
Uniform Treatment of Code and Data in the Web Setting

(Thesis format: Monograph)

by

Rachita Mohan

Graduate Program

in

Computer Science

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

The School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

c© Rachita Mohan 2009

THE UNIVERSITY OF WESTERN ONTARIO

THE SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES

CERTIFICATE OF EXAMINATION

Supervisor: Examination committee:

Dr. Stephen M. Watt Dr. Marc Moreno Maza

Dr. Eric Schost

Dr. Rob Corless

The thesis by

Rachita Mohan

entitled:

Uniform Treatment of Code and Data in the Web Setting

is accepted in partial fulfillment of the

requirements for the degree of

Master of Science

Date Chair of the Thesis Examination Board

ii

Abstract

Over two decades, the Web has evolved into a highly successful and robust platform

to share ideas, spread information, communicate and transact. This evolution has

been aided by constantly evolving technologies that have enabled developers to

expand the applications and utility of the Internet. In other computing settings,

the duality of code and data has proven to be a powerful and productive conceptual

device. However, the concept of code/data duality has not been prevalent in the web

programming environment. The concept of “homoiconicity” or code is data and data

is code has brought about innovative programming techniques like metaprogramming

in the past.

We explore the idea of a uniform programming environment, where code and data

are represented in the same manner and explore how this property of homoiconicity

can be exploited in a web setting. This could also enable uniform handling of access

and persistence and uniform transformation mechanisms. Such an abstraction could

allow metaprogramming in web development which can provide an efficient solution

to problems such as saving the web page state over a stateless web protocol.

Keywords: Code-data duality, Scheme, XML, metaprogramming

iii

Acknowledgement

This research would not have been possible without the support of many people.

I would like to express my heartfelt thanks and respect to my supervisor, Dr.

Stephen M. Watt. He not only guided me throughout my research, but also offered

invaluable support and patience. Over the course of this research, through interaction

and observation, I have learnt a great deal from him in my professional as well as

personal life.

I wish to extend my gratitude to the members of ORCCA lab, for providing an

interactive and thought-stimulating environment to work in.

I am deeply grateful to my parents for their constant love, support and encour-

agement to follow my interests and excel in life. Particularly to my father, for making

me understand and appreciate the process of research, from his own experience as a

researcher.

Special thanks to my flatmates Sneha Lele and Aditi Nadgauda, for being with

me through out my course, and for providing a family and a home away from home.

Special thanks to my friends Karthick Ramachandran and Amit Regmi, for the

endless technical discussions and being my moral supports.

Finally, I am indebted to Pratik Mittal, my best friend, mentor, ally and critic,

for his unconditional support in all avenues of my personal and professional life.

iv

Contents

Certificate of Examination ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Figures viii

List of Listings ix

1 Introduction 1

1.1 Homoiconicity . 2

1.2 Objectives . 4

1.3 Thesis Organization . 5

2 Background and Related Work 7

2.1 Markup Languages . 7

2.1.1 HTML . 8

2.1.2 XML . 8

2.2 Client-Side Technologies . 9

2.2.1 JavaScript . 9

v

2.2.2 Document Object Model . 10

2.2.3 AJAX . 12

2.2.4 XSLT . 12

2.3 Server-Side Technologies . 13

2.3.1 PHP . 13

2.4 Google Web Toolkit . 14

2.5 Scheme . 14

2.5.1 Quotation . 15

2.5.2 Quasiquotation . 16

2.6 Summary . 18

3 Homoiconic Language for the Web: Design considerations 19

3.1 Design Considerations . 20

3.1.1 Why Scheme? . 21

3.1.2 Features of Scheme to be implemented 23

3.1.3 Why Javascript? . 24

3.1.4 Augmenting HTML: Limitations and Capabilities 25

4 Homoiconic Language for the Web: Design and Implementation 27

4.1 Design . 27

4.1.1 Writing the Document Type Definition 28

4.1.2 Implementing unquote tags . 28

4.1.3 Implementing corner features of Scheme 31

4.1.4 Implementing constructs for accessing Web data 32

4.2 Implementation . 35

4.3 Test Cases . 38

5 Homoiconic Language for the Web: Annotated Examples 40

5.1 Hello World! . 40

vi

5.2 Nth list tail . 42

5.3 Factorial . 44

5.4 Dynamic Form Generation . 48

6 Exploring homoiconicity in a web setting 53

6.1 Remote Procedure Calls . 55

6.2 Accessing Scheme libraries . 56

6.3 Server-side evaluation . 56

6.4 Summary . 57

Conclusion 58

A Language Specifications 63

Curriculum Vitae 68

vii

List of Figures

5.1 Example 1: Hello World! . 41

5.2 Example 2: Nth list-tail . 44

5.3 Example 3: Factorial . 48

5.4 Example 4: Form : on load . 51

5.5 Example 4: Form : on 1st click . 52

5.6 Example 4: Form : on 2nd click . 52

5.7 Example 4: Form : on 3rd click . 52

viii

List of Listings

2.1 Evaluated Scheme expressions . 16

2.2 Quoted Scheme expressions . 16

2.3 Examples of eval . 16

2.4 Quasiquoted Scheme expression . 17

3.1 Scheme equivalent of XML representation 21

3.2 XML representation of Scheme for evaluating factorial 22

3.3 HTML generating row for a table dynamically 26

4.1 Mostly quoted web page . 29

4.2 Scheme code for the mostly quoted web page 30

4.3 JavaScript code for adding event handler 33

4.4 XML like Scheme code for adding event handler 34

4.5 builtIn object for ‘+’ procedure . 37

5.1 Example 1: Hello World . 41

5.2 Scheme code for Example 1 . 42

5.3 Scheme code for Example 2 . 42

5.4 Example 2: Nth list-tail . 42

5.5 Calculating factorial using recursion 44

5.6 XML output for Scheme code . 44

5.7 Calculating factorial using iteration 45

5.8 Scheme code for Example 3 . 46

ix

5.9 Factorial example . 46

5.10 Scheme code for Example 4 . 49

5.11 Dynamic form generation example . 50

A.1 BNF Grammar for our language . 63

x

1

Chapter 1

Introduction

About two decades ago, Tim Berners Lee invented the World Wide Web and the

world has never been the same. The web has now become an integral part of our daily

lives. However, for over ten years since its inception, the internet was mainly used for

exchanging e-mails and accessing data from remote servers. It served as a medium for

sharing of information and for communication of ideas over a distance. The launch of

stable and user-friendly browsers in 1993 broadened the usage of the internet to people

from various domains. The Web soon turned into a gigantic database of information

from all over the world. With the arrival of AltaVista in 1995, a search engine that

allowed natural language inquiries and multimedia searches for the first time, people

were able to navigate through this maze of information. Even business was translated

from the real world to the virtual world with sites like Amazon and eBay providing

services online. Thus, the Web slowly penetrated into all domains of our lives.

The Web today has seen all and done all, from IRC to Twitter and Facebook,

from Netscape to Chrome, from e-mail and chat to ripples and waves. It has trans-

formed the way we live, from communication, entertainment and social networking

to business, banking and media.

2

As the level of interactivity with users over the internet increased, the need to

provide fast, efficient, aesthetically appealing and user-friendly services arose. Lee’s

HTML which was primarily static, could no longer meet the growing requirements

of the users. Thus, the web development environment started to evolve with the

advent of new languages. These new languages and concepts such as DHTML, AJAX,

JavaScript, PHP and many more, brought dynamicity to the Web and provided web

developers with a gamut of design options. For example, the simple img element in

HTML could be used to add static images to a web page, whereas HTML 5 now

provides the canvas element which can be manipulated to render images, graphs,

shapes, animations and the like, at the client-side, using JavaScript. AJAX has

enabled retrieval of data from servers without disturbing the entire page.

Despite the existence of so many technologies, some basic problems in web devel-

opment still do not have an efficient and well-structured solution. One such problem

is efficiently saving the state of a web page over the stateless web protocol. There

exist various concepts such as homoiconicity and continuations which can provide

a solution to such problems. However, neither homoiconicity nor continuations are

either available in the web development environment or have not been efficiently im-

plemented. We briefly discuss one such concept, homoiconicity, that forms the basis

for this dissertation.

1.1 Homoiconicity

The concept of homoiconicity [2] has existed in the world of programming languages

since the invention of Lisp. It has introduced many powerful concepts and techniques

in the programming environment. In layman terms, homoiconicity means,

3

Code is Data and Data is Code.

This concept can be understood by looking at the two types of syntax of a program-

ming language: Concrete Syntax and Abstract Syntax. The context-free grammar of

a language defines the concrete syntax of a programming language. In other words,

the concrete syntax describes how a program looks like to a programmer. On the

other hand, the abstract syntax of a programming language depicts the inner rep-

resentation of a language. The inner representation of a language includes how the

language is implemented and what the program looks like to a compiler.

When the abstract syntax and the concrete syntax of a language are the same,

the language is said to be homoiconic, that is code and data duality exists in such a

language. Code and data duality is said to exist because the primary representation

of code is in the same format as one of the fundamental data types in the language.

An example of this is Scheme, a dialect of Lisp. The Scheme code is written as

S-expressions. S-expressions are essentially lists within parentheses. The internal

representation for Scheme is also in the form of lists. Since the internal and external

representation of Scheme language is the same, code and data is represented in the

same way in Scheme and interpreted according to the respective constructs. Thus,

Scheme is a homoiconic language. Dialects of Lisp such as Clojure and Common Lisp

and languages like REBOL, XSLT, Tcl and Lua are also homoiconic in nature.

In a programming language, the degree of homoiconicity depends on the correla-

tion between the expressions in the language and the data structures used to represent

them. The concept of code and data duality has brought about powerful techniques

in the programming environment. Homoiconic languages lend themselves to metapro-

gramming and extensibility. Metaprogramming can be defined as writing programs

that generate or manipulate other programs. A YACC parser generator is an example

of a metaprogram. Many languages provide metaprogramming capabilities via their

4

eval method. However, one cannot assume that a language with an eval function

is homoiconic. In an eval method, the code to be evaluated is passed as a string,

which is usually not the data structure of the language. Thus, code and data is not

represented in the same manner in such a case.

Metaprogramming magnifies the reuse potential of large amounts of code written

for frequently used features. It enables writing Domain Specific Languages (DSLs)

and using a number of DSLs to write complex applications. An example of domain

specific language could be LEX and YACC, which can together be used in the de-

velopment of a compiler. Thus, homoiconicity and by extension, metaprogramming

have revolutionized the world of programming languages.

1.2 Objectives

In the past, powerful programming concepts and techniques have been innovated

based on uniform abstractions in programming languages, that is when code and

data is treated the same way. However, the current web programming environment

does not provide this functionality. Having realized the potential of code and data

duality in a programming language, the objectives of this dissertation are:

• Introduction of code and data duality in web programming environ-

ment.

This involves developing a model / prototype that provides a uniform abstrac-

tion for representing functions and data in the same manner. It also includes

uniform handling of access and persistence and uniform transformations.

• Exploring the benefits/limitations of such a model

5

We have discussed the capabilities that the concept of homoiconicity has brought

to the programming world. This study will explore programming ideas and

techniques like metaprogramming, DSLs and the likes, in the web programming

environment. It will also examine what are the limitations of exploiting this

concept in a web setting.

• Feasability of its implementation.

The process of developing such a model will help us experience the ease or

difficulty in realizing this concept and thus analyze the challenges faced on the

way.

• Test the applicability of this implementation.

Finally, the applicability of this implementation will be tested in the web devel-

opment environment by modeling various existing web development scenarios.

1.3 Thesis Organization

An interpreter JavaScript for an XML representation of Scheme is developed as a

part of this thesis to realize the concept of homoiconicity in the web development

environment. The rest of the thesis is organized as follows:

Chapter 2 talks about the various concepts and technologies that already exist

in the web programming environment. It briefly contrasts the existing technologies

with the implementation presented in the thesis.

In Chapter 3, we discuss the design considerations in developing a prototype to

implement the concept of code and data duality in a web setting. It talks about why

Scheme and JavaScript were chosen for the implementation.

6

Chapter 4 introduces the prototype which is an XML representation of Scheme and

describes the actual design of the prototype and how various aspects of the concept

were implemented.

Chapter 5 looks at some of the examples that were used to test the implementation.

We further analyze and discuss the results of our tests.

In Chapter 6, we present and discuss ideas that can be built on top of the im-

plementation presented in the thesis to further the idea of a uniform programming

environment.

We conclude with a summary of our work and briefly discuss the possible future

work. We also provide the specifications of the language prototype as an appendix.

7

Chapter 2

Background and Related Work

There is a famous saying by Heraclitus, “Change is the only constant”. Likewise, the

web has been constantly evolving and has become an integral part of people’s lives

today. It has changed from a unidirectional information portal which was used to

broadcast information, to an interactive platform which is widely used for sharing

ideas. Many programming languages, concepts and ideas have been instrumental in

this evolution of the Web from primarily static content to live and dynamic content.

Before describing the research from this thesis, we glance through some of the existing

web programming concepts that have made an impact on the web environment and

briefly look at their limitations.

2.1 Markup Languages

Markup was first seen in the publishing and printing industry. It was primarily used

to provide the typesetter with instructions for the presentation of a document. IBM

was the first to come up with a Generalized Markup Language (GML) which could

be used to differentiate between the content and presentation in a machine-readable

8

document. It was later accepted as an ISO standard and gave birth to Standard

Generalized Markup Language (SGML). Most markup languages in existence today

are derivatives of SGML. We now discuss two of the most popular markup languages.

2.1.1 HTML

The development of Hypertext Markup Language (HTML) [20], a publishing language

for the World Wide Web, by Tim Berners Lee has been a major milestone in the

evolution of the Web. The usage of HTML documents was further propagated by the

introduction of the Mozaic Browser. Originally, HTML was a markup language that

provided support for hypertext and some basic document structuring. Thus, it could

be used for creating simple documents. Over the years, the capabilities of HTML

have grown and authors can create web pages with all sorts of animations, sound and

multimedia.

The flexibility and error-tolerance capabilities of HTML make it popular for web

development but also raise some security issues. The presentation logic or stylesheets

used and the dynamic generation of HTML, sometimes makes the re-usability of

the document impossible. With the growing complexity of the Web, there was a

need for a more powerful markup language that provided structure and meaning

within documents, and facilitated the exchange of data. Thus, the eXtensible Markup

Language (XML) was created.

2.1.2 XML

eXtensibleMarkup Language (XML) [6], a restricted form of SGML, is a meta-markup

language. This means that using XML, one can create their own version of HTML

or another markup language. The specification and entities for the new language

9

are specified in a Document Type Definition (DTD) or Schema. XML has strict

error-handling rules. Its parsers fail at the occurrence of even the simplest of syntax

errors. Owing to these advantages, HTML has been reformulated in XML syntax as

XHTML.

XML is not just used to create new document markup systems, but it also pro-

vides syntax for document markup. One of the main goals in designing XML was

transporting and storing data, with emphasis on the data and not on its presenta-

tion. XML provides extensibility, structure and validation in comparison to HTML.

Most importantly it allows late binding of presentation logic. However, XML is also

verbose and thus, not preferred by many developers.

2.2 Client-Side Technologies

Rich client applications were needed for transforming the web from a static informa-

tion portal to an interactive platform. This need resulted in the creation of many

powerful technologies that have completely changed the face of the web.

2.2.1 JavaScript

Netscape pioneered the development of rich-client applications with the creation of

JavaScript [10]. JavaScript made it possible to perform tasks such as calculations and

form validation on the browser side, instead of the server-side. JavaScript soon be-

came a preferred tool in web development environment however, it was a trademark

of Sun Microsystems. For this reason, Microsoft came up with another client-side

scripting language called JScript. However, both JavaScript and JScript [18] are di-

alects of a standardized scripting language ECMAScript and are essentially the same

10

language with a few different constructs. ECMAScript [15] is a standard scripting

language which is mainly used in Web applications. Popular dialects of ECMAScript

include ActionScript [14], JavaScript and JScript . These dialects usually provide

APIs or extensions to the language and thus enable specialized web computations.

For example, JavaScript and JScript provide the DOM API for dynamic HTML gen-

eration and manipulation. However, ActionScript, an ECMAScript implementation

from Adobe is a language, used primarily for development using Adobe Flash Player

and provides an API for multimedia capabilities.

JavaScript is a multi-paradigm, prototype-based, functional, imperative, dynamic

and weakly-typed scripting language. It provides scripting access to embedded ob-

jects in an HTML page through the Document Object Model (DOM) interface that

is discussed later in the chapter. Together, JavaScript and DOM brought about

the widely used concept of Dynamic HTML (DHTML). DHTML allows dynamically

generating, manipulating and deleting HTML elements in a web page.

Although, JavaScript has been popular mainly because of its use in Web develop-

ment as a scripting language, it is also a powerful programming language. It has C-like

syntax, but is similar to Lisp or Scheme, which are functional languages. JavaScript’s

eval method has provided a lot of flexibility in Dynamic HTML element generation.

The eval method and other JavaScript features like closures give it metaprogram-

ming capabilities, but they are not as powerful as metaprogramming capabilities in

languages such as Scheme.

2.2.2 Document Object Model

With the advent of client-side scripting languages like JavaScript came the possibility

of dynamically generating HTML. An interface was required for handing the HTML

11

elements to the JavaScript programs. The Document Object Model (DOM) [9] was

introduced to serve this very purpose. The DOM is a platform and language-neutral

interface that provides a standard object model for structuring XML and HTML

documents. It also provides an API for updating the content, structure and style of

an XML or HTML document. In addition, it also provides an interface for dealing

with events and enables capture of user events or browser actions. Initially, each

browser had its own version of the DOM. As a result of this, the web applications

developed were often not compatible across various browsers. As a step towards

standardization of the object model, the World Wide Web Consortium published

their specification for the DOM, which is now widely used by browsers. The DOM is

split into two sections: DOM Core and DOM HTML. Each DOM compliant browser

supports both sections of DOM.

• XML DOM. DOM Core, also known as XML DOM, defines a set of XML

object interfaces. It defines a tree-like structure of Node objects for the XML

document, each representing an element, an attribute, content or some other

object. The interfaces defined can be accessed through these Node objects. Each

of the object types in the DOM not only has its own methods and properties,

but also implements the Node interface. The interface provides some common

methods and properties related to the document tree structure. It also enables

navigation and provides reference for various elements in the tree. The top most

Node object is the Document object that serves as the root for the document

tree. It also implements the Document interface which provides methods like

getElementsByTagName(), createElement() and createTextNode().

• HTML DOM. The HTML DOM extends the Core DOM and describes interfaces

specific to HTML documents. Capabilities like navigation through the docu-

ment tree, access to tree elements and updation of nodes are available through

12

the DOM Core, however, functionality that depends on specific HTML elements

is defined here.

2.2.3 AJAX

Another key concept that has helped make the web more dynamic is AJAX, Asyn-

chronous JavaScript and XML [12]. The core idea behind AJAX is to make the com-

munication with the server asynchronous, so that data is transferred and processed

in the background. The user’s page display remains undisturbed and the server hit

is not visible to the user. Jesse James Garrett, who introduced the term AJAX,

concisely describes AJAX as a collection of technologies that incorporates standards-

based presentation using XHTML and Cascading Style Sheets (CSS); dynamic display

and interaction using the DOM; data interchange and manipulation using XML and

XSLT; asynchronous data retrieval using XMLHttpRequest; and JavaScript bind-

ing everything together. Various applications like Google Maps, Gmail and Google

Suggest have exploited the concept of AJAX and are very successful today.

2.2.4 XSLT

JavaScript alone is not responsible for the dynamic nature of web content. Tech-

nologies including Cascading Style Sheets (CSS) and eXtensible Stylesheet Lan-

guage(XSL) have also played a key role in making Web content dynamic. XSL

Transformations (XSLT) [8] is a component of XSL, a language used for express-

ing stylesheets, that can be used independently. It is used to transform one type of

XML into another. XSLT is often used to write the presentation logic for XML also.

XML along with XSLT becomes heavy and is often not used by developers. XSLT is

a Turing-complete language. It provides metaprogramming capabilities which make

13

it more powerful and flexible than CSS. However, its specification states that it is

designed primarily for the kinds of transformations that are needed when XSLT is

used as part of XSL. The computational model of XSLT, however, is not apt for

general-purpose programming.

2.3 Server-Side Technologies

As client-side technologies evolved, new ground was being covered in the server-side

technologies. Client-side processing and server-side processing are both equally im-

portant in web development. Client-side technologies help provide responsive applica-

tions, but true dynamicity comes from server-side programming. Being able to write

a single function that shows customized content to each user, depending on who has

signed in, is a simple example of the dynamicity that server-side programming can

provide.

2.3.1 PHP

PHP [19] is a server-side, cross-platform, HTML embedded scripting language that

lets you create dynamic web pages. PHP-enabled web pages are treated just like

regular HTML pages and you can create and edit them the same way you normally

create regular HTML pages. However, PHP provides the option of using procedural

programming, object-oriented programming or both. PHP programs are processed

on servers and generate HTML, JavaScript and CSS, which implies that it provides

limited metaprogramming capabilities. However, there is a possibility of incorrect

HTML being generated, if programs are not written properly.

14

2.4 Google Web Toolkit

JavaScript, XML, DOM, AJAX and PHP have together provided developers with

robust tools for user, as well as developer friendly web development. However, the

clutter of so many technologies can be difficult to comprehend at times. Thus, it

would be desirable to have an easy-to-use environment where all the technologies are

hidden by abstractions in some other language which the developer is familiar with.

Based on this precise idea, Google came up with the Google Web Toolkit.

Google Web Toolkit (GWT) [13], is a web development platform that provides a

Java to JavaScript compiler which directly compiles code written in Java into HTML,

Cascaded Style Sheets (CSS) and JavaScript. Thus, it manages to eradicate the

confusion between the gamut of programming concepts and simplifies it with Java.

Despite the popularity of GWT in recent times, there are certain limitations. Web

pages have to be fast, but compiling to JavaScript in GWT takes considerable time.

Also, switching from dynamic scripting languages which provide flexibility, back to

strictly-typed Java-like language is not appreciated by experienced developers. Fur-

ther, using Java for client-side web development can be confusing as the programming

environment is very different from Java’s environment. Lastly, GWT also does not

support metaprogramming due to its optimization considerations.

2.5 Scheme

The Revised(5) Report on the Algorithmic Language Scheme [16] describes the idea

behind Scheme precisely as,

Programming languages should be designed not by piling feature on top of feature,

15

but by removing the weaknesses and restrictions that make additional features appear

necessary.

Scheme is a lexically-scoped dialect of Lisp, which has only six constructs at its

core. The rest of the expressions or constructs are built from the core forms using

macros. It is a strongly homoiconic language where code and data are represented in

the same way, as S-expressions. Scheme’s features such as first-class continuations,

quotations, closures and macros give it extremely powerful and versatile metapro-

gramming capabilities.

2.5.1 Quotation

The Scheme language has a powerful concept called quotation, which enhances its ho-

moiconic nature. As was mentioned earlier, Scheme is a strongly homoiconic language

in which code and data is represented in the same manner internally and externally.

However, the compiler and interpreter must be able to distinguish between which data

it should perceive as code and which as data. To make this distinction the keyword

quote is used.

When the quote keyword is applied to an expression, the normal evaluation of the

expression is inhibited and the expression becomes a list containing lists or immutable

data. Literal constants such as booleans, characters, numbers and strings evaluate

to themselves. However, literal identifiers evaluate to symbols, which are objects

representing strings. A procedure expression evaluates to a list object. The quote

expression is abbreviated as {’} . Listing 2.1 and Listing 2.2 show examples of non-

quoted and quoted Scheme code where the former is interpreted as code and the latter

as data.

16

(+ 2 3) => 5

7 => 7

"hello" => hello

Listing 2.1: Evaluated Scheme expressions

(quote (+ 2 3)) = ’(+ 2 3) => (+ 2 3)

’7 => 7

’"hello" => hello

’a => a

Listing 2.2: Quoted Scheme expressions

A quote expression reads its arguments and writes them without evaluating them.

These quote expressions can be evaluated using the eval method of Scheme language.

The eval method takes an object that represents an expression as its argument. It

evaluates a quoted expression, which is nothing but code represented as data. Listing

2.3 shows examples of eval method.

(eval ’(+ 2 3)) => 5

(let ((f (eval ’(lambda (g x) (g x x))))) (f + 10))

=> 20

Listing 2.3: Examples of eval

2.5.2 Quasiquotation

The concept of Quotation ,in Scheme, enables representing code as data and allows

evaluation of quoted data using eval. Nonetheless, one would also like to generate

code at runtime. The keywords quasiquote, unquote and unquote-splicing together

17

enable this and thus provide a strong base for metaprogramming.According to Alan

Bawden [5], Quasiquotation is the parameterized version of normal quotation where

instead of specifying a value exactly, some holes are left to be filled later.

The quasiquote keyword allows part of the expression to be “unquoted”. Without

an unquote expression in it, a simple quasiquote expression would evaluate to the

same result as a quote expression. However, if there is an unquote expression within

the quasiquote expression, then the unquote expression will be evaluated and inserted

into the result. Listing 2.4 gives examples of quasiquote expressions with unquote

expressions embedded in them.

‘(a b ,(reverse ’(c d e)) f g) => (a b (e d c) f g)

‘(a b ,@(reverse ’(c d e)) f g) => (a b e d c f g)

(define (eval -formula formula)

(eval ‘(let ([x 2]

[y 3])

,formula)))

(eval -formula ’(+ x y)) => 5

(eval -formula ’(- x (+ x y)) => -3

(eval ‘(+ ,@(cdr ‘(* 2 3)))) => 5

Listing 2.4: Quasiquoted Scheme expression

quasiquote is also represented as {‘} , unquote as {,} and unquote-splicing as {,@}.

In case of quote, the evaluated result replaces the unquote expression in the parent

expression, whereas in unquote-splicing, the result is spliced into the surrounding list.

The code introduced by the quasiquote operator is evaluated at compile-time

instead of at run-time. Thus, code and code in the form of data is represented in the

same manner and evaluated in the same manner. This induces simplicity and power

in the metaprogramming abilities in Scheme.

18

2.6 Summary

As can be seen from the above discussion, none of the popular web programming lan-

guages employ the concept of code and data duality coupled with the ability to move

between the two. This is a powerful concept that still remains unexplored in the web

programming environment. We propose to explore the possibility of exploiting this

concept in the web development environment. This thesis introduces an environment

that provides an abstraction where all underlying technologies and concepts are hid-

den and where code and data is represented in the same manner. The environment

would also allow accessing, transforming or generating objects in the same way.

19

Chapter 3

Homoiconic Language for the Web:

Design considerations

The concept of homoiconicity has enabled development of metaprogramming, a pow-

erful programming technique, which helps generate elegant programs that can exhibit

varying behavior at run-time depending on the input. It is evident from the discus-

sion of existing technologies that this concept is either not available or not fully

implemented in the web programming environment. The aim of this research is to in-

troduce a web development environment where code, data, access and persistence are

represented in the same manner and further explore the areas in web programming,

where this concept could be exploited.

Many languages have been developed and introduced in the web development

environment to simplify programming for inexperienced web developers and at the

same time, to provide tools for experienced web developers to write powerful and

efficient code. Often, the various concepts in these languages are not in tandem with

each other and have complex representation, thus confusing the developers. Hence,

the best approach for achieving our aim was to implement our concept in an existing

20

language at the most basic level instead of writing a new representation for a new

language. We chose to introduce the concept by augmenting the basis of the entire

web, the markup language XHTML itself.

A prototype is developed to introduce code/data duality to a web development en-

vironment. We create an interpreter JavaScript for evaluating an XML representation

of Scheme code embedded in an XHTML web page. Scheme constructs are written

as XHTML tags. This is evaluated at the browser using the interpreter JavaScript.

It provides a uniform abstraction for representing code and data. In other words,

the Scheme code in its XML representation and the HTML presentation logic are

represented in the same manner. The language also has the same uniform repre-

sentation for constructs to access and manipulate HTML elements and their values.

The process of developing the prototype has helped identify the challenges in the

implementation of the proposed concept.

Metaprogramming magnifies the reuse potential of large features. For example,

adding/deleting rows to a table dynamically becomes trivial in such an environment.

Metaprogramming can be enabled in HTML due to concepts like macros that are

present in Scheme language. This means that a web developer will be able to de-

fine new HTML tags and write varying transformation logic for HTML in the new

environment. Writing Domain Specific Web Languages will become possible. Imag-

ine being able to create a web language using our language definition, with unique

constructs defined for specific business applications or social networking websites.

3.1 Design Considerations

In the following section, we discuss the design considerations and how they effect our

implementation of the interpreter for the new language.

21

3.1.1 Why Scheme?

In section 2.5, we briefly looked at some of the key features of the Scheme language.

We now look more closely at these features and discuss how they make Scheme an

apt choice for our implementation in web space.

Scheme, a statically scoped, multi-paradigm and homoiconic language, has clear

and simple semantics and syntactic constructs that are written as S-expressions.

These S-expressions can be represented by XML tags which can easily be embed-

ded into HTML web pages. Syntactic constructs like define, lambda, set! and the

like can be represented as XML tags with the body nested between these tags.

Scheme is a widely popular programming language. Using Scheme represented

as XML enables a developer to use and build upon his basic knowledge of Scheme

constructs and concepts in web development. Thus, constructs in the new XML

language are familiar and more constructs can be created along the way in the same

manner. An example of Scheme code represented as MATHML [21] for calculating

the factorial of a number is shown in Listing 3.1 and Listing 3.2.

(define fact

(lambda (n)

(if (= n 0)

1

(* n (fact (- n 1))))))

(fact 3)

Listing 3.1: Scheme equivalent of XML representation

The main consideration behind choosing to write a Scheme interpreter is its prop-

erty of homoiconicity. The presence of this property enables meta-programming, writ-

ing domain-specific applications/scripts and reflection. The homoiconicity in Scheme

is due to the uniform representation of code and data in it. By representing Scheme

22

<apply >

<define ></define >

<ci>fact</ci>

<apply >

<lambda ></lambda >

<apply >

<ci>n</ci>

</apply >

<apply >

<if></if>

<apply >

<ci>=</ci>

<ci>n</ci>

<cn>0</cn>

</apply >

<cn>1</cn>

<apply >

<ci>*</ci>

<ci>n</ci>

<apply >

<ci>fact</ci>

<apply >

<ci>-</ci>

<ci>n</ci>

<cn>1</cn>

</apply >

</apply >

</apply >

</apply >

</apply >

</apply >

<apply >

<ci>fact</ci>

<cn>3</cn>

</apply >

Listing 3.2: XML representation of Scheme for evaluating factorial

code as XML, we are able to embed it in HTML which is mostly data, thus providing a

uniform representation for code and data, access and persistence and transformation.

Scheme’s homoiconicity can also be attributed to another concept present in

Scheme, quasiquotation. We have explained the concept of quasiquotation in sec-

tion 2.5.1. In the new language, we implement quasiquote and unquote tags to im-

23

plement the corresponding concept in Scheme. These tags enable a programmer to

write HTML and Scheme code represented as XML in the same manner. HTML

code is embedded in qquote tags and Scheme code in unquote tags. Together, the S-

expressions and quasiquotation provide easy and flexible means for manipulating and

generating programs. Thus, an HTML web page becomes a sequence of S-expressions,

with or without nesting, to a developer and he no longer needs to be concerned with

underlying JavaScript or AJAX or any other technology.

Another very important feature in Scheme is first-class continuation [7], which

is an abstract representation of the control state. Continuations can solve problems

such as maintaining page state in a web application in an uncomplicated manner. A

page state can be persisted in a continuation and then later returned to by simply

calling the saved continuation. Other programming constructs that can be introduced

using continuations are threading, co-routines and exceptions.

3.1.2 Features of Scheme to be implemented

Over the years, Scheme has become a very popular programming language with many

implementations and standards. Each implementation differs in the set of features

being implemented. For the purpose of this thesis, it is feasible to implement only

a subset of all the features in various implementations of Scheme. The most recent,

commonly implemented Scheme standards are R5RS and R6RS. R6RS Scheme is a

collection of libraries. The R6RS Scheme base library corresponds largely to R5RS

Scheme. However, I/O operations, some list functions, force and delay and the like

do not exist in core library. In fact, the core library implements the full numerical

tower in contrast to R5RS which only allows a subset of the numerical tower to be

implemented. Our implementation of Scheme, represented as XML, is a subset of the

R5RS Scheme.

24

The idea behind Scheme is to keep it simple by implementing only the minimum

number of necessary features that can later be used for expansion. Based on a similar

concept, we choose to implement the features of Scheme that depict (or enable) the

homoiconicity in the language and the ones that can be used as building blocks for

further expansion of the language. Thus, the salient features of Scheme selected for

implementation in this thesis are lexical scope, program as data, first-class continu-

ation, hygienic macros and quasiquotation. A subset of the numerical tower will be

implemented as well. However, implementing all standard Scheme procedures like

environment procedures, input/output procedures or all string procedures is not fea-

sible. More specifically, features like modules, I/O operations and the like are not

implemented at this stage. They may be added later as additional libraries.

A list of standard forms, procedures and numeric procedures that have been im-

plemented is given in the appendix.

3.1.3 Why Javascript?

JavaScript is a widely used scripting language for accessing HTML elements and

DOM objects. Therefore, using JavaScript for writing a Scheme Interpreter is an

obvious choice. Apart from providing client-side evaluation and accessibility to DOM

objects and API, it also shares some common features with Scheme such as dynamic

typing, closures and allowing functions to be first class values. Given that Scheme

and JavaScript are both functional programming languages, it becomes easier to

implement Scheme concepts intuitively in JavaScript.

A drawback of using JavaScript is cross-browser compatibility. JavaScript func-

tions for Firefox and Internet Explorer are not uniform and differ in some aspects.

Thus, the interpreter JavaScript should be able handle and access HTML/Scheme

25

code represented as XML correctly, irrespective of the browser it is being rendered

on.

3.1.4 Augmenting HTML: Limitations and Capabilities

As discussed earlier in chapter 2, JavaScript and PHP enable generation and manipu-

lation of HTML dynamically on the client-side and server-side respectively. However,

the HTML generated is often incorrect and gives rise to mal-formed web pages. This

happens because in these languages, HTML code is usually generated as a string or

as node objects, which are then embedded in HTML pages. These strings and node

objects often do not represent the HTML correctly. Therefore, instead of creating

another language that generates HTML, we have chosen to introduce homoiconicity

at the most basic level by augmenting HTML itself. This would ensure correctness

of HTML and would enable code reuse. It would also keep programming simple, yet

powerful. However, this brings in some challenges as well. Despite the obvious advan-

tages of introducing homoiconicity in HTML, writing complex programs in HTML

can be verbose.

HTML also has many versions and can be strict or transitional. However, it is

still not possible to access elements using JavaScript and DOM, when the HTML tags

are not formed properly. An example of HTML that is correct in our language that

will not be parsed properly by JavaScript is given in Listing 3.3. In this example,

HTML is not parsed correctly and the tr and td elements are not accessible through

the DOM.

This problem has been resolved by writing a new Document Type Definition

(DTD) for our language which allows writing incomplete HTML within quote tags.

A DTD is a set of markup specifications for defining a document type. It simply

26

<body>

<h1>Dynamic Table </h1>

<table id="dTable" border="1">

<unquote >

<apply >

<define ></define >

<ci>row</ci>

<apply >

<quote ></quote >

<tr>

<td width="30px">

<unquote >

<cn>"Row"</cn>

</unquote >

</td>

<td width="40px"> </td>

</tr>

</apply >

</apply >

</unquote >

<unquote >

<ci>row</ci>

</unquote >

</table >

</body>

Listing 3.3: HTML generating row for a table dynamically

describes the schema for a language of the SGML/XML family. Our DTD defines

a document type where the document must follow the specifications of an XHTML

DTD with one exception. Any markup written between quote tags is allowed. This

allows a programmer to dynamically generate HTML code, but at the same time

ensures that HTML written outside unquote tags is correct and will not break while

parsing.

27

Chapter 4

Homoiconic Language for the Web:

Design and Implementation

In chapter 3, we discussed the design considerations for the new language and reasons

for languages choices like Scheme, XHTML and JavaScript for our implementation.

In this chapter we describe the concise design of our interpreter and how it has been

implemented.

4.1 Design

For an implementation to be simple and efficient, the design architecture of a lan-

guage must be described elaborately with its hierarchy. More importantly, the origi-

nal aim for choosing to construct a new language must not be lost during the design

procedure. The aim of this research is to introduce homoiconicity in the web devel-

opment environment. This goal is achieved by embedding XML-like Scheme code in

an XHTML web page. Since Scheme code is represented as XML and XHTML is

28

also of the XML family, the representation of code and data becomes identical and

thus, the language becomes homoiconic. The design of this language is described in

the following subsections.

4.1.1 Writing the Document Type Definition

Before describing the design of the interpreter itself, the first step is to ensure that

the document itself is in a form that can be correctly parsed and interpreted. For

this, the following two conditions must be met.

• The document must be strictly XHTML. This means that the HTML tags must

be nested properly and must have balanced tags. Each tag must have a start

and an end. For example,

<apply> <define></define> <ci>a</ci> </apply>

• The content within quote and qquote tags may not follow XHTML rules.

To ensure that the above two conditions are met, a Document Type Definition (DTD)

is written that is mostly similar to an XHTML DTD, except that it allows anything

to be written within quote and quasiquote tags.

4.1.2 Implementing unquote tags

Writing Scheme code as XML tags induces homoiconicity since code and data are

now represented in the same manner. In Scheme, the quote/quasiquote constructs

are used to represent a list as data and the unquote construct is used to evaluate

code, whose result is then embedded in a data list.

29

<html xmlns="http: //www.w3.org /1999/ xhtml">

<head><title >New Web Project </title ></head>

<body>

<unquote >

<apply >

<define ></define >

<ci>fillBox </ci>

<apply >

<lambda ></lambda >

<apply ><ci>key</ci></apply >

<apply >

<qquote ></qquote >

<apply >

<div>

<label >

<unquote ><ci>key</ci></unquote >

</label >

<textarea rows="1"></textarea >

</div>

<apply >

</apply >

</apply >

</apply >

</unquote >

<unquote >

<apply ><ci>fillBox </ci><cn>"Name"</cn></apply >

</unquote >

<unquote >

<apply ><ci>fillBox </ci><cn>"Age"</cn></apply >

</unquote >

<unquote >

<apply ><ci>fillBox </ci><cn>"Address"</cn></apply >

</unquote >

</body>

</html>

Listing 4.1: Mostly quoted web page

Borrowing from this concept, special unquote tags are created that have Scheme

code represented as XML embedded in them. The entire XHTML page can be viewed

as quoted data with unquote tags containing code within them, which are then eval-

uated by the interpreter. Thus, the first task of the interpreter will be to find the

unquote tags in the HTML page and prepare them for evaluation. Listing 4.1 gives

30

an example of XML-like Scheme code embedded in unquote tags and XHTML data

embedded in qquote tags. Listing 4.2 is the Scheme code representation of Listing 4.1

and showcases the mapping between the two.

(html

(head (title "New Web Project "))

‘(body

,(define fillbox

(lambda

(key)

‘(div

(label ,key)

(textarea))))

,(fillbox "Name")

,(fillbox "Age")

,(fillbox "Address ")))

Listing 4.2: Scheme code for the mostly quoted web page

Listings 4.1 and 4.2 exhibit an exact correspondence between the Scheme code

and its XML representation. In the actual language however, the html tag is not

processed. XML like Scheme code can be embedded within script tags of scheme-

xml type, inside the head tags. The body tag is assumed to be embedded in qquote

tags. The XML-like Scheme code in the head tag and the “quoted” body element

is then evaluated by our interpreter. As can be seen from the two representations,

the apply tags in Listing 4.1 are analogous to the parentheses marking the start

and end of an expression in Listing 4.2. Scheme keywords like define and lambda

are represented as define and lambda empty tags. The variables in Scheme, like

key and fillbox in our example, are embedded within ci tags and the constants,

like “Name”, “Age” and “Address” are embedded within cn tags. Finally, in the

case of quasiquotation, the XML representation of Scheme’s ‘ symbol is actually

a representation of the expanded form of Scheme’s quasiquote operator. This

means that an expression ‘(+ 2 3), whose expanded form is (quasiquote (+ 2 3))

will be represented in XML as <apply> <qquote></qquote> <apply> <ci>+</ci>

31

<ci>2</ci> <ci>3</ci> </apply> </apply>. In Scheme language, arithmetic op-

erators are not keywords and are treated as variables whose value can be changed in

a program. Thus, they are represented in the same manner as other variables are.

A more detailed description of the language can be found in the Appendix.

4.1.3 Implementing corner features of Scheme

For evaluating the Scheme code embedded in the XHTML page, the constructs of the

new language must be defined. The architecture of the interpreter has been structured

into two-tiers.

The first tier consists of the core constructs, the data-types and numerical hierar-

chy. The second tier consists of constructs that can be defined using constructs from

the first tier. We will briefly describe the constructs and data-types in each tier.

TIER 1

• Definition (define), assignment (set!), binding constructs (lambda and let),

conditional expression (if), sequential evaluation (begin), quotation (quote,

unquote), variable references and procedure calls form the core of Scheme im-

plementations. Using these constructs, new constructs can be created. These

constructs are implemented in tier 1 of the interpreter.

• Only Integer data-type is implemented from amongst the numeric data-types.

• Non-numeric data-types like Boolean, lists and pairs, vector, strings and sym-

bols are implemented in this tier.

• Tier 1 also includes implementation for vector construction and manipula-

tion expressions, equivalence predicates (eq?, equal? and eqv?), symbol to

32

string conversion, list and pair procedures (list?, pair?, cons, car, cdr,

length, set-car!, set-cdr!, assoc), functional programming procedures

(procedure?, apply) and identity predicates (boolean?, pair?, symbol?,

number?, vector?).

• First-class continuations are also implemented in tier 1 (call-with-current-

continuation).

• Lastly, basic arithmetic operators (+, -, /, *) and relational operators are

implemented in this tier.

TIER 2

• Tier 2 is built on top of tier 1 as the constructs and procedures implemented in

tier 1 are sufficient to implement tier 2 constructs.

• Syntactic extension (syntax-rules and define-syntax), conditional proce-

dures (case, cond), delayed evaluation (force, delay), logical operators (and

, or), iteration procedure(do), functional programming procedures (map) and

quasiquote are implemented as a part of tier 2.

• Tier 2 is extendable and more procedures can be added to it later.

The entire list of procedures and constructs in their XML representation are de-

tailed in the appendix.

4.1.4 Implementing constructs for accessing Web data

In the previous section, we described our design for evaluating XML like Scheme code,

which introduces homoiconicity in our language. However, the goal of this thesis is

33

to bring uniformity in representing code and data, as well as in accessing web data.

JavaScript provides a vast number of DOM objects and methods that enable effective

manipulation of HTML. We implement a subset of these methods, written in XML-

like Scheme syntax that allows basic manipulation of XHTML elements using Scheme

code. Listing 4.3 gives an example of JavaScript code for adding an event handler

and Listing 4.4 gives the same example in our language.

<html >

<head >

<script language =" javascript">

function addEvent (){

var btnEl = document.getElementById ("btn1 ");

btnEl.addEventListener (" click", clickFunc , false);

}

function clickFunc (){

var dvEl = document.getElementById ("dv1");

dvEl.innerHTML = "This is the clicked page .";

}

</script >

</head >

<body onload =" addEvent ()">

<div id="dv1"> This is 1st page.</div >

<button id="btn1">Click Me!</div >

</body >

</html >

Listing 4.3: JavaScript code for adding event handler

The DOM manipulation methods are written in Tier 1 , described in the pre-

vious section. The documentEl and bodyEl tags are used for the document and

body objects of JavaScript. The title, get-element-by-id, create-element

and write methods are created for documentEl corresponding to document.title,

document.getElementById() and document.write() methods from JavaScript respec-

tively. Similarly, a subset of methods and properties, common to all HTML el-

ement objects in JavaScript, are implemented for our language. Some exam-

34

<html>

<head>

<title >Dynamic Table Generation - Example </title >

</head>

<body>

<div id="div1">

<div id="dv1">This is 1st page.</div>

<button id="btn1">Click Me</button >

<unquote >

<apply >

<define ></define >

<ci>clickMethod </ci>

<apply >

<lambda ></lambda >

<apply ></apply >

<apply >

<inner -html></inner -html>

<apply >

<get -element -by-id></get -element -by -id>

<cn>"dv1"</cn>

</apply >

<cn>"This is the clicked page."</cn>

</apply >

</apply >

</apply >

</unquote >

<unquote >

<apply >

<add -event -listener ></add -event -listener >

<apply >

<get -element -by-id></get -element -by-id>

<cn>"btn1"</cn>

</apply >

<cn>"click"</cn>

<ci>clickMethod </ci>

</apply >

</unquote >

</body>

</html>

Listing 4.4: XML like Scheme code for adding event handler

ples are get-elements-by-tag-name, add-event-listner, childnodes, tag-name,

append-child, parent-node and remove-child.

35

Many more properties and methods specific to each HTML element can be added

to Tier 1 later.

4.2 Implementation

A JavaScript program is written to implement the Tier 1 of the interpreter architec-

ture. The Tier 2 implementation consists of files containing Scheme code represented

as XML. This XML like Scheme code is evaluated using the core forms implemented

in tier 1. As described in the design, a Document Type Definition is written to en-

sure that the document containing the code to be evaluated is syntactically correct

and contains complete tags. We now look at the step-wise implementation of the

interpreter.

1. The document is loaded at the browser. A set of JavaScripts which contain

the interpreter code are also loaded with the document. On the onload event

of the body of the document, a JavaScript function, interpret, which marks

the beginning of interpretation, is called. This function finds the unquote tags

embedded in the body of the XHTML web page and passes them on to the

parser.

2. The DOM parser is used to parse the XHTML document. However, the parsed

document is not in a form where it can be easily evaluated or errors can be

detected. The DOM parser parses the XHTML and returns a Document node

object with child nodes. However, the child nodes could be empty text nodes

as well, which makes it tough to manipulate these nodes directly. Therefore,

we write another parser that parses the parsed document node, eliminates the

empty text nodes, detects syntax errors and outputs a list of expressions. The

36

nodes are parsed into lists, which are represented by JavaScript arrays. These

lists are analogous to S-expressions in Scheme. For every apply tag in the

document a new list/s-expression is generated. Thus, the final output of the

parser is a set of nested lists.

3. Before explaining the evaluation procedure, the core procedures’ implementa-

tion and utility functions must be described. A SchemeEnv class is created

to represent the environment. This class contains a hash-table which acts as

a symbol-table and stores all variable-value pairs, maintains the current posi-

tion in the nested list/s-expression, defines functions for adding and retrieving

variables and their values, and functions for creating new environments and

returning to parent environment. A Tokens class is defined to describe all the

tokens in the language. Classes are written for the list, vector and symbol data

types. Other data types are represented by JavaScript data types. As an exam-

ple, the integer and the string data type are represented by JavaScripts number

and string data types. For utility functions like car, cdr, cons of a list, func-

tions for identifying if the given element is a string, identifier, number, vector

or procedure and for printing the result, a Util class is created.

4. The procedures for evaluating core Scheme constructs that were described ear-

lier in the design for Tier 1 and procedures for constructs for manipulation of

the HTML DOM, are stored in a reservedSymbols array. Corresponding to each

construct, for example get-element-by-id, inner-html, define, lambda, if, + , - ,

and the like, a builtIn object is stored. A builtIn class contains the name of the

construct, a function containing JavaScript code for evaluation of the expres-

sion corresponding to the construct, and a string or a function that provides the

evaluation when the construct has not been called as an application, but rather

37

as a variable. An example of the builtIn object for the + application/procedure

is given in Listing 4.5.

new builtIn(’+’, function(argList){

var result = 0;

var args = Parser.evaluateList(argList);

while (args.length != 0) {

var arg = Util.car(args);

arg = arg.toString ();

if (Util.isNumber(arg))

result += eval(arg);

else

throw incorrectTypeError;

args = Util.cdr(args);

}

var res = new Number(result);

return res;

}, "arity -dispatched -procedure ")

Listing 4.5: builtIn object for ‘+’ procedure

5. The Parser class contains procedures for parsing, getting the next s-expression

or list, evaluating an expression and evaluating a list of expressions. The

evaluate procedure, that evaluates a list/s-expression represented internally as

a JavaScript array, calls a procedure from the action class corresponding to

whether the expression is a constant, identifier or application. The action class

contains procedures that specify how to process a procedure call, a constant or

an identifier. If the expression is an identifier, then it is first looked up in the

environment’s symbol-table and then in the reservedSymbols array. The value

corresponding to the found variable is then returned. If its an application, then

also the application is looked up in the reservedSymbols array and the environ-

ment symbol-table and the corresponding function that contains the evaluation

38

is called. These methods are called recursively to evaluate expressions and

sub-expressions.

6. The result of the evaluation of an expression is returned from the evaluate

function. This result is then processed and a text node or an element containing

the result is returned. This new node which contains the expression’s evaluation

replaces the unquote tag in the document.

7. Syntax errors are caught during parsing and during evaluation and thrown to

the main function where the processing began. The evaluation for the rest of

the expression ceases and the error is displayed in the document.

8. For the implementation of tier 2, the simple-macro implementation for Scheme

by Jonathan Rees et.all [17] is used. A transformer is written to transform

Rees’ Scheme code into its XML representation. This XML representation of

the simple-macro implementation is first expanded by the tier 1 procedures and

then, the expanded form is evaluated using the tier 1 implementation.

4.3 Test Cases

Testing is an important aspect of any form of software development. The purpose of

testing is not to find all the bugs in the system, but to ensure that the system meets

all the requirements specified in the aim for creating a new software. Our goal was

to create a language that evaluates a subset of Scheme functionalities and JavaScript

DOM functionalities in its XML representation. Thus, it is imperative that we test

our language for these set of functionalities.

A program, written in any programming language, is an integration of expressions

or statements. No single command or expression can test a concept or function

39

completely. Thus, we perform grey-box testing at the integration and system testing

levels.

Our test cases range from simple programs like calculating a facto-

rial or finding the length of a list, to complex programs that can them-

selves be used in further development of the language and that can

manipulate the HTML elements dynamically. These programs test the

basic constructs of the Scheme language like define, lambda, if, set,

call-with-current-continuation, quasiquote, unquote, let and let* along

with list-manipulation and vector-manipulation methods and DOM manipulation ca-

pabilities. In addition to test cases, we have use cases where the program can be used

for further implementation. Examples of use cases are programs defining Scheme

keywords like length, map, values and call-with-values which can be used fur-

ther, to write applications.

The tests were chosen to reflect the applications that a user would want to create

using this language. Test cases were developed during the development process of

the language itself. The test programs containing hundreds of lines of codes, in

XML form, were evaluated successfully at the Mozilla Firefox 3.0.11 and Opera 9.62

browsers. Some examples of the language and their evaluated outputs are presented

in the next chapter.

40

Chapter 5

Homoiconic Language for the Web:

Annotated Examples

A programming language specification can be given in various forms like natural

language, formal semantics, examples or test suites. Natural language alone can

sometimes not describe aspects of a programming language efficiently. Thus, we

choose to describe our language using a combination of examples, presented in this

chapter, and BNF grammar for the language that is presented in Appendix A.

5.1 Hello World!

Listing 5.1 presents a simple program that prints “HELLO WORLD!” at the browser

after evaluation. This example depicts the simple use of an unquote tag in the pro-

gram. As mentioned earlier the body tag is assumed to be embedded in quasiquote

tag for evaluation. Lines 6 and 7 are thus evaluated as quoted data and returned as

is. This lines will print “HELLO WORLD!” at the browser. Line 8-13 depicts the

41

use of unquote tag. Lines 9-12 contain code to convert “HELLO WORLD!” to lower

case. Any kind of computation/code is embedded in unquote tags. cn tag on line 11

is used to represent strings and numbers. The output of this program is displayed in

Figure 5.1. For ease of understanding, the corresponding Scheme code is also shown

in Listing 5.2.

1 <html>

2 <head>

3 <title >Example 1</title >

4 </head>

5 <body>

6 <h1>HELLO WORLD!<h1>

7 <h2>

8 <unquote >

9 <apply >

10 <string -tolower ></string -tolower >

11 <cn>"HELLO WORLD!"</cn>

12 </apply >

13 </unquote >

14 </h2>

15 </body>

16 </html>

Listing 5.1: Example 1: Hello World

Figure 5.1: Example 1: Hello World!

42

(html

(head (title "Example 1"))

‘(body

(h1 "HELLO WORLD !")

(h2

,(string -tolower "HELLO WORLD !"))))

Listing 5.2: Scheme code for Example 1

5.2 Nth list tail

The example given in Listing 5.4 calculates the nth tail of a list. The objective of this

example is to show the usage of basic Scheme constructs like define, lambda, if

and the like, and to show operations on a Scheme list. In line 4 of the Listing 5.4, the

define expression begins. Variables are embedded within ci tags, as in line 5. Line 7

gives a lambda expression that takes two arguments ls and n. The list-tail method

is called recursively on the cdr of the list in line 15-21, based on the condition that

is evaluated in line 12. Finally, the list-tail method is called with suitable arguments

in line 30. The Scheme code and output for the example are given in Listing 5.3 and

Figure 5.2

(html

(head (title "Example 2"))

‘(body

,(define list -tail

(lambda (ls n)

(if (= n 0)

ls

(list -tail (cdr ls) (- n 1)))))

,"The 2nd tail of ‘(1 2 8 7) is : "

,(list -tail ‘(1 2 8 7) 2)))

Listing 5.3: Scheme code for Example 2

1 <body>

2 <unquote >

3 <apply >

4 <define ></define >

43

5 <ci>list -tail</ci>

6 <apply >

7 <lambda ></lambda >

8 <apply ><ci>ls</ci><ci>n</ci></apply >

9 <apply >

10 <if></if>

11 <apply >

12 <ci>=</ci><ci>n</ci><cn>0</cn>

13 </apply >

14 <ci>ls</ci>

15 <apply >

16 <ci>list -tail</ci>

17 <apply ><cdr></cdr> <ci>ls</ci></apply >

18 <apply >

19 <ci>-</ci> <ci>n</ci> <cn>1</cn>

20 </apply >

21 </apply >

22 </apply >

23 </apply >

24 </apply >

25 </unquote >

26 <unquote >

27 <cn>"The 2nd tail of ‘(1 2 8 7) is : "</cn>

28 </unquote >

29 <unquote >

30 <apply >

31 <ci>list -tail</ci>

32 <apply >

33 <qquote ></qquote >

34 <apply >

35 <cn>1</cn><cn>2</cn><cn>8</cn><cn>7</cn>

36 </apply >

37 </apply >

38 <cn>2</cn>

39 </apply >

40 </unquote >

41 </body>

Listing 5.4: Example 2: Nth list-tail

44

Figure 5.2: Example 2: Nth list-tail

5.3 Factorial

Scheme code in the form of XML can be written in the head element of an html

document, by embedding it within script tags. The following examples show code

to calaculate the factorial of a number. In Scheme, the factorial can be calculated

using various methods. Each of those methods can be tested by keeping the body of

the html document same and changing the factorial definition in the head element.

As mentioned earlier, we have written a small program to convert Scheme code into

its XML representation. We use the same program here, to convert various Scheme

factorial definitions into XML. Listing 5.6 gives the XML output for one such factorial

definition given in Listing 5.5, as processed by our program. The method calls the

factorial function recursively to perform the computation.

(define factorial

(lambda (n)

(if (= n 0) 1

(* n (factorial (- n 1))))))

Listing 5.5: Calculating factorial using recursion

1 <apply >

2 <define ></define >

3 <ci>factorial </ci>

4 <apply >

45

5 <lambda ></lambda >

6 <apply ><ci>n</ci></apply >

7 <apply >

8 <if></if>

9 <apply >

10 <ci>=<ci>

11 <ci>n</ci>

12 <cn>0</cn>

13 </apply >

14 <cn>1</cn>

15 <apply >

16 <ci>*</ci>

17 <ci>n</ci>

18 <apply >

19 <ci>factorial </ci>

20 <apply >

21 <ci>-</ci>

22 <ci>n</ci>

23 <cn>1</cn>

24 </apply >

25 </apply >

26 </apply >

27 </apply >

28 </apply >

29 </apply >

Listing 5.6: XML output for Scheme code

Another method that uses a loop to calculate factorial is given in Listing 5.7.

(define factorial

(lambda (n)

(do ((i 1 (+ i 1))

(f 1 (* f i)))

((> i n) f))))

Listing 5.7: Calculating factorial using iteration

Finally, we look at an example for calculating factorials that uses continuations.

Continuation is a very important concept in Scheme programming language. It rep-

resents the state of the environment or the stack, during a particular computation.

These continuations can be saved to be called repeatedly or used to provide a non-

local exit. In this example, shown by listing 5.9, we use continuations to calculate

46

(html

(head (title "Example 3")

(script

,(define ret #f)

,(define factorial

(lambda (k)

(if (= k 0)

(call/cc (lambda (s) (set! ret s) 1))

(* k (factorial (- k 1))))))))

‘(body

,"The factorial of 5 is : "

,(factorial 5)))

Listing 5.8: Scheme code for Example 3

the factorial of a number. The saved continuation can be used to find multiples of

the factorial.

The callcc method, a primitive procedure in Scheme and our language, is invoked

when the number, whose factorial we are calculating, is 0. This condition is shown in

lines 20-23 of the listing. Callcc takes a procedure as its argument. This procedure

itself takes one argument. callcc generates a representation of the current evalua-

tion stack and environment and passes it as argument to the previously described

procedure. Lines 29-33 store the current continuation in a global variable ret to be

called later. At this stage, the computation state will consist of a stack that will be

equivalent to an expression like (* 5 (* 4 (* 3 (* 2 (* 1))))), where, will be filled

by the value returned or an argument. In the first case, the value returned is 1, but

when the continuation, that had stored this computation state, is called repeatedly

with different arguments, the is filled by these arguments and the computation is

re-evaluated. In this way, we get the multiples of 5! repeatedly. Listing 5.8 and

Figure 5.3 give the Scheme code and the output for this example.

1 <html>

2 <head>

3 <title >Example 3</title >

47

4 <script type="text/scheme -xml">

5 <unquote >

6 <apply >

7 <define ></define >

8 <ci>ret</ci>

9 <false ></false >

10 </apply >

11 </unquote >

12 <unquote >

13 <apply >

14 <define ></define >

15 <ci>factorial </ci>

16 <apply >

17 <lambda ></lambda >

18 <apply ><ci>k</ci></apply >

19 <apply >

20 <if></if>

21 <apply >

22 <ci>=</ci><ci>k</ci><cn>0</cn>

23 </apply >

24 <apply >

25 <callcc ></callcc >

26 <apply >

27 <lambda ></lambda >

28 <apply ><ci>s</ci></apply >

29 <apply >

30 <set></set>

31 <ci>ret</ci>

32 <ci>s</ci>

33 </apply >

34 <cn>1</cn>

35 </apply >

36 </apply >

37 <apply >

38 <ci>*</ci>

39 <apply >

40 <ci>factorial </ci>

41 <apply >

42 <ci>-</ci>

43 <ci>k</ci>

44 <cn>1</cn>

45 </apply >

46 </apply >

47 <ci>k</ci>

48 </apply >

49 </apply >

50 </apply >

48

51 </apply >

52 </unquote >

53 </script >

54 </head>

55 <body>

56 <unquote ><cn>"The factorial of 5 :"</cn></unquote >

57 <unquote >

58 <apply ><ci>factorial </ci><cn>5</cn></apply >

59 </unquote >

60 </body>

61 </html>

Listing 5.9: Factorial example

All the above mentioned methods for calculating factorial give the same output,

which is shown in Figure 5.3.

Figure 5.3: Example 3: Factorial

5.4 Dynamic Form Generation

Listing 5.11 presents an example for dynamic HTML generation. JavaScript has a

rich DOM API which, among other things, provides client-side event handling and

generates new HTML elements. We have incorporated the same capabilities in our

language. The application in this example generates new fields for a form, based on

user’s inputs. Lines 1-9 render 2 textboxes for entering the name and the input type

49

(html

(head (title "Example 4"))

‘(body

(div

("Field Name" (textarea))

("Field Type" (textarea))

(button))

(div)

,(define clickMethod

(lambda ()

(append -child

(get -element -by-id "dv2")

‘(div (table (tr

(td

(label

,(node -value

(get -element -by -id "txt1 "))))

(td

,(create -element

(node -value

(get -element -by -id "txt2 "))))))))))

,(add -event -listener

(get -element -by -id "btn1") "click" clickMethod))))

Listing 5.10: Scheme code for Example 4

of the field to be added in a form and button to add a new field to the form. The event

listener is added to the button in lines 63-71. The event listener takes 3 arguments:

the element on which the event will occur, the event name, and the method that will

be called when the event occurs.

The method ,clickMethod defined on line 12, defines a procedure that appends

a div to an existing div. Each new div contains a label with the name of the

field that the user entered and an element of the type mentioned in the field type

textbox. This is done using the append-child, node-value, get-element-by-id

and create-element procedures of our language. The output of this application on

subsequent clicks of the button are shown in Figures 5.4, 5.5, 5.6 and 5.7. Listing

5.10 represents the application in Scheme language.

50

1 <body>

2 <div id="dv1" align="center">

3 Field name:

4 <textarea id="txt1" rows="1"></textarea >

5 Field type:

6 <textarea id="txt2" rows="1"></textarea >

7 <button id="btn1">Add Field </button >

8 </div>

9 <div id="dv2"></div>

10 <unquote >

11 <apply >

12 <define ></define >

13 <ci>clickMethod </ci>

14 <apply >

15 <lambda ></lambda >

16 <apply ></apply >

17 <apply >

18 <append -child ></append -child >

19 <apply >

20 <get -element -by-id></get -element -by-id>

21 <cn>"dv2"</cn>

22 </apply >

23 <apply >

24 <qquote ></qquote >

25 <div>

26 <table border="1" height="40px" width="300px">

27 <tr height="40px">

28 <td width="40%">

29 <label width="50px">

30 <unquote >

31 <apply >

32 <node -value ></node -value >

33 <apply >

34 <get -element -by-id></get -element -by -id>

35 <cn>"txt1"</cn>

36 </apply >

37 </apply >

38 </unquote >

39 </label ></td>

40 <td width="60%">

41 <unquote >

42 <apply >

43 <create -element ></create -element >

44 <apply >

45 <node -value ></node -value >

46 <apply >

47 <get -element -by-id></get -element -by-id>

51

48 <cn>"txt2"</cn>

49 </apply >

50 </apply >

51 </apply >

52 </unquote >

53 </td>

54 </tr>

55 </table >

56 </div>

57 </apply >

58 </apply >

59 </apply >

60 </apply >

61 </unquote >

62 <unquote >

63 <apply >

64 <add -event -listener ></add -event -listener >

65 <apply >

66 <get -element -by-id></get -element -by-id>

67 <cn>"btn1"</cn>

68 </apply >

69 <cn>"click"</cn>

70 <ci>clickMethod </ci>

71 </apply >

72 </unquote >

73 </body>

Listing 5.11: Dynamic form generation example

Figure 5.4: Example 4: Form : on load

52

Figure 5.5: Example 4: Form : on 1st click

Figure 5.6: Example 4: Form : on 2nd click

Figure 5.7: Example 4: Form : on 3rd click

53

Chapter 6

Exploring homoiconicity in a web

setting

In the previous chapters, we have discussed the effects of introducing homoiconicity

in the web development environment. Better metaprogramming capabilities, multi-

threading, writing domain specific languages and uniformity in representation of code,

data, access and persistence are some of the key advantages highlighted in the thesis.

In this chapter, we will explore the feasibility of exploiting these benefits in the web

development environment. There are certain areas of web development where we have

not been able to introduce homoiconicity as yet. However, we would also discuss the

possible development scenarios that could emerge from introducing the concept of

homoiconicity in the development environment.

Web applications are no longer dependent on single infrastructure units where they

are hosted or where they retrieve data from. The latest trend on the web development

block is developing applications in a cloud of resources. Systems like Memcached,

Amazon Web Services and Google App Engine provide various services and resources

in a cloud that can be used by a developer for application development. Memcached

54

[3] provides distributed memory caches and an API that allows the developer to use

this memory cache. To the developer, it appears that he is manipulating or interacting

with only one cache instead of multiple caches. Amazon Web Services [1] provides

distributed virtual machines, storage and computation with a ’pay per use’ policy.

The Google App Engine provides a platform for application development in a cloud

and allows developers to run their web applications on Google’s infrastructure.

It isn’t just the hardware and resources that are becoming distributed, the software

and applications are also becoming distributed. The two commonly used distributed

applications architecture are the two-tier and three-tier architectures. Within two-tier

architecture itself, there could be fat-client or thin-client architecture. In fat-client

architecture, most of the presentation logic, business logic and application logic resides

on the client whereas database operations would occur on a data server. Thin-client

applications have presentation logic on the client only, rest of the logic resides on the

data-server. For more complex applications, that need a lot of processing, three-tier

architecture is suitable. Having an application server, in addition to the client and

data server, makes processing faster and more secure. Business logic of an application

can reside on the application server and accordingly decisions can be made whether

interaction with the data server is important or not.

Given the distributed nature of the web these days, it is essential to be able

to interact with various applications or data stored on remote servers with ease,

irrespective of which technology the application might be based on. We discuss some

of the possibilities and existing technologies in the following subsections.

55

6.1 Remote Procedure Calls

Over the years the technologies used for web application development have evolved.

In todays development environment, a multitude of web technologies like PHP, Java,

JavaScript, XML, XHTML are used in creating an application. To exploit the dis-

tributed nature of the web and the infrastructure offered by various service providers,

it is essential for applications written in any language or developed on any platform

to be able to interact with each other.

This task has been made possible by the many Remote Procedure Call (RPC)

protocols made available in the web development environment. XML-RPC [4] built on

XML and the HTTP protocol, is one such protocol that allows developers to connect

programs running on different computers. Java programs can interact with PHP

scripts or Perl scripts or ASP.NET applications. Another protocol that is popular for

RPCs in the web is SOAP. However, XML based protocols can be quite verbose.

The REST [11] architecture/protocol based on XML and HTTP has enabled uti-

lization of the scattered resources on the web. Since the REST architecture stresses

on a stateless server, distributed caching or utilizing other distributed resources be-

comes feasible. Nowadays, the web applications tend to be immersive in nature and

need to maintain state over a period of time. The revolutionary concept AJAX,

that uses JavaScript and XMLHttpRequest object, helps realize the REST architec-

ture. AJAX enables maintaining state on the client and then communicating with

the server accordingly. The server can thus remain state-less.

Allowing RPCs to be made in the same manner as access or persistence in the

language we have developed, further enhances the metaprogramming capabitlities but

at the same time provides a uniform environment for making RPCs. Data or Code

residing in remote machines can be accessed and manipulated uniformly. By using the

56

xmlns attribute or another attribute to specify the location of the remote procedure,

the procedure call can be made in the same way as a normal procedure call would be

made. The underlying use of AJAX can be abstracted away. This ensures conformity

with the REST architecture and thus enables exploiting of the distributed resources

on the web.

6.2 Accessing Scheme libraries

The Scheme programming language has a robust portable library, SLIB. This library

provides packages that can be used with any implementation of Scheme. It has some

highly useful packages that can be used and exploited in the web development envi-

ronment. For example, the textual conversion package which has libraries for parsing

and manipulating HTML and XML, the database package, the regular expression

library and various existing libraries for sorting and searching are already proved to

be efficient and can be used to create faster applications or algorithms for the web.

One can consider accessing these Scheme libraries, which have been parsed and

converted to their XML representation, stored in some cloud remotely from an

XHTML application containing XML-like Scheme code. Calling procedures from

these libraries can be done in the same manner as accessing remotely stored data

through RPCs.

6.3 Server-side evaluation

One of the reasons why server-side web programming became so popular was because

it enabled developing dynamic web applications, which was not possible previously

with just HTML and JavaScript. Scripting languages like PHP provided an effective

57

way to manipulate and generate HTML. One of the advantages of having server-side

programming is that these programming languages are usually compiled and thus

provide more robustness. Having PHP embedded in HTML has given a lot of control

to the developer for dynamic manipulation of the code.

Like PHP, one can visualize having Scheme code, represented as XML, running

on the server. Different tags can be specified in a quoted XHTML page to describe

whether the embedded XML-like Scheme code is to be evaluated at the server or

the client. The server code would output evaluated, quoted and unquoted XHTML

that will then be evaluated at the client browser. This approach in general promotes

metaprogramming capabilities.

6.4 Summary

As can be seen from this chapter, there exist innumerable arenas for exploiting the

concept of homoiconicity in the web setting, many of which are still unexplored.

We can visualize the existence of a powerful web development system based on ho-

moiconicity which can proliferate into and enrich many more aspects of web develop-

ment.

58

Conclusion

The Web runs on a widely spread network of systems and is highly distributed in

nature. Over the years, many technologies have been innovated to exploit this dis-

tributed nature of the Web. However, the emphasis these days, appears to be shifting

towards hiding the distributed nature of the web. At the implementation level, the

distributed resources and the applications can be exploited efficiently but, a central-

ized and coherent front is presented to the user. Applications like Google Wave, a

communication tool that consolidates features from e-mail, instant messaging, blog-

ging, multimedia management, document sharing and wiki seem to be following this

philosophy. Another example is the Google Web Toolkit. GWT is a toolkit that

allows developers to develop web applications in a single language, Java. The server-

side code and the client-side code, both are written in Java and the developer need

not worry about ,or have knowledge of JavaScript, XMLHttpRequest or browser com-

patibility. Nonetheless, programming tools like the GWT, though competent, have

not been able to exploit some of the basic concepts in the world of programming and

are found lacking in their programming capabilities.

We have presented in this thesis, a uniform web development environment where

code, data, access, persistence, and transformation, all is represented in the same

manner. However, the aim is not just to provide a clean and coherent programming

language, but more importantly, to exploit the property of homoiconicty that is re-

59

flected in this environment. Such an environment induces strong metaprogramming

capabilities in the language and can further empower web programming. One can

now generate correct and well-formed web pages, create code dynamically and write

domain specific languages for particular tasks or type of applications.

A simple programming language, like the one presented in this thesis, that provides

a minimal set of constructs and concepts that form the basis of the programming

world, is more powerful, easier to master and gives more freedom to a programmer,

than all the languages that provide a vast array of functionalities and concepts.

The concept of code and data duality, which we have introduced in this thesis,

can be extended to other domains of web programming like remote procedure calls,

distributed application evaluation etc. Thus, we can envisage a platform for web

programming where all areas of web development are represented in the same manner,

making web development much easier. It would also be free from confusing and

complex concepts, and still provide a powerful programming model to work with.

60

Bibliography

[1] Amazon elastic compute cloud. http://aws.amazon.com/ec2/. (valid on June

30, 2010).

[2] Definition of homoiconic. http://c2.com/cgi/wiki?

DefinitionOfHomoiconic. (valid on June 30, 2010).

[3] Memcached documentation. http://code.google.com/p/memcached/wiki/

Start. (valid on June 30, 2010).

[4] Programming Web Services with XML-RPC. O’Reilly Media, 2001.

[5] Alan Bawden. Quasiquotation in lisp. In Partial Evaluation and Semantic-Based

Program Manipulation, pages 4–12, 1999.

[6] T. Bray, J. Paoli, E. Maler, F. Yergeau, and C. Sperberg-McQueen. Extensi-

ble markup language (xml) 1.0 (fifth edition). http://www.w3.org/TR/2008/

REC-xml-20081126. (valid on June 30, 2010).

[7] William E. Bryd. Web programming with continuations. www.double.co.nz/

pdf/continuations.pdf. (valid on June 30, 2010).

[8] James Clark. XSL transformations (XSLT) version 1.0. http://www.w3.org/

TR/xslt. (valid on June 30, 2010).

61

[9] The World Wide Web Consortium. Document Object Model (DOM). http:

//www.w3.org/DOM. (valid on June 30, 2010).

[10] Douglas Crockford. A survey of the Javascript Programming Language. http:

//javascript.crockford.com/survey.html. (valid on June 30, 2010).

[11] R. T. Fielding and R. N. Taylor. Principled design of the modern web architec-

ture. In ACM Trans. Internet Technol., pages 115–150, 2002.

[12] Jesse James Garrett. Ajax: A new approach to web applications. http://www.

adaptivepath.com/ideas/essays/archives/000385.php. (valid on June 30,

2010).

[13] Google. Google web toolkit. http://code.google.com/webtoolkit. (valid on

June 30, 2010).

[14] Adobe Systems Incorporated. ActionScript 3.0 Language Specifica-

tion. http://livedocs.adobe.com/specs/actionscript/3/wwhelp/wwhimpl/

js/html/wwhelp.htm?href=000_titlepage.html. (valid on June 30, 2010).

[15] ECMA International. ECMAScript language specification. http://www.

ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf.

(valid on June 30, 2010).

[16] Richard Kelsey, William Clinger, and Jonathan R. (editors). Revised (5) report

on the algorithmic language scheme. ACM SIGPLAN Notices, 33:26–76, 1998.

[17] Richard Kelsey and Jonathan Ress. Simple macros expander. ftp://ftp.cs.

indiana.edu/pub/scheme-repository/code/lang/simple-macros.tar.gz.

(valid on June 30, 2010).

[18] MSDN. JScript (Windows Script Technologies). http://msdn.microsoft.com/

en-us/library/hbxc2t98(v=VS.85).aspx. (valid on June 30, 2010).

62

[19] Philip Olson. Php manual. http://www.php.net/manual/en. (valid on June

30, 2010).

[20] D. Ragget, A. Hors, and I. Jacobs. HTML 4.0 specification. http://www.w3.

org/TR/REC-html40-971218/. (valid on June 30, 2010).

[21] S. M. Watt, Yuzhen Xie, and L. Padovani. A lisp subset based on MathML. In

International Conference on MathML and Math on the Web, 2002.

63

Appendix A

Language Specifications

This appendix provides an informal BNF grammar for our language. Listing A.1

displays this grammar. Some of the notations used in this grammar are described

below.

1. Non-terminals in the grammar are represented by upper case letters.

2. * after a grammatical phrase indicates zero or more occurrences of the phrase.

3. + indicates that atleast one occurrence of the phrase is required.

4. The empty tags in the grammar like <qquote />, <define /> are a shorter

representation of tags like <qquote></qquote> and <define></define>.

5. The non-terminal EMPTY means that it is an empty production. No expansion

is required.

WEBPAGE ::= HTML -ELEMENTS*

HTML_ELEMENTS ::= <ELEMENT -TAG >

64

HTML -ELEMENTS*

</ELEMENT -TAG >

| UNQUOTE -EXPRESSION

ELEMENT -TAG ::= any valid HTML tag except

for html ,head and body

UNQUOTE -EXPRESSION ::= <unquote >

[DEFINITION | EXPRESSION]

</unquote >

DEFINITION ::= VAR -DEF | PROC -DEF

VAR -DEF ::= <apply >

<define /> VARIABLE EXPRESSION

</apply >

PROC -DEF ::= <apply >

<apply > VARIABLE DEF -FORMALS </apply >

BODY

</apply >

DEF -FORMALS ::= VARIABLE* | VARIABLE* <dot /> VARIABLE

EXPRESSION ::= VARIABLE | LITERAL

| PROCEDURE -CALL

| LAMBDA -EXPRESSION

| CONDITIONAL

| ASSIGNMENT

| CONTINUATION

| DERIVED -EXPRESSION

| DOM -MANIPULATION -EXPR

VARIABLE ::= any IDENTIFIER that isn ’t

also a SYNTACTIC -KEYWORD

IDENTIFIER := <ci> INITIAL SUBSEQUENT* </ci >

| <ci> PECULIAR -IDENTIFIER </ci>

INITIAL ::= LETTER | SPECIAL

PECULIAR -IDENTIFIER ::= + | - | * | = | > | < | >= | ...

LETTER ::= a|b|c|d|...|z

SUBSEQUENT ::= INITIAL | DIGIT

DIGIT ::= 0|1|2|...|8|9

SPECIAL ::= ! | $ | % | & | * | / | : | ? | ^ | _ | ~

SYNTACTIC -KEYWORD ::= EXPRESSION -KEYWORD

| else | define

| unquote

65

EXPRESSION -KEYWORD ::= quote | lambda | if

| set | cond | and | or | let | begin

| let -s | quasiquote

LITERAL ::= QUOTATION | SELF -EVALUATING

SELF -EVALUATING ::= BOOLEAN | NUMBER | STRING

BOOLEAN ::= <true/>|<false/>

NUMBER ::= <cn> [DECIMAL | OCTAL | BINARY | HEXADECIMAL] </cn>

DECIMAL ::= [EMPTY |#d] DIGIT+ [EMPTY |. DIGIT *]

OCTAL ::= #o [0|1|2|3|4|5|6|7|8]+

BINARY ::= #b [0|1]+

HEXADECIMAL ::= #x [DIGIT|a|b|c|d|e|f]+

STRING ::= <cn >" STRING -ELEMENT "</cn>

STRING -ELEMENT ::= any character

QUOTATION ::= <apply > <quote /> DATUM </apply >

DATUM ::= SIMPLE -DATUM | LIST | HTML -ELEMENTS

SIMPLE -DATUM ::= BOOLEAN | NUMBER | STRING | SYMBOL

SYMBOL ::= IDENTIFIER

LIST ::= <apply > DATUM* </apply >

(In QUOTATION , the non -terminal HTML -ELEMENTS can ’t evaluate

to UNQUOTE -EXPRESSION)

PROCEDURE -CALL ::= <apply > OPERATOR OPERAND* </apply >

OPERATOR ::= EXPRESSION

OPERAND ::= EXPRESSION

LAMBDA -EXPRESSION ::= <apply > <lambda /> FORMALS BODY </apply >

FORMALS ::= <apply > VARIABLE* </apply > | VARIABLE

| <apply > VARIABLE+ <dot /> VARIABLE </apply >

BODY ::= DEFINITION* SEQUENCE

SEQUENCE ::= EXPRESSION+

CONDITIONAL ::= <apply >

<if /> TEST CONSEQUENT ALTERNATE

</apply >

TEST ::= EXPRESSION

CONSEQUENT ::= EXPRESSION

ALTERNATE ::= EXPRESSION | EMPTY

ASSIGNMENT ::= <apply >

<set /> VARIABLE EXPRESSION

</apply >

CONTINUATION ::= <apply >

66

<callcc /> [LAMBDA -EXPRESSION | VARIABLE]

</apply >

(in continuation , the FORMALS of LAMBDA -EXPRESSION must be

<apply > VARIABLE </apply > only and in case of VARIABLE , the

variable must evaluate to a lambda expression with 1 argument)

DERIVED -EXPRESSION ::= COND | AND | OR | LET | LET -S | BEGIN

| QUASIQUOTATION

COND ::= <apply >

<cond />

CLAUSE+ | [CLAUSE* <apply ><else/> SEQUENCE </apply >]

</apply >

CLAUSE ::= <apply >

[TEST SEQUENCE] | TEST

</apply >

LET ::= <apply >

<let />

[BINDING -SPEC BODY | VARIABLE BINDING -SPEC BODY]

</apply >

BINDING -SPEC ::= <apply > BINDING* </apply >

BINDING ::= <apply > VARIABLE EXPRESSION </apply >

LET -S ::= <apply >

<let />

BINDING -SPEC BODY

</apply >

AND ::= <apply > <and /> TEST* </apply >

OR ::= <apply > <and /> TEST* </apply >

BEGIN ::= <apply > <begin /> SEQUENCE </apply >

QUASIQUOTATION ::= <apply >

<qquote /> DATUM

</apply >

DOM -MANIPULATION -EXPR ::= NODE -VALUE | CREATE -ELEMENT

| GET -ELEMENT -BY-ID

| ADD -EVENT -LISTENER

| APPEND -CHILD | INNER -HTML

NODE -VALUE ::= <apply > <node -value /> EXPRESSION </apply >

CREATE -ELEMENT ::= <apply >

67

<create -element /> EXPRESSION

</apply >

GET -ELEMENT -BY-ID ::= <apply >

<get -element -by-id /> STRING

</apply >

ADD -EVENT -LISTENER ::= <apply >

<add -event -listener />

EXPRESSION STRING

[VARIABLE | LAMBDA EXPRESSION]

</apply >

APPEND -CHILD ::= <apply >

<append -child /> EXPRESSION EXPRESSION

</apply >

INNER -HTML ::= <apply > <inner -html /> EXPRESSION </apply >

Listing A.1: BNF Grammar for our language

This grammar covers most of the syntax of our language. However, constructs

like car, cdr, cons, vector, list, apply, assq, isnull and related syntax is

not described in the grammar. The purpose of presenting this grammar is to give a

basic idea of the syntax of the language. Other constructs and syntax can be built

on it.

Curriculum Vitae

Name Rachita Mohan

Post-secondary The University of Western Ontario
Education London, Ontario, Canada

M. Sc. September 2008 - April 2010

Galgotia’s College of Engg. and Tech. (GCET)
Greater Noida, India
B. Tech. August 2003 - May 2007

Related Work Teaching Assistant
Experience The University of Western Ontario

September 2008 - December 2009

Research Assistant
Ontario Research Centre for Computer Algebra
September 2008 - April 2010

Software Engineer
HCL Technologies Ltd., India
June 2007 - July 2008

