2.8) with vector h,

we get formula (2.10). When taking scalar product for both sides of formula (2.9)

with a vector of single symbol, we get formula (2.11). It is obvious that formulas

(2.1)− (2.4) are necessary for simplifying vector expressions. Therefore, all algebraic

formulas, formulas (2.1)− (2.11), are necessary for our package.

On the other hand, from the arguments above, we can see that formula (2.1) −

(2.11) cover all basic patterns of vector expressions. So, they are sufficient for our

package.

22

3.3 Term Order

As we mentioned above, in order to define a normal form for a vector expression, it

is necessary to define a term order for the expression. Unlike polynomials which have

a natural way to define term order, We have to choose a term order for our purpose.

The term order is defined step by step.

Firstly, we use the natural order for strings.

Secondly, we define the order for lists of strings. Given two lists of strings L1 and

L2, then

L1 < L2 ⇐⇒ #L1 < #L2, or #L1 = #L2 and there exists a natural number i

such that L1(j) = L2(j) for all 0 < j < i and L1(i) < L2(i),

where #L denotes the length of list L.

Thirdly, we define the order for lists of lists of strings. Given two lists of lists of

strings L1 and L2, then

L1 < L2 ⇐⇒ #L1 < #L2, or #L1 = #L2 and there exists a natural number i

such that L1(j) = L2(j) for all 0 < j < i and L1(i) < L2(i).

Finally, we define the order of terms for vector expressions. Given two Terms

T1 = [coe1, sca1, vec1] and T2 = [coe2, sca2, vec2] (where coe1 and coe2 belong to R,

sca1 and sca2 are lists of lists of strings, vec1 and vec2 are lists of strings), then

T1 < T2 ⇐⇒ vec1 < vec2, or vec1 = vec2 and sca1 < sca2, or vec1 = vec2 and

sca1 = sca2 and coe1 < coe2 (if R is an OrderedArithmeticType).

For example, given a vector expression 5(abc)(a ·d) ∗ (b∧ c)+ 2(b · c) ∗ (a∧ c)+

(acd)(a · b) ∗ c, after being sorted by the order above, the expression will become

(a · b)(acd) ∗ c+ 2(b · c) ∗ (a ∧ c) + 5(a · d)(abc) ∗ (b ∧ c).

23

3.4 Implementations of Transformation Rules

Now we turn to the implementations of transformation rules. The transformation

rules in our package are based on the algebraic formulas (2.1) − (2.11) in chapter

2. The transformation rules can be divided into two types: expansion type and

combination type. For example,

(abc) ∗ d = (d · a) ∗ (b ∧ c) + (d · b) ∗ (c ∧ a) + (d · c) ∗ (a ∧ b)

is an expansion type rule which expands the term (abc)∗d into 3 terms (d·a)∗(b∧c),

(d · b) ∗ (c ∧ a) and (d · c) ∗ (a ∧ b), while

(d · a)(hbc) + (d · b)(ahc) + (d · c)(abh) = (d · h)(abc)

is a combination type rule which combines the three terms (d · a)(hbc), (d · b)(ahc)

and (d · c)(abh) into a single term (d · h)(abc). The main skill we use is pattern-

matching.

The implementations of expansion type rules are not complicated. For example,

the purpose of the following algorithm is to implement the transformation rule (abc)∗

d = (d ·a)∗ (b∧c)+ (d ·b)∗ (c∧a)+ (d ·c)∗ (a∧b). Where tx.coe, tx.sca and tx.vec

respectively stand for the underlying coefficient, the scalar part and the vector part

of the Term tx. The main idea of the algorithm is as follows. Let tx range over the

Terms of xx. If there are lists in tx which match the pattern (abc)∗d, then we replace

them with the lists which represent (d ·a)∗ (b∧c)+ (d ·b) ∗ (c∧a)+ (d · c) ∗ (a∧b).

rule 01

Input: a List Term xx (the internal representation of a vector expression).

Output: a List Term yy.

If #(xx) < 3 or xx isn’t a vector then

24

return yy := xx

else

xx := sort(xx,termOrder)

yy := empty

for tx in xx do

if #(tx.vec) ̸= 1 or #(first(reverse(tx.sca)))< 3 then

yy := cons(tx, yy)

else

n := #(tx.sca)

lt := empty

rt := empty

for i from 1 to n do

if #(tx.sca(i)) = 3 then

lt := tx.sca(i)

rt := tx.sca− lt

break

end if

end do

d := first(tx.vec)

yy := cons([tx.coe,append(rt, [[d, lt(1)]]), [lt(2), lt(3)]], yy)

yy := cons([tx.coe,append(rt, [[d, lt(2)]]), [lt(3), lt(1)]], yy)

yy := cons([tx.coe,append(rt, [[d, lt(3)]]), [lt(1), lt(2)]], yy)

end if

end do

return yy

end if

25

Compared with the implementations of expansion type rules, the implementations

of combination type rules are much more complicated. For example, in order to

implement the transformation rule (d · a)(hbc) + (d · b)(ahc) + (d · c)(abh) = (d ·

h)(abc), first we have to implement a subalgorithm match? to check if any given

three scaTerms match the pattern of this rule, and then we have to implement another

subalgorithm comb which combines the matching scaTerms in a mixTerm using this

rule. For the definitions of scaTerm, mixTerm and scaList, please see section 3.2

for details. In the following algorithms, p1, p2 and p3 are supposed to be in general

case which means that the symbols a, b, c, d and h in the rule are all different, and

distribute stands for the function to transfer a mixTerm to a List Term.

match?

Input: three scaTerms p1, p2 and p3.

Output: TRUE if they are maching, FALSE otherwise.

If not (|p1.coe2| = |p2.coe2| = |p3.coe2|) then

return FALSE

else

l1 := p1.sca2

l2 := p2.sca2

l3 := p3.sca2

sg := the intersection of l1, l2 and l3

s1 := l1 − sg

s2 := l2 − sg

s3 := l3 − sg

if not(#s1 = 2 and #s2 = 2 and #s3 = 2 and #s1(1) ∗#s1(2) = 6

and #s2(1) ∗#s2(2) = 6 and #s3(1) ∗#s3(2) = 6) then

26

return FALSE

else

s1 := sort(s1,listOrder)

s2 := sort(s2,listOrder)

s3 := sort(s3,listOrder)

ut2 := the union of s1(1), s2(1) and s3(1)

ut3 := the union of s1(2), s2(2) and s3(2)

it2 := the intersection of s1(1), s2(1) and s3(1)

it3 := the intersection of s1(2), s2(2) and s3(2)

if not (#ut2 = 4 and #ut3 = 4 and #it2 = 1 and #it3 = 1

and (ut2 − it2) = (ut3 − it3) and #(ut2 − it2) = 3) then

return FALSE

else

d := it2(1)

h := it3(1)

a := (ut2 − it2)(1)

b := (ut2 − it2)(2)

c := (ut2 − it2)(3)

coe := p1.coe2

tp1 := [coe,append([[d, a], [h, b, c]], sg), []]

tp2 := [coe,append([[d, b], [a, h, c]], sg), []]

tp3 := [coe,append([[d, c], [a, b, h]], sg), []]

if [tp1, tp2, tp3] = ±[[p1, p2, p3], []] then

return TRUE

else

return FALSE

27

end if

end if

end if

end if

comb

Input: a mixTerm p (the length of p.scal is 3).

Output: a List Term

l1 := (p.scal(1)).sca2

l2 := (p.scal(2)).sca2

l3 := (p.scal(3)).sca2

use the same method as in match? to find out sg, d, h, a, b, c

coe := (p.scal(1)).coe2

tp1 := [coe,append([[d, a], [h, b, c]], sg), p.vec2]

tp2 := [coe,append([[d, b], [a, h, c]], sg), p.vec2]

tp3 := [coe,append([[d, c], [a, b, h]], sg), p.vec2]

if [tp1, tp2, tp3] = p then

return [[coe,append([[d, h], [a, b, c]], sg), p.vec2]]

else

return [[coe,append([[d, h], [a, c, b]], sg), p.vec2]]

end if

Now it is time to implement the transformation rule (d · a)(hbc)+ (d ·b)(ahc)+

(d · c)(abh) = (d · h)(abc) based on the two subalgorithms above. The main idea

of this algorithm is as follows. Firstly, we change the data representation xx from

List Term to List mixTerm. Secondly, let tx range over xx, and let L be the scaList

part of tx. If the length of L is less than 3, then leave it for output since we cannot

28

apply the transformation rule to L. Otherwise, again let L denote the collection of

scaTerms in L in which there are lists of length 2 and length 3 in their sca2 part, and

leave other scaTerms for output. Thirdly, in a while-loop, check if any given three

scaTerms match the rule using the subalgorithm match?. If there is no such three

scaTerms or the length of L is less than 3, then break the loop. Otherwise, combine

the three scaTerms using the subalgorithm comb and update L. Finally, output the

remaining L.

rule03

Input: a List Term xx.

Output: a List Term yy.

If #xx < 3 then

return yy := xx

else

xx := sort(xx,termOrder)

xx := combine those Terms of xx which have same vector parts

yy := empty

for tx in xx repeat

L := tx.scal

n := #L

if n < 3 then

yy := append(yy, distribute(tx))

else

for i from 1 to n do

if L(i).sca2 doesn’t contain lists of length 2 and 3 then

yy := append(yy,distribute([[L(i)], tx.vec2]))

29

L := L− L(i)

end if

end do

n := #L

ttp := empty

while n > 2 loop

for 1 ≤ i < j < k ≤ n do

if match?(L(i), L(j), L(k)) then

ttp := [L(i), L(j), L(k)]

L := L− ttp

break do

end if

end do

if empty?(ttp) then

break loop

else

yy := append(yy,comb([ttp, tx.vec2]))

ttp := empty

n := #L

end if

end loop

if not(empty?(L)) then

yy := append(yy,distribute([L, tx.vec2]))

end if

end if

end repeat

30

return yy

end if

3.5 Simplifications and Proofs

First, we would like to dicuss simplifications of vector expressions. There are two

levels of simplifications. One is basic level which performs basic simplifications us-

ing transformation rules based on formulas (2.1) − (2.4). Another is advanced level

which performs advanced simplifications using transformation rules based on formulas

(2.1)− (2.4) and formulas (2.8)− (2.11).

The main idea for simplification is that we first use those transformation rules

based on formulas (2.1)− (2.4) to perform basic simplifications, and make the vector

expression in ascending order which is very convenient for combining like terms. If

the number of terms ≥ 3 and the advanced flag is true which means advanced sim-

plification then we will apply transformation rules based on formulas (2.8) − (2.11)

to the vector expression one by one within a while-loop. After applying a transfor-

mation rule and performing basic simplification, if the resulting expression is longer

than the original one which means the uselessness of the application of the rule, then

discard the resulting expression. If at any time the number of terms < 3, return the

expression.

In the following algorithm, if x is an element of the VectorAlg domain, then rep(x)

denotes its data representation. On the other hand, if xx is the data representation

of an element x in the domain VectorAlg, then per(xx) is x itself. Rule(k) stands for

transformation rules based on formula(k), and RuleSet stands for all transformation

rules based on formulas (2.8)− (2.11).

31

simplify

Input: an element x of the VectorAlg domain; a boolean value variable advanced.

Output: an element of the VectorAlg domain.

xx := rep(x)

if empty?(xx) then

return x

else

lo := empty

for tx in xx repeat

if tx.vec(1) = tx.vec(2) then

lo := lo

else

make tx.vec in ascending order

if empty?(tx.sca) then

lo := cons(tx, lo)

else if rule(2.4) fires in tx.sca then

lo := lo

else

make every factor in tx.sca in ascending order

make tx.sca in ascending order

lo := cons(tx, lo)

end if

end if

end repeat

if empty?(lo) then

return per(lo)

32

else

lo := sort(lo, termOrder)

lo := combine like terms of lo

if not (advanced and #lo > 2) then

return per(lo)

else

stp := empty

L := empty

while per(lo) ̸= per(stp) loop

stp := lo

for rule in RuleSet do

L := simplify(per(rule(lo)))

if #rep(L) < #lo then

lo := rep(L)

end if

if #lo < 3 then

break and return per(lo)

end if

end do

end loop

return per(lo)

end if

end if

end if

We want to make two points clear. First, we ask the number of terms in a

33

vector expression to be at least 3 because otherwise it is useless to use transformation

rules based on formulas (2.8) − (2.11). Second, we choose per(lo) = per(stp) as the

terminating condition of the loop because after each loop, #lo < #stp and #stp is

finite, so the loop should stop in finite steps.

Then, we would like to discuss the algorithm for proving vector identities. The

basic principal is similar to that of simplification. For the sake of simplicity, in

practice, we usually use x = y instead of identity?(x, y) to check if two elements x, y

in the VectorAlg domain are identical.

identity?

Input: two elements x and y in VectorAlg domain.

Output: a boolean value.

z := simplify(x− y)

if z = 0 then

return TRUE

else if #rep(z) ≤ 2 then

return FALSE

else

lo := rep(z)

stp := empty

while per(lo) ̸= per(stp) loop

stp := lo

for rule in RuleSet do

L := simplify(per(rule(lo))

if L = 0 then

break and return TRUE

34

else if #rep(L) < #lo then

lo := rep(L)

end if

end do

end loop

return FALSE

end if

3.6 Vector Algebra Operations

Finally, we talk about general vector algebra operations. For addition of two elements

x and y in VectorAlg domain, simply merge rep(x) and rep(y) together, then perform

basic simplification. For scalar multiplication of r and a domain element x, replace

coe with r∗coe for every Term in rep(x), then perform basic simplification. For scalar

product of two domain elements x and y, simply use distribution law and formula

(2.7), then perform basic simplification. For vector product of two domain elements

x and y, simply use distribution law and formulas (2.5) and (2.6), then perform basic

simplification .

35

Chapter 4

Examples

We use Aldor Interpreter to test our package. After compiling our source file into

a platform-independent object file vectorAlg.ao, we open the Aldor Interpreter using

command: aldor -gloop. Then we use following commands to do initialization:

%1 >> #include "algebra"

%2 >> #include "aldorinterp"

%3 >> #library aaa "vectorAlg.ao"

%4 >> macro M==MachineInteger

%5 >> import from aaa, M, String, Symbol, VectorAlg M

Now we declare vectors a, b, c, d, e, f, g and h as follows.

%6 >> a:=vector(-"a")

%7 >> b:=vector(-"b")

%8 >> c:=vector(-"c")

%9 >> d:=vector(-"d")

%10 >> e:=vector(-"e")

%11 >> f:=vector(-"f")

36

%12 >> g:=vector(-"g")

%13 >> h:=vector(-"h")

At this point, we are ready to test examples using our package. Firstly, we would like

to test Stoutemyer’s unsolved problem in chapter 1.

%14 >> ((a^b)^(b^c)).(c^a)-(a.(b^c))*(a.(b^c))

0 @ VectorAlg(MachineInteger)

Comp: 0 msec, Interp: 40 msec

From the experiment above, we can see that our package is very efficient. It only

takes 40 milliseconds to get the result. Now, we will test some more examples also

from Stoutemyer [18]:

• (a−d)∧(b−c)+(b−d)∧(c−a)+(c−d)∧(a−b)−2∗(a∧b+b∧c+c∧a) = 0.

• (b ∧ c) ∧ (a ∧ d) + (c ∧ a) ∧ (b ∧ d) + (a ∧ b) ∧ (c ∧ d) + 2 ∗ (abc) ∗ d = 0.

%15 >> (a-d)^(b-c)+(b-d)^(c-a)+(c-d)^(a-b)-2*(a^b+b^c+c^a)

0 @ VectorAlg(MachineInteger)

Comp: 0 msec, Interp: 40 msec

%16 >> v1:=(b^c)^(a^d)+(c^a)^(b^d)+(a^b)^(c^d)+2*s3p(a,b,c)*d

(bcd)*a-(acd)*b+(abd)*c-(abc)*d @ VectorAlg(MachineInteger)

Comp: 10 msec, Interp: 30 msec

%17 >> simplify(v1,true)

O @ VectorAlg(MachineInteger)

Comp: 10 msec, Interp: 30 msec

The following examples come from Cunningham [5]:

37

• a ∧ (b ∧ c) + b ∧ (c ∧ a) + c ∧ (a ∧ b) = 0.

• a∧(b∧(c∧d))+b∧(c∧(d∧a))+c∧(d∧(a∧b))+d∧(a∧(b∧c)) = (a∧c)∧(b∧d).

%18 >> a^(b^c)+b^(c^a)+c^(a^b)

0 @ VectorAlg(MachineInteger)

Comp: 0 msec, Interp: 20 msec

%19 >> a^(b^(c^d))+b^(c^(d^a))+c^(d^(a^b))+d^(a^(b^c))=(a^c)^(b^d)

T @ Boolean

Comp: 0 msec, Interp: 60 msec

The following examples come from Patterson [15]

• (b ∧ c) · (a ∧ d) + (c ∧ a) · (b ∧ d) + (a ∧ b) · (c ∧ d) = 0.

• ((a∧ b)∧ c)∧ d+ ((b∧ a)∧ d)∧ c+ ((c∧ d)∧ a)∧ b+ ((d∧ c)∧ b)∧ a = 0.

%20 >> (b^c).(a^d)+(c^a).(b^d)+(a^b).(c^d)

0 @ VectorAlg(MachineInteger)

Comp: 0 msec, Interp: 30 msec

%21 >> ((a^b)^c)^d+((b^a)^d)^c+((c^d)^a)^b+((d^c)^b)^a

O @ VectorAlg(MachineInteger)

Comp: 10 msec, Interp: 30 msec

Actually, it is difficult for us to find examples in existing literature complicated enough

to challenge our system. So, we create some examples by ourselves.

%22 >> p:=s3p(a,b,c)*d

(abc)*d @ VectorAlg(MachineInteger)

Comp: 0 msec, Interp: 10 msec

38

%23 >> q:=(d.a)*(b^c)+(d.b)*(c^a)+(d.c)*(a^b)

(c.d)*(a^b)-(b.d)*(a^c)+(a.d)*(b^c) @ VectorAlg(MachineInteger)

Comp: 0 msec, Interp: 20 msec

%24 >> m:=e^(f^(g^h))+f^(g^(h^e))+g^(h^(e^f))+h^(e^(f^g))

(g.h)*(e^f)-(f.g)*(e^h)+(e.h)*(f^g)+(e.f)*(g^h) @

VectorAlg(MachineInteger)

Comp: 10 msec, Interp: 30 msec

%25 >> n:=(e^g)^(f^h)

(egh)*f+(efg)*h @ VectorAlg(MachineInteger)

Comp: 0 msec, Interp: 10 msec

%26 >> p=q

T @ Boolean

Comp: 10 msec, Interp: 20 msec

%27 >> m=n

T @ Boolean

Comp: 0 msec, Interp: 40 msec

%28 >> r1:=p^n

(abc)(egh)*(d^f)+(abc)(efg)*(d^h) @ VectorAlg(MachineInteger)

Comp: 10 msec, Interp: 10 msec

%29 >> r2:=q^m

-(a.d)(f.g)(bch)*e+(a.d)(g.h)(bcf)*e+(b.d)(f.g)(ach)*e

-(b.d)(g.h)(acf)*e-(c.d)(f.g)(abh)*e+(c.d)(g.h)(abf)*e

+(a.d)(e.h)(bcg)*f-(a.d)(g.h)(bce)*f-(b.d)(e.h)(acg)*f

+(b.d)(g.h)(ace)*f+(c.d)(e.h)(abg)*f-(c.d)(g.h)(abe)*f

+(a.d)(e.f)(bch)*g-(a.d)(e.h)(bcf)*g-(b.d)(e.f)(ach)*g

+(b.d)(e.h)(acf)*g+(c.d)(e.f)(abh)*g-(c.d)(e.h)(abf)*g

39

-(a.d)(e.f)(bcg)*h+(a.d)(f.g)(bce)*h+(b.d)(e.f)(acg)*h

-(b.d)(f.g)(ace)*h-(c.d)(e.f)(abg)*h+(c.d)(f.g)(abe)*h

@ VectorAlg(MachineInteger)

Comp: 0 msec, Interp: 80 msec

%30 >> r1=r2

T @ Boolean

Comp: 0 msec, Interp: 2730 msec

%31 >> r:=r1+a^(b^c)-r2

(a.c)*b-(a.b)*c+(a.d)(f.g)(bch)*e-(a.d)(g.h)(bcf)*e

-(b.d)(f.g)(ach)*e+(b.d)(g.h)(acf)*e+(c.d)(f.g)(abh)*e

-(c.d)(g.h)(abf)*e-(a.d)(e.h)(bcg)*f+(a.d)(g.h)(bce)*f

+(b.d)(e.h)(acg)*f-(b.d)(g.h)(ace)*f-(c.d)(e.h)(abg)*f

+(c.d)(g.h)(abe)*f-(a.d)(e.f)(bch)*g+(a.d)(e.h)(bcf)*g

+(b.d)(e.f)(ach)*g-(b.d)(e.h)(acf)*g-(c.d)(e.f)(abh)*g

+(c.d)(e.h)(abf)*g+(a.d)(e.f)(bcg)*h-(a.d)(f.g)(bce)*h

-(b.d)(e.f)(acg)*h+(b.d)(f.g)(ace)*h+(c.d)(e.f)(abg)*h

-(c.d)(f.g)(abe)*h+(abc)(egh)*(d^f)+(abc)(efg)*(d^h) @

VectorAlg(MachineInteger)

Comp: 0 msec, Interp: 110 msec

%32 >> simplify(r,true)

(a.c)*b-(a.b)*c @ VectorAlg(MachineInteger)

Comp: 10 msec, Interp: 2670 msec

%33 >> r3:=m^q

-(b.d)(e.f)(cgh)*a-(b.d)(e.h)(cfg)*a+(b.d)(f.g)(ceh)*a

-(b.d)(g.h)(cef)*a+(c.d)(e.f)(bgh)*a+(c.d)(e.h)(bfg)*a

-(c.d)(f.g)(beh)*a+(c.d)(g.h)(bef)*a+(a.d)(e.f)(cgh)*b

40

+(a.d)(e.h)(cfg)*b-(a.d)(f.g)(ceh)*b+(a.d)(g.h)(cef)*b

-(c.d)(e.f)(agh)*b-(c.d)(e.h)(afg)*b+(c.d)(f.g)(aeh)*b

-(c.d)(g.h)(aef)*b-(a.d)(e.f)(bgh)*c-(a.d)(e.h)(bfg)*c

+(a.d)(f.g)(beh)*c-(a.d)(g.h)(bef)*c+(b.d)(e.f)(agh)*c

+(b.d)(e.h)(afg)*c-(b.d)(f.g)(aeh)*c+(b.d)(g.h)(aef)*c

@ VectorAlg(MachineInteger)

Comp: 0 msec, Interp: 90 msec

%34 >> r4:=n^q

-(b.d)(c.f)(egh)*a-(b.d)(c.h)(efg)*a+(b.f)(c.d)(egh)*a

+(b.h)(c.d)(efg)*a+(a.d)(c.f)(egh)*b+(a.d)(c.h)(efg)*b

-(a.f)(c.d)(egh)*b-(a.h)(c.d)(efg)*b-(a.d)(b.f)(egh)*c

-(a.d)(b.h)(efg)*c+(a.f)(b.d)(egh)*c+(a.h)(b.d)(efg)*c

@ VectorAlg(MachineInteger)

Comp: 0 msec, Interp: 40 msec

%35 >> r3=r4

T @ Boolean

Comp: 0 msec, Interp: 4280 msec

%36 >> r34:=r3+b^a-r4

(b.d)(c.f)(egh)*a+(b.d)(c.h)(efg)*a-(b.d)(e.f)(cgh)*a

-(b.d)(e.h)(cfg)*a+(b.d)(f.g)(ceh)*a-(b.d)(g.h)(cef)*a

-(b.f)(c.d)(egh)*a-(b.h)(c.d)(efg)*a+(c.d)(e.f)(bgh)*a

+(c.d)(e.h)(bfg)*a-(c.d)(f.g)(beh)*a+(c.d)(g.h)(bef)*a

-(a.d)(c.f)(egh)*b-(a.d)(c.h)(efg)*b+(a.d)(e.f)(cgh)*b

+(a.d)(e.h)(cfg)*b-(a.d)(f.g)(ceh)*b+(a.d)(g.h)(cef)*b

+(a.f)(c.d)(egh)*b+(a.h)(c.d)(efg)*b-(c.d)(e.f)(agh)*b

-(c.d)(e.h)(afg)*b+(c.d)(f.g)(aeh)*b-(c.d)(g.h)(aef)*b

41

+(a.d)(b.f)(egh)*c+(a.d)(b.h)(efg)*c-(a.d)(e.f)(bgh)*c

-(a.d)(e.h)(bfg)*c+(a.d)(f.g)(beh)*c-(a.d)(g.h)(bef)*c

-(a.f)(b.d)(egh)*c-(a.h)(b.d)(efg)*c+(b.d)(e.f)(agh)*c

+(b.d)(e.h)(afg)*c-(b.d)(f.g)(aeh)*c+(b.d)(g.h)(aef)*c -(a^b)

@VectorAlg(MachineInteger)

Comp: 0 msec, Interp: 170 msec

%37 >> simplify(r34,true)

-(a^b) @ VectorAlg(MachineInteger)

Comp: 0 msec, Interp: 4220 msec

42

Appendix A

Source Code

#include "algebra" #include "aldorio"

macro {

MI==MachineInteger;

TREE==ExpressionTree;

TEXT==TextWriter;

}

-- The categories and domains for the package --

define VectorSpcCategory(R:Join(ArithmeticType,

ExpressionType),n:MI==3):Category==with

{

*: (R,%)->%;

*: (%,R)->%;

+: (%,%)->%;

-: (%,%)->%;

-: %->%;

=: (%,%)->Boolean;

default

43

{

import from R;

(x:%)-(y:%):%==x+(-1)*y;

(x:%)*(r:R):%==r*x;

-(x:%):%==(-1)*x;

}

}

define VectorAlgCategory(R:Join(ArithmeticType,

ExpressionType)):Category == VectorSpcCategory(R) with

{

vector: Symbol->%;

scalarZero: ()->%;

vectorZero: ()->%;

realVector?: %->Boolean;

simplify: (%,flag:Boolean==false)->%;

identity?: (%,%)->Boolean;

s3p: (%,%,%)->%;

*: (%,%)->%;

apply: (%,%)->%;

^: (%,%)->%;

<<: (TextWriter,%)->TextWriter;

default

{

s3p(x:%,y:%,z:%):%==apply(x^y,z);

}

}

VectorAlg(R:Join(ArithmeticType,ExpressionType)):

Join(ExpressionType,VectorAlgCategory R)== add

{

Term ==Record(coe:R, sca:List List String, vec:List String);

44

Rep ==List Term;

scaTerm ==Record(coe2:R, sca2:List List String);

scaList ==List scaTerm;

mixTerm ==Record(scal:scaList,vec2:List String);

import from MI, R, Term, Rep, TEXT, TREE, String, Boolean;

import from scaTerm, scaList, mixTerm;

-- The local functions for the domain "VectorAlg" --

local szero?(xx:Term): Boolean=={xx.coe=0 and empty? xx.vec;}

local vzero?(xx:Term): Boolean==

{

s:String:="0";

xx.vec=[s] or (xx.coe=0 and ~empty? xx.vec);

}

local append(l:List List String, r:List List String): List List String==

{

tp:List List String:=copy(l);

append!(tp,r);

}

local append(l:List String, r:List String): List String==

{

tp:List String:=copy(l);

append!(tp,r);

}

local append(l:Rep, r:Rep): Rep==

{

tp:Rep:=copy(l);

45

append!(tp,r);

}

local append(l:scaList, r:scaList): scaList==

{

tp:scaList:=copy(l);

append!(tp,r);

}

local simplify0(xx:Rep):Rep==

{

l: List Term:=empty;

tf: MI:=0;

for tx in xx repeat{

szero? tx =>l:=l;

vzero? tx => tf:=1;

l:=cons(tx,l);

}

empty? l and tf=0 =>[[0,[],[]]];

empty? l and tf=1 =>[[0,[],["0"]]];

reverse! l;

}

-- Vector algebra operations --

vector(a:Symbol):%=={per [[1,[],[name a]]];}

scalarZero():%=={per [[0,[],[]]];}

vectorZero():%=={per [[0,[],["0"]]];}

realVector?(x:%):Boolean==

46

{

import from Boolean;

xx:=rep x;

empty? xx => false;

t:Boolean:=true;

for tx in xx repeat

{

if empty? tx.vec then

{

t:=false;

break;

}

}

t;

}

(r:R) * (x:%): %==

{

xx:=rep x;

xx:= [[r*p.coe,p.sca,p.vec] for p in xx];

per simplify0(xx);

}

(s:%) * (x:%): %==

{

ss:=rep s;

xx:=rep x;

l:List Term:=empty;

for ts in ss repeat{

assert(empty? ts.vec);

for tx in xx repeat{

m:=[ts.coe*tx.coe, append(ts.sca,tx.sca), tx.vec]@Term;

47

l:=cons(m,l);

}

}

per simplify0 reverse! l;

}

(x:%) + (y:%): %==

{

per append(rep x, rep y);

}

apply(x:%, y:%): %==

{

~realVector? x =>

{stdout<<"The first argument is not really vector!"<<newline;

per [[0,[],[]]];}

~realVector? y =>

{stdout<<"The second argument is not really vector!"<<newline;

per [[0,[],[]]];}

xx:=rep x;

yy:=rep y;

l:List Term:=empty;

for tx in xx repeat{

n1:MI:=#tx.vec;

for ty in yy repeat{

n2:MI:=#ty.vec;

if n1=1 and n2=1 then

{

m:=[tx.coe*ty.coe,cons([tx.vec(1),ty.vec(1)],

append(tx.sca,ty.sca)),[]]@Term;

l:=cons(m,l);

}

48

else if n1=1 and n2=2 then

{

m:=[tx.coe*ty.coe,cons([tx.vec(1),ty.vec(1),ty.vec(2)],

append(tx.sca,ty.sca)),[]]@Term;

l:=cons(m,l);

}

else if n1=2 and n2=1 then

{

m:=[tx.coe*ty.coe,cons([tx.vec(1),tx.vec(2),ty.vec(1)],

append(tx.sca,ty.sca)),[]]@Term;

l:=cons(m,l);

}

else if n1=2 and n2=2 then

{

tp1:List List String:=[[tx.vec(1),ty.vec(1)],[tx.vec(2),ty.vec(2)]];

tp2:List List String:=[[tx.vec(1),ty.vec(2)],[tx.vec(2),ty.vec(1)]];

m1:=[tx.coe*ty.coe,append(tp1,append(tx.sca,ty.sca)),[]]@Term;

m2:=[(-1)*tx.coe*ty.coe,append(tp2,append(tx.sca,ty.sca)),[]]@Term;

l:=cons(m2,cons(m1,l));

}

}

}

per simplify0 reverse! l;

}

(x:%) ^ (y:%): %==

{

~realVector? x =>

{stdout<<"The first argument is not really vector!"<<newline;

per [[0,[],[]]];}

~realVector? y =>

{stdout<<"The second argument is not really vector!"<<newline;

49

per [[0,[],[]]];}

xx:=rep x;

yy:=rep y;

l:List Term:=empty;

for tx in xx repeat{

n1:MI:=#tx.vec;

for ty in yy repeat{

n2:MI:=#ty.vec;

if n1=1 and n2=1 then

{

m:=[tx.coe*ty.coe,append(tx.sca,ty.sca),append(tx.vec,ty.vec)]@Term;

l:=cons(m,l);

}

else if n1=1 and n2=2 then

{

m1:=[tx.coe*ty.coe,cons([tx.vec(1),ty.vec(2)],

append(tx.sca,ty.sca)),[ty.vec(1)]]@Term;

m2:=[(-1)*tx.coe*ty.coe,cons([tx.vec(1),ty.vec(1)],

append(tx.sca,ty.sca)),[ty.vec(2)]]@Term;

l:=cons(m2,cons(m1,l));

}

else if n1=2 and n2=1 then

{

m1:=[tx.coe*ty.coe,cons([tx.vec(1),ty.vec(1)],

append(tx.sca,ty.sca)),[tx.vec(2)]]@Term;

m2:=[(-1)*tx.coe*ty.coe,cons([tx.vec(2),ty.vec(1)],

append(tx.sca,ty.sca)),[tx.vec(1)]]@Term;

l:=cons(m2,cons(m1,l));

}

else if n1=2 and n2=2 then

{

m1:=[tx.coe*ty.coe,cons([tx.vec(1),tx.vec(2),ty.vec(2)],

50

append(tx.sca,ty.sca)),[ty.vec(1)]]@Term;

m2:=[(-1)*tx.coe*ty.coe,cons([tx.vec(1),tx.vec(2),ty.vec(1)],

append(tx.sca,ty.sca)),[ty.vec(2)]]@Term;

l:=cons(m2,cons(m1,l));

}

}

}

per simplify0 reverse! l;

}

-- I/O functions for the domain --

local writeTerm(port:TEXT, t:Term):()==

{

szero? t => port<<0$R;

vzero? t => port<<"O";

if t.coe~=1 then port<<t.coe;

tp:=t.sca;

while ~empty? tp repeat

{

t1:=first tp;

tp:=rest tp;

if #t1=1 then port<<first t1;

else if #t1=2 then

{

port<<"("<<t1(1)<<"."<<t1(2)<<")";

}

else

{

port<<"(";

for s in t1 repeat port<<s;

port<<")";

51

}

}

if ~empty? t.vec then

{

if (t.coe~=1 or ~empty? t.sca) then port<<"*";

#t.vec=1 => port<<first t.vec;

port<<"("<<t.vec(1)<<"^"<<t.vec(2)<<")";

}

}

(port:TEXT)<<(x:%):TEXT==

{

xx:=rep x;

empty? xx => port<<0$R;

if R has OrderedArithmeticType then

{

import from R pretend OrderedArithmeticType;

tp:=first xx;

if tp.coe<0 then

{

port<<"-";

writeTerm(port,[(-1)*tp.coe, tp.sca, tp.vec]@Term);

}

else

{ writeTerm(port,tp);}

xx:=rest xx;

while ~empty? xx repeat

{

tx:=first xx;

xx:=rest xx;

if tx.coe<0 then

52

{

port<<"-";

writeTerm(port,[(-1)*tx.coe, tx.sca, tx.vec]@Term);

}

else

{

port<<"+";

writeTerm(port,tx);

}

}

}

else

{

writeTerm(port,first xx);

xx:=rest xx;

while ~empty? xx repeat

{

tx:=first xx;

xx:=rest xx;

port<<"+";

writeTerm(port,tx);

}

}

port;

}

(x:%) = (y:%): Boolean==

{

identity?(x,y);

}

extree(x:%):TREE==

53

{

extree "0";

}

-- function for checking vector identities --

identity?(x:%, y:%): Boolean==

{

z:=simplify(x-y);

zz:=copy rep z;

#zz=1 and (vzero?(first(zz)) or szero?(first(zz))) => true;

l:List Term:=empty;

if #zz > 2 then

{

tt:Boolean:=false;

stp:List Term:=empty;

while ~same?(per zz, per stp) repeat

{

stp:=copy zz;

l:=rule01(zz);

tpz:=simplify per l;

tpzz:=rep tpz;

#tpzz=1 and (vzero?(first(tpzz)) or szero?(first(tpzz)))

=> {tt:=true; break;}

if #tpzz<#zz then zz:=tpzz;

l:=rule01(zz,true);

tpz:=simplify per l;

tpzz:=rep tpz;

#tpzz=1 and (vzero?(first(tpzz)) or szero?(first(tpzz)))

=> {tt:=true; break;}

if #tpzz<#zz then zz:=tpzz;

l:=rule11(zz);

54

tpz:=simplify per l;

tpzz:=rep tpz;

#tpzz=1 and (vzero?(first(tpzz)) or szero?(first(tpzz)))

=> {tt:=true; break;}

if #tpzz<#zz then zz:=tpzz;

l:=rule02(zz);

tpz:=simplify per l;

tpzz:=rep tpz;

#tpzz=1 and (vzero?(first(tpzz)) or szero?(first(tpzz)))

=> {tt:=true; break;}

if #tpzz<#zz then zz:=tpzz;

l:=rule02(zz,true);

tpz:=simplify per l;

tpzz:=rep tpz;

#tpzz=1 and (vzero?(first(tpzz)) or szero?(first(tpzz)))

=> {tt:=true; break;}

if #tpzz<#zz then zz:=tpzz;

l:=rule03(zz);

tpz:=simplify per l;

tpzz:=rep tpz;

#tpzz=1 and (vzero?(first(tpzz)) or szero?(first(tpzz)))

=> {tt:=true; break;}

if #tpzz<#zz then zz:=tpzz;

l:=rule04(zz);

tpz:=simplify per l;

tpzz:=rep tpz;

#tpzz=1 and (vzero?(first(tpzz)) or szero?(first(tpzz)))

=> {tt:=true; break;}

if #tpzz<#zz then zz:=tpzz;

l:=rule04(zz,true);

tpz:=simplify per l;

tpzz:=rep tpz;

55

#tpzz=1 and (vzero?(first(tpzz)) or szero?(first(tpzz)))

=> {tt:=true; break;}

if #tpzz<#zz then zz:=tpzz;

}

tt => tt;

stdout<<per zz<<" = "<<"0 ??? "<<newline<<newline;

tt;

}

else

{

stdout<<z<<" = "<<"0 ??? "<<newline<<newline;

false;

}

}

-- The Orders for the package --

local listOrder?(l1:List String, l2:List String): Boolean==

{

empty? l1 => true;

empty? l2 => false;

n1:=#l1;

n2:=#l2;

n1<n2 =>true;

n1>n2 =>false;

tt:Boolean:=true;

for i in 1..n1 repeat

{

l1(i)<l2(i) => { tt:=true; break; }

l1(i)>l2(i) => { tt:=false; break; }

}

tt;

56

}

local listEq?(l1:List String, l2:List String): Boolean==

{

empty? l1 => empty? l2;

n1:=#l1;

n2:=#l2;

n1~=n2 => false;

tt:Boolean:=true;

for i in 1..n1 repeat

{

l1(i)~=l2(i) => {tt:=false; break; }

}

tt;

}

local dblListOrder?(l1:List List String, l2:List List String):

Boolean==

{

empty? l1 => true;

empty? l2 => false;

n1:=#l1;

n2:=#l2;

n1<n2 =>true;

n1>n2 =>false;

tt:Boolean:=true;

for i in 1..n1 repeat

{

listOrder?(l1(i),l2(i)) and ~listEq?(l1(i),l2(i))

=>{ tt:=true; break; }

~listOrder?(l1(i),l2(i)) => { tt:=false; break; }

}

57

tt;

}

local dblListEq?(l1:List List String, l2:List List String): Boolean==

{

empty? l1 => empty? l2;

n1:=#l1;

n2:=#l2;

n1~=n2 => false;

tt:Boolean:=true;

for i in 1..n1 repeat

{

~listEq?(l1(i),l2(i)) => {tt:=false; break; }

}

tt;

}

local termOrder?(t1:Term, t2:Term): Boolean==

{

szero? t1 or vzero? t1 => true;

szero? t2 or vzero? t2 => false;

listOrder?(t1.vec,t2.vec) and ~listEq?(t1.vec,t2.vec) => true;

~listOrder?(t1.vec,t2.vec) => false;

dblListOrder?(t1.sca,t2.sca) and ~dblListEq?(t1.sca,t2.sca) =>true;

~dblListOrder?(t1.sca,t2.sca) => false;

true;

}

local termEq?(t1:Term, t2:Term): Boolean==

{

t1.coe=t2.coe and dblListEq?(t1.sca,t2.sca) and listEq?(t1.vec,t2.vec);

}

58

local permute4():List List MI==

{

import from Set MI,List MI,List List MI;

a:Set MI:=[1,2,3,4];

out:List List MI:=empty;

for i in a repeat

{

for j in a-([i] @ Set MI) repeat

{

for k in a-([i,j] @ Set MI) repeat

{

for l in a-([i,j,k] @ Set MI) repeat

{

out:=cons([i,j,k,l],out);

}

}

}

}

out;

}

-- The function for simplifying vector expressions --

simplify(x:%, flag:Boolean==false):%==

{

xx:=copy rep x;

empty? xx => x;

lo:Rep:=empty;

for tx in xx repeat

{

tpx:Term:=[tx.coe, copy tx.sca, copy tx.vec];

59

#tpx.vec=2 and tpx.vec(1)=tx.vec(2) => lo:=lo;

if #tpx.vec=2 and tpx.vec(1)>tpx.vec(2) then

{

tpx.vec:=[tpx.vec(2),tpx.vec(1)];

tpx.coe:=(-1)*tpx.coe;

}

empty? tpx.sca => lo:=cons(tpx, lo);

li:List List String:=empty;

for ts in tpx.sca repeat

{

n:=#ts;

n=1 => {li:=cons(ts,li); }

n=2 => {if ts(1)>ts(2) then { li:=cons([ts(2),ts(1)],li); }

else {li:=cons(ts,li);} }

n=3 =>

{

if ts(1)=ts(2) or ts(2)=ts(3) or ts(3)=ts(1) then

{tpx.coe:=0; li:=tpx.sca; break; }

else

{

tp:List String:=empty;

ms:=min(min(ts(1),ts(2)),ts(3));

(ll,nn):=find(ms,ts);

if nn=1 then { tp:=ts; }

else if nn=2 then { tp:=[ts(2),ts(3),ts(1)]; }

else if nn=3 then { tp:=[ts(3),ts(1),ts(2)]; }

if tp(2)>tp(3) then

{

tp:=[tp(1),tp(3),tp(2)];

tpx.coe:=-tpx.coe;

}

li:=cons(tp,li);

60

}

}

}

tpx.sca:=sort!(li,listOrder?);

lo:=cons(tpx,lo);

}

lo:=reverse lo;

lo:=simplify0(lo);

empty? lo => per lo;

yy:List Term:=sort!(lo,termOrder?);

lo:=[first yy];

yy:=rest yy;

for tx in yy repeat

{

t1:=first lo;

listEq?(tx.vec,t1.vec) and dblListEq?(tx.sca,t1.sca) =>

lo:=cons([tx.coe+t1.coe,t1.sca,t1.vec],rest lo);

lo:=cons(tx,lo);

}

lo:=reverse simplify0 lo;

if flag and #lo>2 then

{

stp:List Term:=empty;

while ~same?(per lo, per stp) repeat

{

stp:=copy lo;

tpzz:List Term:=rule01(lo);

l:%:=simplify per tpzz;

if #(rep l)<#lo then lo:=rep l;

#lo<3 => break;

tpzz:=rule01(lo,true);

61

l:%:=simplify per tpzz;

if #(rep l)<#lo then lo:=rep l;

#lo<3 => break;

tpzz:=rule11(lo);

l:=simplify per tpzz;

if #(rep l)<#lo then lo:=rep l;

#lo<3 => break;

tpzz:=rule02(lo);

l:=simplify per tpzz;

if #(rep l)<#lo then lo:=rep l;

#lo<3 => break;

tpzz:=rule02(lo,true);

l:=simplify per tpzz;

if #(rep l)<#lo then lo:=rep l;

#lo<3 => break;

tpzz:=rule03(lo);

l:=simplify per tpzz;

if #(rep l)<#lo then lo:=rep l;

#lo<3 => break;

tpzz:=rule04(lo);

l:=simplify per tpzz;

if #(rep l)<#lo then lo:=rep l;

#lo<3 => break;

tpzz:=rule04(lo,true);

l:=simplify per tpzz;

if #(rep l)<#lo then lo:=rep l;

#lo<3 => break;

}

per lo;

}

else

{

62

per lo;

}

}

-- implementations of transformation rules --

import from Set String;

import from Set List String;

import from List Set String;

import from List Set List String;

local setsGcd0 (lt:List Set String):Set String==

{

#lt=1 => first lt;

tp0:=first lt;

rslt:=rest lt;

for tx in rslt repeat

{

tp:=union(tp0,tx);

tp:=tp-(tp0-tx);

tp:=tp-(tx-tp0);

tp0:=tp;

}

tp0;

}

local setsGcd (lt:List Set List String):Set List String==

{

#lt=1 => first lt;

tp0:=first lt;

rslt:=rest lt;

for tx in rslt repeat

63

{

tp:=union(tp0,tx);

tp:=tp-(tp0-tx);

tp:=tp-(tx-tp0);

tp0:=tp;

}

tp0;

}

local extend? (xx:List Term):Boolean==

{

realVector?(per xx) => false;

tt:Boolean:=true;

n2:MI:=0;

n3:MI:=0;

for tx in xx repeat

{

tp:=tx.sca;

n:=#tp;

n<3 => {tt:=false; break;}

if #tp(n)=2

then n2:=n2+1;

else if #tp(n-1)=#tp(n) and #tp(n)=3

then n3:=n3+1;

}

if n2<3 or n2<12*n3 then tt:=false;

tt;

}

local cond? (p1:scaTerm,p2:scaTerm,p3:scaTerm):Boolean==

{

tt:Boolean:=(p1.coe2=p2.coe2 or p1.coe2=(-1)*p2.coe2);

64

tt:=tt and (p2.coe2=p3.coe2 or p2.coe2=(-1)*p3.coe2);

tt:=tt and (p3.coe2=p1.coe2 or p3.coe2=(-1)*p1.coe2);

~tt => false;

l1:=p1.sca2 pretend Set List String;

l2:=p2.sca2 pretend Set List String;

l3:=p3.sca2 pretend Set List String;

sg:=setsGcd([l1,l2,l3]);

s1:=(l1-sg) pretend List List String;

s2:=(l2-sg) pretend List List String;

s3:=(l3-sg) pretend List List String;

tt:= #s1=2 and #s2=2 and #s3=2 and #s1(1)*#s1(2)=6;

~(tt and #s2(1)*#s2(2)=6 and #s3(1)*#s3(2)=6) => false;

s1:=sort!(s1,listOrder?);

s2:=sort!(s2,listOrder?);

s3:=sort!(s3,listOrder?);

t12:=s1(1) pretend Set String;

t22:=s2(1) pretend Set String;

t32:=s3(1) pretend Set String;

t13:=s1(2) pretend Set String;

t23:=s2(2) pretend Set String;

t33:=s3(2) pretend Set String;

ut2:=union(union(t12,t22),t32);

ut3:=union(union(t13,t23),t33);

it2:Set String:=setsGcd0([t12,t22,t32]);

it3:Set String:=setsGcd0([t13,t23,t33]);

tt:= #ut2=4 and #ut3=4 and #it2=1 and #it3=1;

~(tt and (ut2-it2)=(ut3-it3) and #(ut2-it2)=3) => false;

true;

}

-- we assume #pi.vec=2 --

local cond11? (p1:Term,p2:Term,p3:Term):Boolean==

65

{

tt:Boolean:=(p1.coe=p2.coe or p1.coe=(-1)*p2.coe);

tt:=tt and (p2.coe=p3.coe or p2.coe=(-1)*p3.coe);

tt:=tt and (p3.coe=p1.coe or p3.coe=(-1)*p1.coe);

~tt => false;

l1:=p1.sca pretend Set List String;

l2:=p2.sca pretend Set List String;

l3:=p3.sca pretend Set List String;

sg:=setsGcd([l1,l2,l3]);

s1:=(l1-sg) pretend List List String;

s2:=(l2-sg) pretend List List String;

s3:=(l3-sg) pretend List List String;

tt:= #s1=1 and #s2=1 and #s3=1 and #s1(1)=#s2(1);

~(tt and #s2(1)=#s3(1) and #s3(1)=2) => false;

t11:=s1(1) pretend Set String;

t21:=s2(1) pretend Set String;

t31:=s3(1) pretend Set String;

t12:=p1.vec pretend Set String;

t22:=p2.vec pretend Set String;

t32:=p3.vec pretend Set String;

ut1:=union(union(t11,t21),t31);

ut2:=union(union(t12,t22),t32);

it1:Set String:=setsGcd0([t11,t21,t31]);

it2:Set String:=setsGcd0([t12,t22,t32]);

~(#it1=1 and #it2=0 and #ut2=3 and #setsGcd0([ut1,ut2])=3)=> false;

true;

}

local distribute (p:mixTerm):List Term==

{

l:List Term:=empty;

for tx in p.scal repeat

66

{

l:=cons([tx.coe2, tx.sca2, p.vec2], l);

}

l;

}

local same?(x:%, y:%): Boolean==

{

z:=simplify(x-y);

zz:=rep z;

#zz=1 and (vzero?(first(zz)) or szero?(first(zz))) => true;

false;

}

local comb(p:mixTerm):List Term==

{

l1:=(p.scal(1)).sca2 pretend Set List String;

l2:=(p.scal(2)).sca2 pretend Set List String;

l3:=(p.scal(3)).sca2 pretend Set List String;

sg:=setsGcd([l1,l2,l3]);

s1:=(l1-sg) pretend List List String;

s2:=(l2-sg) pretend List List String;

s3:=(l3-sg) pretend List List String;

s1:=sort!(s1,listOrder?);

s2:=sort!(s2,listOrder?);

s3:=sort!(s3,listOrder?);

t12:=s1(1) pretend Set String;

t22:=s2(1) pretend Set String;

t32:=s3(1) pretend Set String;

t13:=s1(2) pretend Set String;

t23:=s2(2) pretend Set String;

t33:=s3(2) pretend Set String;

67

ut2:=union(union(t12,t22),t32);

ut3:=union(union(t13,t23),t33);

it2:Set String:=setsGcd0([t12,t22,t32]);

it3:Set String:=setsGcd0([t13,t23,t33]);

d:=it2(1);

h:=it3(1);

a:=(ut2-it2)(1);

b:=(ut2-it2)(2);

c:=(ut2-it2)(3);

lg:=sg pretend List List String;

coe:R:=(p.scal(1)).coe2;

tp1:=[coe,append([[d,a],[h,b,c]],lg),p.vec2]@Term;

tp2:=[coe,append([[d,b],[a,h,c]],lg),p.vec2]@Term;

tp3:=[coe,append([[d,c],[a,b,h]],lg),p.vec2]@Term;

same? (per [tp1,tp2,tp3], per distribute p) =>

[[coe,append([[d,h],[a,b,c]],lg),p.vec2]];

tp1:=[coe,append([[d,a],[h,c,b]],lg),p.vec2]@Term;

tp2:=[coe,append([[d,c],[a,h,b]],lg),p.vec2]@Term;

tp3:=[coe,append([[d,b],[a,c,h]],lg),p.vec2]@Term;

same? (per [tp1,tp2,tp3], per distribute p) =>

[[coe,append([[d,h],[a,c,b]],lg),p.vec2]];

distribute p;

}

-- we assume #pi.vec=2 --

local comb11(p1:Term, p2:Term, p3:Term):List Term==

{

l1:=p1.sca pretend Set List String;

l2:=p2.sca pretend Set List String;

l3:=p3.sca pretend Set List String;

sg:=setsGcd([l1,l2,l3]);

s1:=(l1-sg) pretend List List String;

68

s2:=(l2-sg) pretend List List String;

s3:=(l3-sg) pretend List List String;

t11:=s1(1) pretend Set String;

t21:=s2(1) pretend Set String;

t31:=s3(1) pretend Set String;

t12:=p1.vec pretend Set String;

t22:=p2.vec pretend Set String;

t32:=p3.vec pretend Set String;

ut2:=union(union(t12,t22),t32);

it1:Set String:=setsGcd0([t11,t21,t31]);

d:=it1(1);

a:=ut2(1);

b:=ut2(2);

c:=ut2(3);

lg:=sg pretend List List String;

tp1:=[p1.coe,cons([d,a],lg),[b,c]]@Term;

tp2:=[p1.coe,cons([d,b],lg),[c,a]]@Term;

tp3:=[p1.coe,cons([d,c],lg),[a,b]]@Term;

same? (per [tp1,tp2,tp3], per [p1,p2,p3]) =>

[[p1.coe,cons([a,b,c],lg),[d]]];

tp1:=[p1.coe,cons([d,a],lg),[c,b]]@Term;

tp2:=[p1.coe,cons([d,b],lg),[a,c]]@Term;

tp3:=[p1.coe,cons([d,c],lg),[b,a]]@Term;

same? (per [tp1,tp2,tp3], per [p1,p2,p3]) =>

[[p1.coe,cons([a,c,b],lg),[d]]];

[p1,p2,p3];

}

local rule01(yy:List Term, flag:Boolean==false):List Term ==

{

#yy<3 => yy;

~realVector?(per yy) => yy;

69

xx:=copy yy;

xx:=sort!(xx,termOrder?);

l:List Term:=empty;

for tx in xx repeat

{

if #tx.vec ~= 1 or empty? tx.sca then l:=cons(tx,l);

else

{

n:=#tx.sca;

lt:List String:=empty;

rt:List List String:=empty;

if flag then

{

lt:= first reverse tx.sca;

rt:= rest reverse tx.sca;

}

else

{

for i in 1..n repeat

{

#tx.sca(i)=3 =>

{

lt:=tx.sca(i);

rt:=append([tx.sca(j) for j in 1..(i-1)],

[tx.sca(j) for j in (i+1)..n]);

break;

}

}

}

d:= first tx.vec;

if #lt ~= 3 then l:=cons(tx,l);

else

70

{

l:=cons([tx.coe,append(rt,[[d,lt(3)]]),[lt(1),lt(2)]],l);

l:=cons([tx.coe,append(rt,[[d,lt(1)]]),[lt(2),lt(3)]],l);

l:=cons([tx.coe,append(rt,[[d,lt(2)]]),[lt(3),lt(1)]],l);

}

}

}

l;

}

local rule02(yy:List Term, flag:Boolean==false):List Term ==

{

#yy<3 => yy;

~realVector?(per yy) => yy;

xx:=copy yy;

xx:=sort!(xx,termOrder?);

l:List Term:=empty;

for tx in xx repeat

{

if #tx.vec ~= 2 or empty? tx.sca then l:=cons(tx,l);

else

{

n:=#tx.sca;

lt:List String:=empty;

rt:List List String:=empty;

if flag then

{

lt:= first reverse tx.sca;

rt:= rest reverse tx.sca;

}

else

{

71

for i in 1..n repeat

{

#tx.sca(i)=3 =>

{

lt:=tx.sca(i);

rt:=append([tx.sca(j) for j in 1..(i-1)],

[tx.sca(j) for j in (i+1)..n]);

break;

}

}

}

d:=tx.vec(1);

h:=tx.vec(2);

if #lt ~= 3 then l:=cons(tx,l);

else

{

l:=cons([tx.coe,append(rt,[[lt(2),d],[lt(3),h]]),[lt(1)]],l);

l:=cons([-tx.coe,append(rt,[[lt(2),h],[lt(3),d]]),[lt(1)]],l);

l:=cons([tx.coe,append(rt,[[lt(3),d],[lt(1),h]]),[lt(2)]],l);

l:=cons([-tx.coe,append(rt,[[lt(3),h],[lt(1),d]]),[lt(2)]],l);

l:=cons([tx.coe,append(rt,[[lt(1),d],[lt(2),h]]),[lt(3)]],l);

l:=cons([-tx.coe,append(rt,[[lt(1),h],[lt(2),d]]),[lt(3)]],l);

}

}

}

l;

}

local rule03(yy:List Term):List Term ==

{

xx:=copy yy;

#xx<3 => xx;

72

xx:=sort!(xx,termOrder?);

tp00:=first xx;

zz:=rest xx;

lo:=[[[[tp00.coe,tp00.sca]],tp00.vec]]@List mixTerm;

for tx in zz repeat

{

tp01:=first lo;

listEq? (tp01.vec2, tx.vec) =>

lo:=cons([cons([tx.coe,tx.sca],tp01.scal),tp01.vec2],rest lo);

lo:=cons([[[tx.coe,tx.sca]],tx.vec],lo);

}

l:List Term:=empty;

for tx in lo repeat

{

L:scaList:=tx.scal;

n:=#L;

n<3 => l:=append(l, distribute tx);

ttp2:scaList:=empty;

for i in 1..n repeat

{

empty? L(i).sca2 or #(first (reverse L(i).sca2))<3 =>

l:=append(l,distribute [[L(i)],tx.vec2]);

ttp2:=cons(L(i), ttp2);

}

L:=ttp2;

n:=#L;

tt:Boolean:=false;

ttp:scaList:=empty;

ttp0:scaList:=empty;

while n>2 repeat

{

for i in 1..(n-2) repeat

73

{

for j in (i+1)..(n-1) repeat

{

for k in (j+1)..n repeat

{

if cond? (L(i),L(j),L(k)) then

{

ttp:=[L(i),L(j),L(k)];

ttp0:=append([L(s) for s in 1..(i-1)],

[L(s) for s in (i+1)..(j-1)]);

ttp0:=append(ttp0,[L(s) for s in (j+1)..(k-1)]);

ttp0:=append(ttp0,[L(s) for s in (k+1)..n]);

L:=ttp0;

tt:=true;

break;

}

}

if tt then break;

}

if tt then break;

}

empty? ttp => break;

l:=append(l,comb [ttp,tx.vec2]);

ttp:=empty;

n:=#L;

}

if ~empty? L then l:=append(l,distribute [L,tx.vec2]);

}

l;

}

local rule04(yy:List Term, flag:Boolean==false):List Term ==

74

{

xx:=copy yy;

#xx<3 => xx;

xx:=sort!(xx,termOrder?);

if extend?(xx) then xx:=rep simplify per rule13(xx);

l:List Term:=empty;

for tx in xx repeat

{

tp0:=tx.sca;

n:=#tp0;

if n<2 then l:=cons(tx,l);

else

{

lt31:List String:=empty;

lt32:List String:=empty;

if flag then

{

lt31:=tp0(n-1);

lt32:=tp0(n);

rt:List List String:=[tp0(j) for j in 1..(n-2)];

}

else

{

for i in 1..n-1 repeat

{

#tp0(i)=3 and #tp0(i+1)=3 =>

{

lt31:=tp0(i);

lt32:=tp0(i+1);

rt:=append([tp0(j) for j in 1..(i-1)],

[tp0(j) for j in (i+2)..n]);

break;

75

}

}

}

if #lt31*#lt32 ~= 9 then l:=cons(tx,l);

else

{

l:=cons([tx.coe,append(rt,[[lt31(2),lt32(1)],

[lt31(3),lt32(2)],[lt31(1),lt32(3)]]),tx.vec],l);

l:=cons([-tx.coe,append(rt,[[lt31(2),lt32(2)],

[lt31(3),lt32(1)],[lt31(1),lt32(3)]]),tx.vec],l);

l:=cons([tx.coe,append(rt,[[lt31(3),lt32(1)],

[lt31(1),lt32(2)],[lt31(2),lt32(3)]]),tx.vec],l);

l:=cons([-tx.coe,append(rt,[[lt31(3),lt32(2)],

[lt31(1),lt32(1)],[lt31(2),lt32(3)]]),tx.vec],l);

l:=cons([tx.coe,append(rt,[[lt31(1),lt32(1)],

[lt31(2),lt32(2)],[lt31(3),lt32(3)]]),tx.vec],l);

l:=cons([-tx.coe,append(rt,[[lt31(1),lt32(2)],

[lt31(2),lt32(1)],[lt31(3),lt32(3)]]),tx.vec],l);

}

}

}

l;

}

local rule11(yy:List Term):List Term ==

{

#yy<3 => yy;

~realVector?(per yy) => yy;

xx:=copy yy;

xx:=sort!(xx,termOrder?);

l:List Term:=empty;

lr:List Term:=xx;

76

for tx in xx repeat

{

#tx.vec=1 =>

{

l:=cons(tx,l);

lr:=rest lr;

}

break;

}

n:=#lr;

n<3 => l:=append(l,lr);

tt:Boolean:=false;

ttp:List Term:=empty;

ttp0:List Term:=empty;

while n>2 repeat

{

for i in 1..(n-2) repeat

{

for j in (i+1)..(n-1) repeat

{

for k in (j+1)..n repeat

{

if cond11? (lr(i),lr(j),lr(k)) then

{

ttp:=[lr(i),lr(j),lr(k)];

ttp0:=append([lr(s) for s in 1..(i-1)],

[lr(s) for s in (i+1)..(j-1)]);

ttp0:=append(ttp0,[lr(s) for s in (j+1)..(k-1)]);

ttp0:=append(ttp0,[lr(s) for s in (k+1)..n]);

lr:=ttp0;

tt:=true;

break;

77

}

}

if tt then break;

}

if tt then break;

}

empty? ttp => break;

l:=append(l,comb11(ttp(1),ttp(2),ttp(3)));

ttp:=empty;

n:=#lr;

}

if ~empty? lr then l:=append(l,lr);

l;

}

local rule13(yy:List Term):List Term ==

{

xx:=copy yy;

#xx<3 => xx;

xx:=sort!(xx,termOrder?);

l:List Term:=empty;

for tx in xx repeat

{

tp0:=tx.sca;

n:=#tp0;

if n<2 then l:=cons(tx,l);

else

{

lt2:List String:=empty;

lt3:List String:=empty;

for i in 1..n-1 repeat

{

78

#tp0(i)=2 and #tp0(i+1)=3 =>

{

lt2:=tp0(i); lt3:=tp0(i+1);

rt:=append([tp0(j) for j in 1..(i-1)],

[tp0(j) for j in (i+2)..n]);

break;

}

}

if empty? lt2 then l:=cons(tx,l);

else

{

l:=cons([tx.coe,append(rt,[[lt2(1),lt3(1)],

[lt2(2),lt3(2),lt3(3)]]),tx.vec],l);

l:=cons([tx.coe,append(rt,[[lt2(1),lt3(2)],

[lt3(1),lt2(2),lt3(3)]]),tx.vec],l);

l:=cons([tx.coe,append(rt,[[lt2(1),lt3(3)],

[lt3(1),lt3(2),lt2(2)]]),tx.vec],l);

}

}

}

l;

}

}

79

Bibliography

[1] Aldor.org. Aldor Compiler User Guide. http://www.aldor.org.

[2] Aldor.org. Algebra User Guide and Reference Manual. ftp://ftp-

sop.inria.fr/cafe/software.

[3] A. Belmonte and P. B. Yasskin. A Vector Calculus Package for Maple.

http://calclab.tamu.edu/maple/veccalc/.

[4] Sydney Chapman and T. G. Cowling. The mathematical theory of non-uniform

gases. Cambridge University Press, 1939.

[5] J. Cunningham. Vectors. Heinemann Educational Books Ltd, London, 1969.

[6] J. W. Eastwood. Orthovec: version 2 of the reduce program for 3-d vector

analysis in orthogonal curvilinear coordinates. Comput. Phys. Commun., 64:121–

122, 1991.

[7] B. Fiedler. Vectan 1.1. Manual Math. Inst., Univ. Leipzig, pages 1–22, 1997.

[8] J. Willard Gibbs. On the fundamental formulæ of dynamics. American J. Math.,

II:49 – 64, 1879.

[9] J. Willard Gibbs. Elements of vector analysis. In The Scientific Papers of J.

Willard Gibbs. Dover, 1961.

80

[10] The Mathlab Group. Macsyma Reference Manual, Vol.II. MIT, 1983.

[11] D. Harper. Vector33: A reduce program for vector algebra and calculus in

orthogonal curvilinear coordinates. Comput. Phys. Commun., 54:295–305, 1989.

[12] D. J. Jeffrey, S. Liang, and S. M. Watt. An abstract, coordinate-free, vector

algebra package. In Proc. Asian Symposium on Computer Mathematics, (ASCM

2005). Seoul, South Korea, 2005.

[13] Edward Arthur Milne. Vectorial Mechanics. Methuen, 1948.

[14] W. K. Nicholson. Linear algebra with applications (5th ed.). McGraw-Hill Ryer-

son Limited, 2006.

[15] E. M. Patterson. Solving Problems in Vector Algebra. Oliver & Boyd Ltd,

Edinburgh-London, 1968.

[16] M. Rost. On the dimension of a composition algebra. Doc. Math. J. DMV,

1:209–214, 1996.

[17] Z. K. Silagadze. Multi-dimensional vector product. arXiv: math.ra, 0204357,

2002.

[18] D. R. Stoutemyer. Symbolic computer vector analysis. Computers & Mathemat-

ics with Applications, 5:1–9, 1979.

[19] Peter Guthrie Tait. An elementary treatise on quaternions, 3rd edition. Cam-

bridge University Press, 1890.

[20] W. M. Tang, H. Qin, and G. Rewoldt. Symbolic vector analysis in plasma physics.

Comput. Phys. Commun., 116:107–120, 1999.

[21] S. L. Tanimoto. The Elements of Artificial Intelligence Using Common Lisp.

Computer Science Press, New York, 1990.

81

[22] S. Wolfram. The Mathematica Book,3rd ed. Wolfram Media/Cambridge Univer-

sity Press, 1996.

