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Abstract

Many object-oriented programming languages provide type safety by allowing pro-

grammers to introduce distinct object types. In the case of Java this also introduces a

considerable or even prohibitive cost, especially when dealing with small objects over

primitive types. Consequently, Java library implementations typically abuse primi-

tive types and are not type safe in practice. We present a solution that allows type

safety in Java with little, if any, performance penalty, hence allowing for development

of safe and efficicient applications and libraries.

We present a solution that provides the safety of object-oriented code, but avoids

all overhead when the full generality and expressive capabilities of objects are not

required. This is accomplished by treating named objects as primitive types during

compilation. This allows for reusable and easily maintainable Java code that rivals

natively compiled languages in efficiency. The proposed technique differs from the

previous work in that distinction between objects is made by name, rather than

implementation. Software implemented using the approach results in an order of

magnitude improvement in execution speed and space use. It is likely that a native

implementation and integration of our technique will also improve compilation time

and ease of use, thus encouraging developers to use opaque object types in Java.

Keywords: Java Objects, Efficient Java, Type safety, Opaque types.
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Chapter 1

Introduction

1.1 Setting

The goal of this thesis is to introduce, define, and implement an approach for a type-

safe implementation of fast object types in Java. The new object types resemble all

aspects of regular objects in regards to safety, clarity, and type distinction. However,

their performance properties coincide more with performance of primitive Java types

in practice. We give the new type category the name, opaque types, due to the

primitive type representation hidden beneath an object-like name. The name was

also chosen in part due to the similarity to the feature being developed in the C++

language - opaque typedefs [2, 3].

Mainstream object oriented languages such as Java and C++ take advantage

of many years of research and programming practice to produce highly expressive,

type-safe code, and generate efficient low level code. All of these properties are of

great importance for a language to be successful. Despite this, there are still many

instances where shortcomings of language design and definition result in code that

is awkward and inefficient. To remain effective, the language must be adequately

usable, maintainable, and effective at solving a variety of problems from a multitude

of domains. Programming language research has been moving in the direction to

accomplish these goals. One branch of this research focuses on the area of type

systems in programming languages.

David A. Watt defines a type to be “a set of values, equipped with one or more

operations that can be applied uniformly to all these values.”[16] Typing in pro-

gramming languages improves many aspects of the language quality. The language

becomes more readable, and, some would say, more writable as variables with specific

types make a better fit into programs as a whole. Checking variable types during com-
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pilation increases the language safety and performance as resources can be allocated

more effectively knowing the types of data expected.

However, it is sometimes the case that in order to abide by strict typing rules

imposed by the language, sacrifices have to be made in performance and solution style.

In the case of Java, strict type-checking limits the application performance levels due

to excessive use of objects, requiring a large amount of memory allocation and garbage

collection. On the other hand, implementations utilizing primarily primitive types are

not expressive enough and are often error prone in practice. Such implementations

typically make little type distinction between the data they represent and hence

cause ambiguities and confusion in the code. Moreover, it is often difficult to encode

complex ideas and concepts using predominantly primitive types.

The pathway of declaring many unnecessary objects is taken primarily. Use of

full-sized objects to express ideas and data that can be represented using primitive

types is prominent due to convenience using objects offers. Objects allow safer and

more intuitive code that is more representative of the concepts being implemented.

In general, code using objects takes a conceptually higher level form and is therefore,

usually, easier to develop.

Our solution involves combining readability and safety of regular object types with

efficient use of primitive types in order to exploit the best properties both have to

offer. In our approach, we would like to capture the accessibility objects offer in Java

code and take advantage of innately faster and more efficient primitive types.

Primitive types are types whose values cannot be decomposed into anything sim-

pler in the programming language, i.e. they are primitive values [16]. Primitive values

are, by their nature, usually faster to access and manipulate and therefore result in an

overall efficiency improvement compared to composite data. Currently, there are some

proposed mechanisms that allow developers to utilize efficiency of primitive types and

also keep their code clean, and maintainable. A language well-suited for mathematical

computing, Aldor, contains mechanisms for a similar kind of representation. Objects

can have an underlying representation, indicated by the “Rep” type, that specifies

how values of the type are really represented.[17] Another major example of this is

the opaque typedefs feature being developed in C++. The characteristic feature of

opaque typedefs that drives their development in C++ is overloading. The ability to

overload functions and operators based on several newly-defined opaque types allows

code flexibility and intuitive development without forfeiting performance by creating

new object types[3]. However, opaque typedefs do not boast a very clear definition,

and the types’ substitutability is not always apparent.
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Compilers for mainstream languages have become progressively smarter. Gener-

ated code is highly optimized and compilers often attempt to identify programs’ “hot

spots” (frequently executed areas) and focus most of the optimization on those sec-

tions. Many performance benchmarks for programming languages are widely available

on the World Wide Web. The benchmarks become a valuble resource for selecting

a particular compiler (and possibly programming language) before beginning devel-

opment. Given the opportunity, this allows developers to choose the precise tools

they are going to use to solve a particular problem. One example of such a collec-

tion of benchmarks exists on The Computer Language Benchmarks Game website.

It presents a decent comparison of up-to-date versions of today’s common produc-

tion languages. The database is organized as a series of measurements of execution

time, memory use, and source code size of various algorithms implemented in different

languages and executed on different platforms[4]. This library of performance bench-

marks has helped us gauge where the current version of Java stands in comparison

to other languages, as well as, in developing performance tests for our approach.

Despite all these advances there are still situations where it is either too diffi-

cult/impossible to apply an implemented feature or the code is not fully optimized

due to the presence of high level concepts that are obscure to the compiler. This

is apparent in a diverse collection of problems ranging from computer mathematics

to video games. In computer algebra, for example, efficient computation-heavy algo-

rithms are required to provide accurate calculations and approximations for solutions

to various algebraic problems, such as, solving differential equations or modelling

complex behaviours using multivariate polynomials. A lot of effort is put into de-

veloping and optimizing the algorithms by hand due to non-trivial concepts that are

difficult to express efficiently.

1.2 Our Contribution

To deal with these issues we propose to look further into enhancing the type system

present in the Java programming language. Giving the developer more control over

which variable types he or she can use to accomplish the task at hand can impact

code efficiency. The goal then becomes to combine flexibility offered to the developer

without obfuscating the language semantics and, at the same time, introducing a

technique for generating high performance low level code. This does not have to

come at a significant cost to usability and readability of the language and if used

correctly can drastically improve performance. Thus we put forth a new kind of
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object in Java. The new object type (opaque type) follows all standard Java object

rules but is implemented as a low level primitive type when it is compiled.

The reasons behind introducing these mechanisms in Java become evident when

one examines Java’s abilities as a programming language. It is a well established,

industry-standard language with thousands of libraries available for interaction with

other software and implementation of a multitude of concepts. It is a language with

clean semantics, and flexible constructs that can be combined and molded to represent

solutions to problems from many domains. Java has also come a long way in being

a relatively fast executing language. Well written programs perform near the speed

of solutions implemented even in natively compiled languages such as C or C++[4].

Blending Java’s versatility and its potential for efficiency results in a rich language

applicable to a vast amount problems with implemented solutions that are useful in

practice.

We implement the approach by augmenting the language type system with struc-

tures that mirror primitive types and objects simultaneously, taking the clarity and

distinction typical of object types and affixing primitive type efficiency. We base

object-type distinction on name rather than implementation resulting in the devel-

oper having a choice of how he or she wants to treat data that may look identical

at the binary level. This introduces a “best of both worlds” advantage, where code

efficiency is benefited due to use of primitive types, and code correctness does not

suffer due to use of high level object “handles”.

The approach focuses mainly on creating a framework where code correctness,

reusability, and readability are not hindered by low level optimizations which are

characteristic when working with primitive types. The techniques are aimed at appli-

cations that can use low level fine tuning in order to achieve better execution speed

and lower memory use while maintaining the code’s integrity.

The remainder of this thesis is organized as follows:

Chapter 2 provides an overview and examples of previous work related to improv-

ing programming language type systems for the sake of efficiency and clarity. Brief

analysis and discussion of previously developed methods attempts to highlight fea-

tures that have had moderate and high success at accomplishing the set out goals

in other languages. Chapter 3 describes our approach to enhancing the Java type

systems with opaque types and discusses the theory behind the specific properties

chosen for the new types. The theory helps justify the particular choices that were

made along the way to finalizing opaque type implementation. Chapter 4 is dedicated

to detailing the implementation itself. It describes the technical design of opaque
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types, what tools were developed in order to integrate them into the language, and

how those tools were architectured. Chapter 5 presents a number of tests that were

carried out to test what effect opaque types have on Java application performance.

The experiments were chosen from a variety of areas and the reasoning behind the

selections is discussed in this chapter. Chapter 6 draws the final conclusions regarding

the practicality and general success of opaque types and proposes a number of topics

to spark future work in the area of opaque type implementation and further possible

improvements on the subject.
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Chapter 2

Previous Work

2.1 The concept of abstraction

Abstraction is a powerful concept in software development. Concealing the details

of a particular implementation behind an interface is a common practice and has

been employed in different languages. Various implementations give rise to benefits

in efficiency, portability and maintainability of large software projects[12]. Given the

maturity of such concepts it is useful to differentiate between some previously devel-

oped methods that are similar and the approach proposed here. The common goal in

the advancement of these concepts is to make the language in question more readable,

and easily maintainable. Some techniques described below sacrifice efficiency in order

to promote usability; the others, maintain efficiency at the cost of clarity.

It is important to illustrate how this and other concepts have been implemented in

the past in various programming languages. Since it is useful to draw on the previous

ideas, the detailed examples below help demonstrate the train of thought that was

followed when opaque types were designed. In each case, the previous work brought

something good to the table and it was a matter of reshaping the core idea in order

to augment the guiding theory behind opaque types.

The discussion and examples are organized as follows:

Section 2.2 describes a simple mechanism for creation of new distinct type versions

in C. In Section 2.3, a new, work-in-progress, mechanism for new type definition

in C++ is discussed. Section 2.4 summarizes the use of “object branding” in the

Modula-3 language. Section 2.5 presents an overview of the process of defining new

types in Standard ML to illustrate contrast between approaches taken to accomplish

this task in functional and imperative languages. Section 2.6 highlights differences and
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similarities between the presented examples and the opaque types approach proposed

for Java.

2.2 C structs

In C, there exists a simple mechanism for creation of basic structures (or records) in

the form of structs. Consider a primitive example such as two structs (named A and

B) whose internal structure is exactly the same - namely, a single field of type int.

Figure 2.1: C structs

1 struct A {
2 int a ;
3 } ;

1struct B {
2int b ;
3} ;

While this successfully distinguishes between the two types that both actually

represent a single integer, optimization on structs is difficult for more complicated

cases and does not always result in the most efficient code[10]. Moreover, as structures

grow in size and become more complex, it is no longer convenient or beneficial to use

them as new primitive types. Functions requiring access to the structure (as well as

functions that need to modify its fields) must be passed a pointer to the struct type.

Finally, while the identically constructed A and B structs are distinct in name, the

C standard provides no way for distinguishing between functions that can access the

structs’ internal fields apart from explicitly specifying function parameter types[13].

A similar approach in Java, can be taken by creating different Object types whose

underlying representation is identical. The nature of Java (being an Object-Oriented

language) allows the creation of methods specific to either type but then we run the

problem of dealing with “heavy” object types that need not be there at all after static

type-checking phase is complete[1].

As an alternative to the structs A and B, consider the use of a single variable

type that is the same size as an int. The new type would resemble the int type in

every way with the exception of being named differently. For clarity reasons, this

might require two additional operations for converting to and from the new type and

the regular int type. However, the use of a single built-in type compensates for the

additional operations by being more optimizable and easier to use. In the long run,

performance and usability trump the initial investment of extra operations.
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2.3 C++ opaque typedefs

The struct approach can also be taken in C++ for creation of new types that are

distinct in name from anything else. The low level implementation of the new types

is irrelevant and therefore one can essentially redefine a primitive type by wrapping

it in a struct construction.

The most recent work to implementing an analogous scheme and accomplishing

similar results has been progress towards the introduction and development of opaque

typedefs in C++. Despite the main motivation behind opaque typedef introduction

being function and operation overloading, it is clear that opaque typedef s can also

bring performance benefits to C++. The relation between the approach presented

here and C++ opaque typedef s can be clearly seen with the aid of the next example.

Figure 2.2 presents a possible use of opaque typedef s to define variables corresponding

to Cartesian and Polar 3D coordinates. The coordinate behaviours and operations are

different; however, they are both represented by the same underlying primitive type

- double. This kind declaration essentially allows renaming of the primitive double

type in order to abstract varying operations of the coordinates by using the new type

name while maintaining efficient internal representation of the floating point number.

Figure 2.2: C++ opaque typedef example

1 opaque typedef double X, Y, Z ; // Cartes ian 3D coord ina te t ype s
2 opaque typedef double Rho , Theta , Phi ; // Polar 3D coord ina te t ype s
3

4 class Phys icsVector
5 {
6 public :
7 Phys icsVector (X, Y, Z ) ;
8 Phys icsVector (Rho , Theta , Phi ) ;
9 . . .

10 } ; // PhysicsVector

The current progress towards opaque typedef s in C++ outlines two kinds of decla-

rations. The two kinds of typdefs are public and private. The two flavours of opaque

typedef s attempt to deal with a particularly important issue of implicit conversion

between the newly created type and the underlying primitive type. The notion of

substitutability then becomes vital to understanding which type of typedef is appro-

priate for which situation. Public and private keywords extend traditional typedef s

with forms of transparency. The theory behind this is described as follows:
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Guided by well-understood substitutability principles as embodied in to-

days C++, we believe there is value in proposing to extend classical

transparent typedefs with two forms of opacity. We have designated

these new forms, respectively, as public and private. The former would

permit substitutability in one (consistently specified) direction, the lat-

ter would permit no substitutability at all, while classical typedef s would

continue to permit mutual substitutability. [3]

Unfortunately, the two kinds of opaque typedefs proposed (public and private)

introduce some difficult to deal with complexity. The behaviour of public and private

typedef s is modelled after the way the keywords are used with inheritance properties

in C++. Extended by the previously mentioned notion of substitutability, typedef

public is, perhaps, best summarized as:

The semantics of the proposed public typedef would permit similar

substitutability in that instances of a newly declared type (the opaque-

type) may be used wherever an instance of the original type (the

underlying-type) is expected. Unlike the mutual substitutability induced

by a classical typedef, an instance of an underlying-type may not stand

in where an instance of the opaque-type is expected. Further, an in-

stance of a public typedef may never stand in for an instance of a

second opaque-type, even when both have the identical underlying-type.

[3]

Conversely, the private typedef is anticipated to fill the need for a non-substitutable

type. However, the necessity of such a type is, in the end, debatable due to lack of a

substantial application domain. [2, 3]

2.4 Modula-3 BRANDED Objects

A technique, similar to our approach, exists in the Modula-3 language, where the key-

word BRANDED is used to distinguish between two structurally identical objects.

Since the Modula-3 type system uses structural equivalence instead of name equiva-

lence, it is often the case that simple objects that are the same in composition should

be differentiated when static type-checking takes place. This contrasts with C and

C++ structs where identically structured objects are already type-distinct as long

as they are named different. The BRANDED keyword in Modula-3 is used exactly



10

for the purpose of differentiating between identically constructed objects. Explicit

naming of objects by “labeling” or “branding” guarantees determinism when objects

with identical format are type-checked. When the object is not “branded” explicitly,

the compiler makes up a name for the object but does not assure distinction between

structurally indistinguishable objects[5].

An example of this kind of construction follows. It is a simple implementation of

a hierarchy of 2-Dimensional geometrical shapes beginning with a general Shape in-

terface, subclasses of a generic 2-D shape - Rectangle, and Circle, and their respective

implementations.

Type-checking and compiling the similarly constructed objects becomes dependent

on the use of the BRANDED keyword. Modula-3’s type distinction is based on the

internal representation of the objects and therefore does not guarantee type contrast

in the absence of the BRANDED keyword. This is important as the close relation-

ship between Rectangle and Ellipse objects can result in similar and simultaneous

use of their instances. This has the ability to result in confusion when determining

substitutability properties during type resolution[11].

Figure 2.3: Modula-3 Shape Interface

1 INTERFACE Shape ;
2 TYPE
3 T <: Publ ic ;
4 Publ ic = ROOT OBJECT
5 METHODS
6 draw ( ) ;
7 moveTo(newx : INTEGER; newy : INTEGER) ;
8 rMoveTo( de l tax : INTEGER; d e l tay : INTEGER) ;
9 getX ( ) : INTEGER;

10 getY ( ) : INTEGER;
11 END;
12 END Shape .

The Shape interface introduces a generic 2-Dimensional shape that is to become

the superclass of the possible shapes. It has general methods for drawing and ma-

nipulating the shape representation. Some of the method implementations can be

specified in the Shape object (module) that follows, while others are left “abstract”

to be implemented by the subclass. This allows subclass objects to resemble the gen-

eral Shape and be classified as such, while adding their own, alternative, behaviours

into the implementation without repeating code.
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Figure 2.4: Modula-3 Shape Implementation

1 MODULE Shape ;
2 REVEAL
3 T = Publ ic BRANDED OBJECT
4 x : INTEGER;
5 y : INTEGER;
6 METHODS
7 setX (newx : INTEGER) := SetX ;
8 setY (newy : INTEGER) := SetY ;
9 OVERRIDES

10 moveTo := MoveTo ;
11 rMoveTo := RMoveTo ;
12 getX := GetX ;
13 getY := GetY ;
14 END;
15

16 (* Procedure implementat ions *)
17 . . .
18 BEGIN
19 END Shape .

The implementation of the Shape module reveals that a general 2-D shape has

just two fields of type INTEGER. These fields can correspond to location of the shape

on a Cartesian grid. While it is unimportant what the fields of the object represent

exactly, it is essential to note that these fields play an important role in how the object

behaviours are implemented. The method implementation (which mainly consists of

accessor and mutator methods for the object fields) is left out of the figure ( 2.4) as

it is unimportant to demonstrating the hierarchichal system example here.

The Rectangle interface is a 2-D shape and therefore imports it as the first state-

ment of the interface declaration. Along with 2-D Shape methods, Rectangle has the

properties of width and height, which also happen to be of type INTEGER. This

augments the 2-D shape representation and acts upon the actions possible involving

the shape.

Implementation of the Rectangle type reveals that Rectangle is a “branded” object

with INTEGER width and height fields. Along with the x and y INTEGER fields

inherited from Shape. Thus the Rectangle object is represented by four integers and

the actions corresponding to them.

The Ellipse interface also imports Shape as the first statement of its declaration.

This implies that an Ellipse should at least have INTEGER type x and y coordi-
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Figure 2.5: Modula-3 Rectangle Interface

1 INTERFACE Rectangle ;
2 IMPORT Shape ;
3 TYPE
4 T <: Publ ic ;
5 Publ ic = Shape .T OBJECT
6 METHODS
7 i n i t ( x : INTEGER; y : INTEGER; width : INTEGER; he ight : INTEGER) : T;
8 getWidth ( ) : INTEGER;
9 getHeight ( ) : INTEGER;

10 setWidth ( newwidth : INTEGER) ;
11 se tHe ight ( newheight : INTEGER) ;
12 END;
13 END Rectangle .

Figure 2.6: Modula-3 Rectangle Implementation

1 MODULE Rectangle ;
2 IMPORT IO ;
3 IMPORT Fmt ;
4 REVEAL
5 T = Publ ic BRANDED OBJECT
6 width : INTEGER;
7 he ight : INTEGER;
8 OVERRIDES
9 i n i t := I n i t ;

10 getWidth := GetWidth ;
11 getHeight := GetHeight ;
12 setWidth := SetWidth ;
13 se tHe ight := SetHeight ;
14 draw := Draw ;
15 END;
16

17 (* Procedure implementat ions *)
18 . . .
19 BEGIN
20 END Rectangle .

nates inherited from the Shape object. Along with the 2-D coordinates, the methods

indicate the presence of a major and minor axes characteristic of a typical ellipse.

Eclipse module reveals the rest of the internal representation of a 2-D elliptical

shape. Along with x and y coordinates from the Shape interface, major and minor

INTEGER fields are declared. This makes the internal representation of an Ellipse
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Figure 2.7: Modula-3 Ellipse Interface

1 INTERFACE E l l i p s e ;
2 IMPORT Shape ;
3 TYPE
4 T <: Publ ic ;
5 Publ ic = Shape .T OBJECT
6 METHODS
7 i n i t ( x : INTEGER; y : INTEGER; major : INTEGER, minor : INTEGER) : T;
8 getMajor ( ) : INTEGER;
9 getMinor ( ) : INTEGER;

10 setMajor ( newMajor : INTEGER) ;
11 setMinor ( newMinor : INTEGER) ;
12 END;
13 END Ci r c l e .

Figure 2.8: Modula-3 Ellipse Implementation

1 MODULE E l l i p s e ;
2 IMPORT IO ;
3 IMPORT Fmt ;
4 REVEAL
5 T = Publ ic BRANDED OBJECT
6 major : INTEGER;
7 minor : INTEGER;
8 OVERRIDES
9 i n i t := I n i t ;

10 getMajor := GetMajor ;
11 getMinor := GetMinor ;
12 setMajor := SetMajor ;
13 setMinor := SetMinor ;
14 draw := Draw ;
15 END;
16

17 (* Procedure implementat ions *)
18 . . .
19 BEGIN
20 END Ci r c l e .

module identical to the Rectangle representation. Four INTEGER type fields play

the role of both an Ellipse and a Rectangle type internally. This is of no surprise given

the innately close relationship and a rectangle and an ellipse have in the Cartesian

coordinate system. The biggest ellipse that may be inscribed in a given rectangle

is unique thus giving the ability to represent an ellipse in terms of a rectangle. The

opposite is also true, a rectangle may be described by a given ellipse by either placing a



14

rectangle inside with the largest possible area, or inscribing the eclipse in the smallest

possible rectangle. Both representations are again unique.

The use of “branding” allows the compiler to attach a permanent name to both

structures, thereby eliminating the ambiguity that may arise from usage of the ob-

jects. Figure 2.9 illustrates using 2-D shapes in a simple example, it attempts to

demonstrate the necessity of the BRANDED keyword in distinguishing between the

similar structures.

Figure 2.9: Modula-3 Shape Use Example

1 MODULE Main EXPORTS Main ;
2 IMPORT Shape ;
3 IMPORT Rectangle ;
4 IMPORT E l l i p s e ;
5

6 VAR
7 t e s t : ARRAY[ 1 . . 2 ] OF Shape .T;
8 r e c t : Rectangle .T;
9

10 BEGIN
11 (* s e t up some shape in s t ance s *)
12 t e s t [ 1 ] := NEW( Rectangle .T) . i n i t (10 , 20 , 5 , 6 ) ;
13 t e s t [ 2 ] := NEW( E l l i p s e .T) . i n i t (15 , 25 , 8 , 4 ) ;
14

15 (* i t e r a t e through some shapes and handle po l ymorph i ca l l y *)
16 FOR i := 1 TO 2 DO
17 t e s t [ i ] . draw ( ) ;
18 t e s t [ i ] . rMoveTo (100 , 100 ) ;
19 t e s t [ i ] . draw ( ) ;
20 END;
21

22 (* acces s a r e c t an g l e s p e c i f i c f unc t i on *)
23 r e c t := NEW( Rectangle .T) . i n i t (0 , 0 , 15 , 1 5 ) ;
24 r e c t . setWidth ( 3 0 ) ;
25 r e c t . draw ( ) ;
26 END Main .

The implementation of the draw() method is intentionally left out of the Rectangle

and Ellipse examples as it is likely different. The use of the same method signature

implies that successful type checking needs to take place prior to code generation at

lines 17 and 19 of Figure 2.9 in order to determine the correct version of draw() to

be used with the appropriate shape type.

Structural equivalence between the Rectangle and Ellipse representations requires

distinction between the two objects to be made by name. This is where Modula-3’s
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use of the BRANDED keyword is most similar to the approach described in this

work. Java’s type-checking is name-based. Thus, in theory, it allows for renaming

of structures as basic as primitive types for the purposes of readability, clarity, and

usability. It is precisely this renaming that we intend to describe and implement in

this work without loss of Java’s regular language features.

2.5 Standard ML

Other languages also include constructs that introduce abstraction to types by hid-

ing implementation details. Abstract data types in Standard ML, for example, also

accomplish the same tasks as Java-like languages, although the language does not

support sub-typing or implicit casting between these types. In general, the produced

code is more modularized with high reuse potential, software complexity is reduced,

and independence of the implementation is assured[6].

For example, new data-type declarations in Standard ML may look something as

follows. The suit declaration represents a playing card suit and has a set of functions

that rank the suits. Meanwhile the tree declaration can play the role of an abstract

tree holding any kind of data at each node. The general tree operations such as Empty

will work regardless of the data types held at the nodes.

Examples presented in this chapter serve as an introduction of previously imple-

mented mechanisms and techniques for accomplishing a task that is similar to our

goal. The goal of creating a language with enough expressive power to tackle many

different problems and remain efficient at solving those problems. These examples

also demonstrate concepts and ideas which we were able to compare and contrast in

order to provide correct theory behind our approach.

The solution outlined and implemented by us is a type of abstraction that focuses

on distinction of similar or identical underlying primitive types. That is to say, while

many opaque types may have the same underlying primitive type they represent vastly

different objects (not to be confused with actual Java object types) and therefore

must type-check differently. For example, one may think of a multitude of objects

that may be represented by the primitive built-in int type but in order to assure

successful static type-checking, those objects should appear different to the compiler

prior to compilation. Our approach accomplishes exactly that.

The approach is implemented by way of preprocessing the source code in order to

transform regular object types into opaque types prior to compilation. A preprocessor
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Figure 2.10: Standard ML - new type

1 datatype s u i t = Spades | Hearts | Diamonds | Clubs
2

3 fun outranks ( Spades , Spades ) = f a l s e
4 | outranks ( Spades , ) = true
5 | outranks ( Hearts , Spades ) = f a l s e
6 | outranks ( Hearts , Hearts ) = f a l s e
7 | outranks ( Hearts , ) = true
8 | outranks (Diamonds , Clubs ) = true
9 | outranks (Diamonds , ) = f a l s e

10 | outranks ( Clubs , ) = f a l s e
11

12 . . .
13

14 datatype ’ a t r e e = Empty | Node of ’ a * ’ a f o r e s t
15 and ’ a f o r e s t = Ni l | Cons of ’ a t r e e * ’ a f o r e s t
16

17 fun s i z e t r e e Empty = 0
18 | s i z e t r e e (Node ( , f ) ) = 1 + s i z e f o r e s t f
19 and s i z e f o r e s t Ni l = 0
20 | s i z e f o r e s t (Cons ( t , f ’ ) ) = s i z e t r e e t + s i z e f o r e s t f ’

for Java is mostly unnecessary and the language, by design, has strict rules that make

using existing preprocessors (such as CPP - the C preprocessor) difficult. Thus we are

forced to implement the preprocessing step as part of our multi-step building process

rather than integrating it into the compilation step.
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Chapter 3

Our Approach

3.1 Approach methodologies

We introduce the notion of opaque types in the Java programming language. These

opaque types allow development of Java code that is reusable, elegant, and efficient.

These types are meant to be used as regular Object types that can be represented

by primitive built-in Java types, while still requiring to behave and act like regu-

lar Object types in the way they interact with the Java class hierarchy and static

type-checking. An example of this kind of application may be an object that has a

small finite number of different states that can intuitively be represented by a set of

bit patterns. Although this can be implemented similarly to something written in

assembly language, by using int types, resulting in code that is quite efficient, the

code’s extensibility would suffer. Moreover, like assembly, this type of code is difficult

to maintain, and debug[7, 8]. This may lead to errors that could have been easily

avoided if object types were used.

Opaque Java types are implemented by recognizing when a regular object may be

directly implemented as a primitive type. This frequently occurs in practice when

the data represented does not contain many pointers into memory. Special textual

replacements take place prior to compilation in order to turn most of the object’s

representation to its now underlying primitive type. The only exception is the object’s

actual name. The object’s name serves as a trace for the Java compiler to perform

static type-checking and for our preprocessor to handle inheritance properly. The end

result is a “thin” object that is type checked properly by the Java compiler and for

which, the generated code is very efficient as it uses the underlying primitive type.

Additionally, the approach encompasses a core notion of opacity. High level Java

objects do not necessarily have to be represented or compiled as such. Objects simply
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serve as identification handles for static type-checking prior to compilation. The

underlying type of these objects may be anything suitable for internally representing

the construction. In this fashion, an alternative String object may be represented by

a character array allowing for operations very similar to those on strings implemented

in C or C++. In turn, a more complex object (e.g. an object representing a DNA

sequence) may be represented by such an alternative String thus creating an artificial

class hierarchy that remains consistant and type-safe. In this work, however, we are

mostly concerned with objects that may be represented by primitive types in order

to boost performance.

Along with the optimized version of the opaque type the regular unchanged version

of the class is kept for reference and debugging purposes. Leaving the user code

unchanged after compilation allows for more straight forward top-level design where

good Object Oriented Design practices may be followed. The user may also choose to

compile the opaque-typed code and run it as is, without conversion, in order to ensure

correctness. Keeping both versions of the class also demonstrates the type safety of

opaque Java types as either version of the project will produce identical results when

executed.

In order to successfully implement opaque types in Java, we introduce several type

rules that have to be followed in order to utilize safety and efficiency of such objects.

These rules are followed by the preprocessor to transform the user’s regular object

into one for which the generated code will use the underlying primitive type.

3.2 Type rules

We use a Java code annotation (called Opaque) to identify classes as opaque types.

Java annotations allow embedding of metadata directly into Java source code. “An-

notations do not directly affect program semantics, but they do affect the way pro-

grams are treated by tools and libraries, which can in turn affect the semantics of

the running program.”[15] The annotation has a single String type field that denotes

the primitive representation type of the opaque object. For example, the annotation

@Opaque(‘‘int’’) indicates that the object is opaque and that its primitive repre-

sentation is of type int. Currently, the annotation field serves as a way to quickly

identify the underlying type and speed up opaque type file analysis but could be left

out in later versions of the solution. The single annotation dictates all the required

information to the preprocessor. The next restrictions/rules must be followed in order

to guarantee successful conversion consistent with the Java language standard:
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Figure 3.1: Java opaque type rules

1. object must have a single protected field of the underlying type unless
it is a subclass of an opaque type

2. object constructor(s) must be declared private

3. all methods accessing or modifying the underlying type field repre-
sentation must be declared static (or final static if no subclasses
override the methods)

Rule 1 enforces opaque type representation and assures that it matches with the

type suggested by the annotation. The primitively typed field (whose name is stan-

dardized to rep) takes place of the opaque object whenever it appears in user code.

It is important that its uses are properly implemented and there are no compilation

issues post-conversion.

If the new opaque object extends an opaque type (a property detected by the

preprocessing utility), the object must not include a rep field in its declaration. The

rep field is inherited from the superclass and bares the same primitive type. This

ensures consistency in method inheritance and conversion.

Rule 2 follows the Java convention that only object types require a constructor.

Since the new opaque object is to be converted to its underlying primitive type rep-

resentation wherever it used, its constructor must remain private. Creating new

instances of the opaque object is still possible through the use of a static method

“New”. This method should be implemented by the user as a means of converting

from the underlying primitive type to the object type primarily for testing purposes

and initial implementation of code that uses opaque types. The typical implementa-

tion is very simple:

Rule 3 places a restriction on the other methods possibly acting on the object

representation. Default visibility static methods allow inheritance and class access

to regularly used operations within the new object. At first glance this may seem

limiting for using the object; however, since object instances are all converted to

the underlying primitive type, only class methods remain as valid operations that

can act upon the object rep field. This method declaration makes it easier for the

preprocessor to handle extension quickly and efficiently and makes sure the opaque

object is not inflated by non-static behaviors.

Following the opaque object restriction rules assures preprocessor compatibility
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Figure 3.2: Opaque object, typical “New” implementation

1 @Opaque ( ‘ ‘ short ’ ’ )
2 public class MyOpaqueObject {
3 protected short rep ;
4 private MyOpaqueObject ( short r ){
5 rep = r ;
6 }
7

8 . . .
9

10 public stat ic MyOpaqueObject New( short r ){
11 return new MyOpaqueObject ( r ) ;
12 }
13 }

with the developed code. The restrictions also implicitly impose some type rules on

opaque types. The use of a protected representation field and the field’s absense

in opaque object subclasses imply the presence of a concrete relationship between

opaque subclasses and superclasses[14]. Namely, because they are represented by

a primitive type, the inheritance relationship requires no special consideration as

superclass behaviours are immediately applicable to the subclasses. Additionally,

type distinction remains in tact, as type-checking is done prior to code generation.

This solidifies the Object Oriented “is a” property when dealing with class hierarchy.

Consider the example in Figure 3.3.

The BaseClass follows regular rules proposed in Section 3.2. The @Opaque(“int”)

annotation suggests the object is represented internally by the int type. The object’s

single field is protected int rep. The constructor is left private as per rule 2.

There is a single method called operator shown in the implementation while the rest

is omitted as it is irrelevant to demonstrating the inheritance properties in opaque

objects.

Both ChildClassOne and ChildClassTwo are subclasses of the base class and there-

fore share its internal representation type - int. Neither of these classes possess a rep

field as it is inherited from BaseClass. Along with the protected field, both classes

have access to the operator method. The class hierarchy is unchanged from the regular

Java standard.

ChildClassThree extends ChildClassTwo and is therefore also represented by the

integer type. Its rep field is too inherited from the initial BaseClass. The operator
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Figure 3.3: Opaque object extension properties

1 @Opaque ( ‘ ‘ int ’ ’ )
2 public class BaseClass {
3 protected int rep ;
4 private BaseClass ( short r ){
5 rep = ( int ) r ;
6 }
7

8 public stat ic void operator ( BaseClass bc , short mod i f i e r ){
9 . . .

10 }
11

12 . . .
13 }

1 @Opaque ( ‘ ‘ int ’ ’ )
2 public class ChildClassOne
3 extends BaseClass {
4

5 private ChildClassOne ( short r ){
6 rep = ( int ) r ;
7 }
8

9 . . .
10 }

@Opaque ( ‘ ‘ int ’ ’ )
public class ChildClassTwo

extends BaseClass {

private ChildClassTwo ( long r ){
rep = ( int ) r ;

}

. . .
}

1 @Opaque ( ‘ ‘ int ’ ’ )
2 public class ChildClassThree extends ChildClassTwo {
3

4 private ChildClassThree ( int r ){
5 rep = r ;
6 }
7

8 public stat ic Chi ldClassThree operator
9 ( ChildClassTwo modi f i e r , short cc ){

10 . . .
11 }
12

13 . . .
14 }

method is overridden in ChildClassThree with new parameters and a new implemen-

tation. Polymorphism is a preserved paradigm in our approach as the overridden

methods are static and are therefore always preceeded by the correct class name

when they are invoked in user code.

Next, it is useful to see how these sample classes would look after being con-
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verted to the representation type. The changes are minor but are essential to the

approach. Figure 3.4 illustrates the mock-up objects of Figure 3.3 after invocation of

the conversion utility.

The code is analyzed and the conversion takes place based on the opaque type’s

representation (as per the @Opaque annotation). The field type is checked against

the annotation and if there is no discrepancy, all static methods are converted to

use the underlying primitive type. Parameters of these methods are also converted.

Change in parameter and return types of the methods introduces new method signa-

tures. Unfortunately this implies that if some of the unconverted objects were already

compiled to .class files previously, a recompilation is required. This, however, is al-

most always a small price to pay for the benefits that the new, primitively typed,

methods will bring.

It is essential to note that the class hierarchy is preserved after the conversion pro-

cess. This is an important property that is unique to opaque types in Java and what

distinguishes our approach from other implementations in various languages. Class

name invariance before and after code conversion guarantees that a single recompila-

tion will result in correct code granted opaque type rules are followed. Unambiguous

and correct code, post converter invocation is a result of carefully selected rules for

opaque type implementation.

3.3 Annotation Processing Example

To demonstrate exactly what happens to all aspects of a regular Java class when it

is annotated with the @Opaque annotation and put through the conversion utility, a

more typical example from one of the early performance tests is illustrated in Fig-

ures 3.5 and 3.6. TopLevel classes are also shown to reveal the single code annotation

that exists in classes declaring opaque types ; and show what conversions take place

therein. The examples also serve as a prelude to the last section of this chapter in

helping to identify which features are vital to opaque type implementation in Java.

Figure 3.5 contains an opaque type object called CkPiece. CkPiece is to be rep-

resented internally as an integer type and therefore has a rep field typed protected

int. The rest of the object is presented in the usual way with a static New method

as well as three other static methods. All three of the other methods immediately

interact with the CkPiece type or its representative type in some way.

Method insc returns a CkPiece and takes an argument of the underlying primitive
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Figure 3.4: Opaque objects converted

1 public class BaseClass {
2 protected int rep ;
3 private BaseClass ( short r ){
4 rep = ( int ) r ;
5 }
6

7 public stat ic void operator ( int bc , short mod i f i e r ){
8 . . .
9 }

10

11 . . .
12 }

1 public class ChildClassOne
2 extends BaseClass {
3

4 private ChildClassOne ( short r ){
5 rep = ( int ) r ;
6 }
7

8 . . .
9 }

public class ChildClassTwo
extends BaseClass {

private ChildClassTwo ( long r ){
rep = ( long ) r ;

}

. . .
}

1 public class ChildClassThree extends ChildClassTwo {
2

3 private ChildClassThree ( int r ){
4 rep = r ;
5 }
6

7 public stat ic int operator ( int modi f i e r , short cc ){
8 . . .
9 }

10

11 . . .
12 }

type int. While both flip and online take a CkPiece type argument and interact with

its rep field directly.

The precise meaning and purpose of this implementation is unimportant and is

presented merely to emphasize how static behaviours (methods) are maintained

through opaque type conversion.

Figure 3.6 shows the same CkPiece object converted to serve as just a label for

the int type. The method signatures and implementations are preserved with the ex-
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Figure 3.5: Unmodified annotated object class

1 @Opaque ( ‘ ‘ int ’ ’ )
2 public c l a s s CkPiece {
3 protected int r ep ;
4

5 private CkPiece ( int p ){
6 r ep = p ;
7 }
8

9 public s t a t i c CkPiece i n s c ( int a ){
10 int t o t = −1;
11 int msk = 1 ;
12

13 i f ( a < 0 ) a = −a ;
14 i f ( a < 32 ) {
15 for ( int i = 0 ; i < a ; i ++){
16 t o t = t o t ˆ msk ;
17 msk = msk << a ;
18 }
19 }
20 return new CkPiece ( t o t ) ;
21 }
22

23 public s t a t i c int f l i p ( CkPiece p ){
24 return ( p . r ep ˆ −1) ;
25 }
26

27 public s t a t i c boolean o n l i n e ( CkPiece p ){
28 return ( p . r ep != 0 ) ;
29 }
30

31 public s t a t i c CkPiece New( int p ){
32 return new CkPiece ( p ) ;
33 }
34 }

ception of class name use. In their place now are variables of the underlying primitive

type - int. User code declaring objects of type CkPiece also requires small modifica-

tions to adhere to the new method signatures and variable types. Basic main methods

are presented next to show exactly the small changes made by the conversion utility.

The first noteworthy item to mention is the annotation on the 1st line of Figure 3.7.

@Opaque(“user”) indicates that the user intends to declare or make use of opaque

type(s) inside the class. This signals the conversion utility to scan the class for

such declarations and uses, and change them to the underlying primitive type that
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Figure 3.6: Processed object class

1 public c l a s s CkPiece {
2 protected int r ep ;
3

4 private CkPiece ( int p ){
5 r ep = p ;
6 }
7

8 public s t a t i c int i n s c ( int a ){
9 int t o t = −1;

10 int msk = 1 ;
11

12 i f ( a < 0 ) a = −a ;
13 i f ( a < 32 ) {
14 for ( int i = 0 ; i < a ; i ++){
15 t o t = t o t ˆ msk ;
16 msk = msk << a ;
17 }
18 }
19 return t o t ;
20 }
21

22 public s t a t i c int f l i p ( int p ){
23 return ( p ˆ −1) ;
24 }
25

26 public s t a t i c boolean o n l i n e ( int p ){
27 return ( p != 0 ) ;
28 }
29

30 public s t a t i c int New( int p ){
31 return p ;
32 }
33 }

corresponds to the opaque type. Line 8 is the only line of code that declares an opaque

object, namely CkPiece. Line 11 initializes every element of the CkPiece array; and

line 12 assigns it a new value based on the existing value stored in each variable.

The for loop on lines 15 and 16 prints out some of the CkPiece array values. It also

applies the flip function to each value prior to printing. This is meant to illustrate the

use of opaque type functions in compound statements without assignment to assure

correct type is resolved successfully before and after conversion.

Figure 3.8 contains the converted opaque user class. The annotation is removed

and the data type of the pieces array is changed to the corresponding underlying
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Figure 3.7: Regular main class

1 @Opaque ( ‘ ‘ u s e r ’ ’ )
2 public c l a s s TopLeve l {
3 public s t a t i c void main ( S t r i n g [ ] a r g s ){
4 f i n a l int DATA SIZE = 10 0 ;
5 f i n a l int MAX INT = 1 << 3 1 ;
6 f i n a l int MOD = 1 6 ;
7 f i n a l int INCR = DATA SIZE / MOD;
8 CkPiece [ ] p i e c e s = new CkPiece [ DATA SIZE ] ;
9

10 for ( int i = 0 ; i < DATA SIZE ; i ++){
11 p i e c e s [ i ] = CkPiece . New( Math . pow ( 2 , i ) % MAX INT ) ;
12 p i e c e s [ i ] = CkPiece . i n s c ( p i e c e s [ i ] % MOD) ;
13 }
14

15 for ( int i = INCR ; i < DATA SIZE ; i += INCR)
16 System . out . p r i n t l n ( CkPiece . f l i p ( p i e c e s [ i ] ) ) ;
17 }
18 }

Figure 3.8: Converted main class

1 public c l a s s TopLeve l {
2 public s t a t i c void main ( S t r i n g [ ] a r g s ){
3 f i n a l int DATA SIZE = 10 0 ;
4 f i n a l int MAX INT = 1 << 3 1 ;
5 f i n a l int MOD = 1 6 ;
6 f i n a l int INCR = DATA SIZE / MOD;
7 int [ ] p i e c e s = new int [ DATA SIZE ] ;
8

9 for ( int i = 0 ; i < DATA SIZE ; i ++){
10 p i e c e s [ i ] = CkPiece . New( Math . pow ( 2 , i ) % MAX INT ) ;
11 p i e c e s [ i ] = CkPiece . i n s c ( p i e c e s % MOD) ;
12 }
13

14 for ( int i = INCR ; i < DATA SIZE ; i += INCR)
15 System . out . p r i n t l n ( CkPiece . f l i p ( p i e c e s [ i ] ) ) ;
16 }
17 }

primitive type of CkPiece, namely int. The conversion of the user classes is done

following analysis of opaque classes in order to build a list of opaque types and their

corresponding underyling types. This assures correctness of the resulting user classes

where opaque types are used.
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Notice that both New and insc methods of the CkPiece class that previously had

the CkPiece return type (see Figure 3.5 have both been converted to return a value of

type int. Therefore lines 10 and 11 of code in Figure 3.8 do not cause a type mismatch

between the types of the values returned and the data type of the pieces array.

3.4 Other Considerations

Prior to finalizing the type rules (see Figure 3.1) required by opaque types and devising

a scheme for implementing a conversion utility, some considerations had to be made

regarding features and behaviours the new special types would have. The precise

structure of the opaque types was not arrived at immediately. Several features were

considered, implemented, and tested in order to judge their feasibility and necessity.

3.4.1 Opaque class identification

@Opaque class annotation serves as the first identifier of an opaque type. The type

following this code annotation represents the underlying primitive type to be used in

place of the opaque type. In the case where the String “user” is used, the class is

recognized as containing code that uses opaque type(s).

Initially, opaque types were identified by the use of a new keyword, opaque, in the

class declaration. This approach was practical in easily distinguishing regular classes

from declarations which involved opaque objects. However, introduction of a new

keyword meant that without a deep implementation declared opaque classes did not

adhere to Java language standards immediately. In other words, use of the opaque

keyword was not valid Java prior to invoking the code conversion utility. Using the

opaque keyword also meant that the code analyzer had to spend more time looking

through the opaque class in order to determine its underlying primitive type as it was

not clearly stated until the rep field was encountered.

Figure 3.9: Using opaque keyword

1 public opaque c l a s s Samp l eC l a s s {
2 protected
3 . . .
4 }
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Figure 3.9 shows an example of a class declaration using the opaque keyword. Due

to opaque being an unrecognized keyword in the Java language, the object could not

be compiled and run prior to conversion and removal of the keyword. This was a poor

choice since the unconverted code serves as a snapshop of the development process

and aids in debugging and maintenance. The unconverted code is also essential in

preserving the language readability as, ideally, the programmer should only read and

make changes to the code that has not yet undergone transformation.

3.4.2 Required methods

The current version of opaque types requires just a single method to be implemented

- static TypeName New, where “TypeName” is the name of the opaque type being

defined. Initial work lead to a standard of opaque types that had two mandatory

methods. The methods were called toTypeName and fromTypeName and served the

purpose of converting the underlying type to the object type and retrieving a value

of the underlying primitive type from a given opaque object type respectively.

The inclusion of two methods with varying names in the opaque type requirements

turned out to be unnecessary for two reasons. First, the toTypeName method basically

accomplishes the same task as the already reserved Java keyword new, which initializes

an object. Initializing an object of an opaque type requires a call to the New method

to take a value of the underlying primitive type as an argument and call the private

constructor of the object type. Therefore, the name New was standardized for the

purpose of converting from underlying type to object type. Secondly, implementation

of the fromTypeName method turned out to serve no purpose as it never comes up in

applications of opaque types.

The goal of implementing opaque types in Java is to abstract the use of under-

lying primitive types by object names. The use of fromTypeName implies explicit

“unwrapping” of the object type to achieve access to its representative type. This is

unnecessary, as every use of the object type is already substituted for the correspond-

ing primitively typed field by the conversion utility.

Examples of classes with the deprecated methods are shown in Figures 3.10

and 3.11
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Figure 3.10: Using deprecated methods

1 @Opaque ( ‘ ‘ long ’ ’ )
2 public c l a s s Samp l eC l a s s {
3 protected long r ep ;
4 private Samp l eC l a s s ( long a rg ){
5 r ep = arg ;
6 }
7

8 public s t a t i c Samp l eC l a s s t oS amp l eC l a s s ( long a rg ){
9 return new Samp l eC l a s s ( a r g ) ;

10 }
11

12 public s t a t i c long f r omSamp l eC l a s s ( Samp l eC l a s s a r g ){
13 return a rg . r ep ;
14 }
15 . . .
16 }

Figure 3.11: Using deprecated methods

1 @Opaque ( ‘ ‘ long ’ ’ )
2 public c l a s s Samp l eC l a s s {
3 private long sample ;
4 private Samp l eC l a s s ( long a rg ){
5 sample = arg ;
6 }
7

8 public s t a t i c Samp l eC l a s s New( long a rg ){
9 return new Samp l eC l a s s ( a r g ) ;

10 }
11 . . .
12 }

3.4.3 Representation field modifiers and names

Settling on the underlying representation of the opaque types was a process that

had to take into consideration the properties of opaque objects that needed to be

preserved and features that made these objects appealing to use. The standard of

using protected type rep field in every opaque type was preceeded by use of public,

private, and static fields, with field names that reflected opaque object name more.
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Figure 3.11 illustrates one of the approaches previously taken to declaring the

underlying representation field. private long sample is the primitive type repre-

sentation field of the SampleClass and uses a different visibility modifier (private)

and a different variable name (sample) for its declaration.

The first and main issue with the shown declaration is the use of the private

visibility modifier. This implies that the underlying type field is only visible from

within the class. This posed some issues with inheritance properties of opaque types.

Each subclass of the opaque type would have to provide its own representative field

(contrary to the current implementation of inheriting the protected field), which

gave more flexibility to opaque types. With every class providing its own represen-

tative underlying primitive type field regardless of the underlying type of its parent,

relationships between opaque types connected by class hierarchy were not as precise.

For example, an opaque class whose underlying representation type was int could be

extended by another opaque class whose underlying representation type was free to

be a primitive type that is structurally different from int, e.g. long. This introduced

unneeded confusion and broke the essential “is a” relationship of Object Oriented

Programming.

The second problem was having a field with a name more resembling that of the

opaque class name. Although not a major issue, a non-standardized name for the

representation field of the opaque type meant more variance in class implementa-

tion. Fixing the name at rep means code that is more clear and where the use and

modification of of the representation field is obvious.

3.4.4 Handling inheritance

Various schemes were discussed and developed for handling opaque type inheritance

prior to settling with the current approach. Some of these were more straight forward

than others. For example, keeping all field and method visibility public meant that

opaque objects would be completely transparent to subclasses and the rest of the

world. However, this posed a problem with a core notion that needed to be maintained

in opaque type implementation. The notion that sibling classes, although represented

by the same underlying primitive type, would be distinct in their operations before

and after conversion. Figures 3.12 and 3.13 illustrate why public level of access

creates a problem in this area.

Both ChildOne and ChildTwo are subclasses of the SampleClass and share its

underlying primitive type representation field rep. They also inherit the dble method
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Figure 3.12: Inheritance problems

1 @Opaque ( ‘ ‘ int ’ ’ )
2 public c l a s s Samp l eC l a s s {
3 public int r ep ;
4 private Ba s eC l a s s ( int a rg ){
5 r ep = arg ;
6 }
7

8 public s t a t i c Samp l eC l a s s db l e ( int s c ){
9 return Samp l eC l a s s . New( s c * 2 ) ;

10 }
11

12 . . .
13 }

1 @Opaque ( ‘ ‘ int ’ ’ )
2 public c l a s s Chi ldOne extends Samp l eC l a s s {
3 private Chi ldOne ( int a rg ){
4 r ep = r ;
5 }
6

7 . . .
8 }

1 @Opaque ( ‘ ‘ int ’ ’ ) ;
2 public c l a s s ChildTwo extends Ba s eC l a s s {
3 private ChildTwo ( int a rg ){
4 r ep = r ;
5 }
6

7 . . .
8 }

implemented in the SampleClass object. The problem of keeping the rep field public

arises in the following main class:

Although the variables declared on lines 6 and 7 of Figure 3.13 are technically of

different types, the ability to publically access the representation field of each allows

the statement on line 8 to be legal. Thus both variables co of type ChildOne and

ct of type ChildTwo have the same underlying representation value. This introduces

confusion after conversion takes place as the converter eliminates the variable object

types. The resulting “user” code is shown:

In Figure 3.14, the value of co is being assigned to a previously type-distinct

variable ct without any sort of casting or type-checking. The example demonstrates
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Figure 3.13: public rep field declarations

1 @Opaque ( ‘ ‘ u s e r ’ ’ )
2 public c lass Main {
3 public s tat i c void main ( S t r i n g [ ] a r g s ){
4 SampleClass s c1 = SampleClass .New ( 2 ) ;
5 SampleClass s c2 = SampleClass . db l e ( s c1 . rep ) ;
6 ChildOne co = ChildOne .New( sc2 . rep ) ;
7 ChildTwo c t = ChildTwo .New ( 0 ) ;
8 c t . rep = co . rep ;
9 }

10 }

Figure 3.14: public rep field declarations converted

1 @Opaque ( ‘ ‘ u s e r ’ ’ )
2 public c lass Main {
3 public s tat i c void main ( S t r i n g [ ] a r g s ){
4 int s c1 = SampleClass .New ( 2 ) ;
5 int s c2 = SampleClass . db l e ( s c1 . rep ) ;
6 int co = ChildOne .New( sc2 . rep ) ;
7 int c t = ChildTwo .New ( 0 ) ;
8 c t = co ;
9 }

10 }

the created ambiguity in distinguishing sibling types (both are immediate subclasses

of SampleClass) in the case where the underlying representation field is declared

public and is therefore visible between the siblings. This nullifies our initial goal of

making distinct opaque objects that could be represented by identical primitive types

and was therefore reworked.

Method inheritance was one of the later issues to be worked out in imeplement-

ing opaque types in Java. In general, public methods are visible to the world and

therefore can be accessed by subclasses directly. However, one of the initial ideas was

to implement a separate mechanism for opaque type object hierarchy, which would

simulate regular inheritance with some restrictions. In part, method inheritance and

visibility by subclasses would be assured by copying the inherited methods verbatim

into the subclass implementation in order preserve visibility. Partial polymorphism

support would be accomplished by simply implementing a similarly named method

with different parameter types.
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Figure 3.15: Method propagation through private extension

1 @Opaque ( ‘ ‘ int ’ ’ )
2 public c lass SampleClass {
3 protected int rep ;
4 private BaseClas s ( int arg ){
5 rep = arg ;
6 }
7 public s tat i c int db le ( int s c ){
8 return s c * 2 ;
9 }

10 . . .
11 }

1 @Opaque ( ‘ ‘ int ’ ’ )
2 public c lass ChildOne p r i v a t e l y extends SampleClass {
3 private ChildOne ( int arg ){
4 rep = r ;
5 }
6 public s tat i c int db le ( int s c ){
7 return s c . rep * 2 ;
8 }
9 public s tat i c int db le ( int sc , int v ){

10 return s c * v ;
11 }
12 . . .
13 }

Figure 3.15 illustrates the deprecated approach. The problems that arose when

applying this technique for opaque type extension included the previously mentioned

introduction of a new keyword (see Section 3.3.1), namely privately (to be used

along with the extends keyword to identify “special” private extension). As well

as, code size bloating as the class hierarchy grew. As all inherited methods were

copied verbatim into their subclass implementation, deeply located opaque classes

became unnecessarily big without adding much, if any, behaviour themselves. The

redundancy of copying code with every extension was simply inefficient.

This chapter summarizes the theories behind our approach and reasons for the

particular steps taken while designing opaque types in Java. The code samples high-

light the major features of opaque types that were chosen for the reasons of clarity

and efficiency. Justification for selection of features is also presented in the form of

explanations following all the accepted features and rejection explanations following

the previously considered constructs.
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Chapter 4

Implementation

4.1 Implementation techniques

As a means of quickly and easily testing our type rules and the newly introduced

opaque object types we have tackled the implementation step using a code preproces-

sor approach. The first preprocessor was written as a Unix shell script using the Unix

stream editor utility: sed. Due to sed’s similarity to perl, an easy conversion was

made into a perl script. The script was a compact way to apply a number of basic

Java type substitutions and test the preliminaries of the approach without spending

a long time on a complex conversion utility.

The shell script had to be invoked by hand via the command line and applied

some essential transformations to the supplied opaque class. The script was able to

determine the underlying type of the declared object and identify whether the object

was a subclass of another named type. Based on this information textual substitutions

were made to replace object name by the underlying type in all applicable constructors

and methods. The file was then rewritten verbatim with the exception of the type

changes.

The part of the script that did most of the transformation was only about 10 lines

long and is shown in Figure 4.1.

Unfortunately, both the shell script and perl script implementations were insuf-

ficient for the full conversion, difficult to maintain, and hard to apply to programs

with multiple classes. They were used for a short period of time to automate some of

the code conversion and do quick prototyping during the infancy of the approach.
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Figure 4.1: Conversion shell script

1 #!/ b i n / sh
2 TYPE=‘ sed −n −r ’ s /@Opaque \ (\ ” [ a−z ] * \ ” \ ) ; / \ 1 / p ’ <$1 ‘
3 PARENT=‘ sed −n −r ’ s / ( [A−Z ] [ a−zA−Z0−9 ]* ) e x t e nd s
4 ( [ A−Z ] [ a−zA−Z0−9 ]* ) \{/\2/ p ’ < $1 ‘
5 sed −r −e ’
6 s /@Opaque \ (\ ” [ a−z ] * \ ” \ ) / /
7 s / e x t e nd s ( [ A−Z ] [ a−zA−Z0−9 ]* ) / e x t e nd s \1/
8 s / p r o t e c t e d [ a−z ] * [ a−zA−Z ] [ a−zA−Z0 − 9 ] * ; / \ / \ / \1/
9 / p r i v a t e [A−Z ] [ a−zA−Z0 − 9 ] * \ ( . * \ ) . * \ { / , / \ } / d

10 s / s t a t i c [A−Z ] [ a−zA−Z0−9]*/ s t a t i c i n t /
11 s / return t o [A−Z ] [ a−zA−Z0 − 9 ] * \ ( ( . * ) \ ) / return \1/
12 s / return new [A−Z ] [ a−zA−Z0 − 9 ] * \ ( ( . * ) \ ) / return \1/
13 s / \ ( [A−Z ] [ a−zA−Z0−9]* ( [ a−z ] * ) \ ) / ( i n t \1 ) /
14 s / return ( [ a−z ] * ) \ . [ a−z ] * / return \1/ ’ <$1 >new

4.2 Preprocessor approach

The current version of the preprocessor is implemented in Java using utilities in the

java.util.regex package to apply necessary changes to the source code. The prepro-

cessor analyzes all the source files present in the specified source directories looking

for the @Opaque annotation. It builds a list of all the source files that need to be

converted in order to correctly process complicated class dependencies.

The Opaque annotation is a special Java class declared in the converter project.

It is a particular class type for creating new Java code annotations and is declared

according to the guidelines in [15]. The implementation turns to be very simple but

slightly different from the traditional Java class declaration. Figure 4.2 depicts this

class:

Figure 4.2: Opaque code annotation

1 public @inte r f a c e Opaque {
2 St r ing value ( ) ;
3 }

Each annotated class has two source file versions associated with it. The first

version is as is, where the type rules of Figure 3.1 apply. The second, is the version

stripped of most of its object “wrapper” qualities. That is, the object is now used

according to its underlying primitive type representation. User classes containing
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@Opaque("user") annotation are analyzed for instances of opaque object types. Dec-

larations and instantiations are adjusted according to the primitive type associated

with the object by consulting the list of opaque types built earlier.

Inheritance of opaque object types is supervised by the preprocessor. If the pre-

processor finds a subclass of an opaque type, it checks the class for validity in satisfying

the correct opaque type object extension. The criterion that must be met in order to

maintain consistency with the introduced type rules are listed in Figure 4.3:

Figure 4.3: Subclass restrictions

� protected “primitive representation” field is absent

� all other opaque class restrictions apply

Methods inherited from the superclass are recognized by the compiler and do not

cause conflict due to the restriction that the primitive representation of a subclass

of an opaque object type is the same as that of the superclass. This also assures no

discrepancy between converted methods of sub and superclasses.

The goal of the conversion utility is to be light-weight and efficient at analyzing

the Java project structure and building a list of opaque types and their respective

underlying representations. After creating an internal representation of the project,

opaque types are converted to their underlying primitive representation in a single pass

in accordance with the types found in the source tree. Construction of an internal

representation in order to encapsulate all the interdependencies of a complex Java

project is the first step the converter undertakes. Some of the fields of the Converter,

as well as, its constructor are shown in Figure 4.4.

The key methods called in the Converter consturctor are findSrcFiles and build-

FileLists. These methods, as the names suggest, locate all the source files rele-

vant to the Java project and then classify them into three categories. All source

files are divided into opaque files (Vector< File > opaqueFiles), opaque user files

(Vector<File> opaqueUserFiles), and source files which are neither. The groups

represent opaque types that have an underlying primitive representation, source files

that make use of opaque types, and source files that are regular Java files respectively.

The entire classification is done by looking for the @Opaque annotation in each class.

During the first pass through all the source files in order to classify them into

three groups, the converter also identifies the primitive type representation of each
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Figure 4.4: Conversion utility - identification of opaque types

1 public class Converter {
2 Vector<Fi l e> s r c F i l e s ;
3 Vector<Fi l e> opaqueFi l e s ;
4 Vector<Fi l e> opaqueUserFi les = new Vector<Fi l e >() ;
5 Vector<OpaqueType> opaques ;
6

7 . . .
8

9 public Converter ( F i l e d i r ) {
10 s r c F i l e s = new Vector<Fi l e >() ;
11 opaqueFi l e s = new Vector<Fi l e >() ;
12 opaques = new Vector<OpaqueType >() ;
13

14 f i n d S r cF i l e s ( d i r ) ;
15 bu i l dF i l e L i s t s ( ) ;
16 . . .
17 }

opaque type. It is stored as a Vector of OpaqueTypes, which are just an object with

two String fields. One stores the opaque type name, and the other, its primitive

representation type. Figure 4.5 shows this class.

Figure 4.5: Conversion utility - identification of opaque types

1 public class OpaqueType {
2 St r ing name ;
3 St r ing type ;
4 public OpaqueType ( St r ing n , S t r ing t ){
5 name = n ;
6 type = t ;
7 }
8 public St r ing toS t r i ng ( ){
9 return name + ” ” + type ;

10 }
11 }

The findSrcFiles and buildFileLists are instrumental in correctly restructuring

the source files and into the aforementioned categories. They do this in a single pass,

recursively traversing the directory structure of the Java project, if one exists. The

helper method, processDir, analyzes a single directory within the project and isolates

all files (files with extension “.java”) to add to a common list of project source files.
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This list of files then becomes the working domain for further analysis and conversion

of opaque types.

The conversion tool utilizes java.io classes BufferedReader, BufferedWriter, Fil-

eReader, FileWriter for processing of the source files. Exceptions are caught and

handled appropriately in order to catch errors that may occur during the IO-heavy

operations. Final file classification is done on the basis of classes containing the

@Opaque annotation and having the proper underlying primitive type specified there.

Their implementation (as well as that of some helper methods) is shown in Figure 4.6.

The precise actions taken by the code converter can summarized as follows:

1. find all source (.java) files in project/source directories

2. identify annotated source files and build internal representa-

tion of the structure

3. convert all annotated opaque classes that have an underlying

representation

4. convert all annotated classes that make use of opaque classes

The converter substitutes all uses of the declared object name and its field for

variables of the underlying type and removes the protected field from the final

version of the opaque class as it is no longer required.

The preprocessor is compiled into and distributed as a jar file that can be im-

ported by any project or referenced on the classpath. Single file distribution makes

it easy to develop applications that use opaque types. The jar file contains all the

necessary classes for code annotation and conversion without the need for separate

compilation every time changes are made to the application or project.
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Figure 4.6: Conversion utility - classification of opaque types

1 private void f i n d S r cF i l e s ( F i l e d i r ){
2 proce s sD i r ( d i r ) ;
3 i f ( d i r . i sD i r e c t o r y ( ) ) {
4 St r ing [ ] c h i l d r en = d i r . l i s t ( ) ;
5 for ( int i =0; i<ch i l d r en . l ength ; i++)
6 f i n d S r cF i l e s (new F i l e ( d ir , c h i l d r en [ i ] ) ) ;
7 }
8 }
9 // PROCESS SINGLE DIRECTORY LOCATING . java FILES

10 private void proce s sD i r ( F i l e d i r ){
11 Fi l enameFi l t e r f i l t e r = new Fi l enameFi l t e r ( ) {
12 public boolean accept ( F i l e d , S t r ing n) {
13 return n . endsWith ({\ t t ” } . java {\ t t ” } ) ;
14 }
15 } ;
16 F i l e [ ] f s = d i r . l i s t F i l e s ( f i l t e r ) ;
17 i f ( f s != null ){
18 ArrayList<Fi l e> f = new ArrayList<Fi l e >(Arrays . a sL i s t ( f s ) ) ;
19 s r c F i l e s . addAll ( f ) ;
20 }
21 }
22 private void bu i l dF i l e L i s t s ( ){
23 St r ing l i n e = null ;
24 // f i nd f i l e s t h a t q u a l i f y f o r convers ion
25 for ( F i l e f : s r c F i l e s ){
26 try {
27 br = new BufferedReader (new Fi leReader ( f ) ) ;
28 while ( ( l i n e = br . readLine ( ) ) != null ){
29 i f ( l i n e . conta in s ({\ t t ”}@Opaque{\ t t ” } ) ){
30 St r ing name = f . getName ( ) . r ep l a c e ( ” . java ” , ”” ) ;
31 p = Pattern . compi le ( ”@Opaque [ ( ] \ ” ( ”+javaType” ) \ ” [ ) ] ” ) ;
32 m = p . matcher ( l i n e ) ;
33 i f (m. f i nd ( ) ){
34 St r ing type = m. group ( 1 ) ;
35 opaques . add (new OpaqueType (name , type ) ) ;
36 opaqueFi l e s . add ( f ) ;
37 }
38 . . .
39 }
40 br . c l o s e ( ) ;
41 }
42 catch ( IOException e ) { e . pr intStackTrace ( ) ; }
43 }
44 }
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4.3 Ant build script

Introducing the conversion utility for code analysis meant that the Java code could

no longer be compiled as usual. The code had to be converted prior to compilation

in order to substitute the use of opaque type variables for their respective primitive

type representations. To automate the new building process an Ant build script was

developed. The script can be executed directly from the Eclipse IDE provided the

necessary plugin is installed. The default script calls the Java code preprocessor on all

the current project and identifies all opaque types therein. The preprocessor applies

the necessary conversion prior to compilation. A summary of the steps the Ant build

Figure 4.7: Ant build script steps

1. back up original source files

2. invoke converter on current project

3. compile newly converted files

script takes are outlined in Figure 4.7.

The first step, backing up of original source files, is done for the purposes of de-

bugging and maintenance. The original code is left in tact for further development by

the programmer as it is our goal to have the converted code remain in the background

and be generally unnoticable. Backing up of the original code also allows for com-

pilation without conversion and therefore allows the project to be run and verified

prior to converting opaque types to their underlying primitive representation.

Invokation of the conversion utility in the second step of the Ant build script is

self explanatory. The script uses a small configuration file called conv.properties

to identify which main project directory should be analyzed. The structure of the

configuration file is illustrated in Figure 4.8:

Figure 4.8: Ant build script properties file

project-name=MainProject

main-class=MainTopLevelClass

src.dir=src

Here, project-name serves as the placeholder for the Java project name/-

main directory that is analyzed. If a main source file directory exists (such as in
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Eclipse projects), it should be specified under the src.dir attribute, otherwise the

project-name value is used as the main directory. Finally, the script allows the

project to be run automatically following conversion and compilation, for this to

succeed, the main-class attribute must be specified.

The Ant script invokes a compiler of the user’s choice as the third step of the

automatic building process. By default, the Sun’s javac compiler is used but is

easily changed as one of the script’s properties. Files compiled are the newly cre-

ated converted opaque type classes with opaque types replaced by their underlying

representative types. Optionally, the original source files can be compiled using the

same compiler and the two resulting projects can be run sequentially to check the

correctness of the developed opaque types.

Therefore the build script is able to run the compilation process twice, one time

without any preprocessing and once with it. The user can then choose which project

to run, the one with opaque types converted or the regular untouched project, or

run them both. The two versions of source files are kept as identical as possible for

debugging purposes. If the Java compiler encounters an error during compilation and

indicates the line number at which this error occurred, the converter works in such a

way as to guarantee that the number is correct for both versions of the source file.

Most of the script is shown in Figure 4.9 at the end of this chapter as an example

of what the user might see if he or she wanted to change some properties of the build

script to suit their needs.
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4.4 Native implementation

The ultimate goal of our method is to provide the developer with robust static type

checking that exists in Java at the Object level and efficient generated code that

uses primitive types wherever possible. Combining powerful static type checking

techniques that Java offers with utilization of primitive types should yield code that

is fast and correct. Introduction of opaque type extension (or opaque type inheritance)

allows use of well developed and understood Object Oriented Design principles to be

applied without loss of efficiency (when Object representation permits, i.e., Object

can really just be an int).

The intention is to introduce a process for making the currently necessary code

adjustments either completely automatic or altogether unnecessary. The former can

be accomplished by augmenting a high level Java code representation (such as the

parse trees used by the Eclipse IDE) to be able to recognize opaque types as valid Java

code. The conversion would then take place at the intermediate code level instead

of applying conversions immediately to the code as it is currently done. This would

solidify the abstraction of the approach and ease the use of opaque types in Java by

indirectly implementing them into the language standard. The solution could consist

of a modified JFlex grammar that will make the necessary substitutions and additions

to the code prior to passing it to the parser generator. Integrating the features into

an IDE such as Eclipse for Java should make the process simple enough to encourage

many developers to use our opaque object types for performance sensitive applications.

Eliminating code conversion completely would mean integrating of opaque types

directly into the Java language standard. A possible implementation of this, without

official adoption by the language standard, consists of introducing a special flag for the

command line Sun Java compiler. The code would then be compiled as usual with the

“javac” command and when the flag is given, the specified classes will be transformed

according to the rules outlined in Chapter 3. A more general implementation such

as this one will further encourage use of the proposed technique by accommodating

a greater variety of development environments.

Both of the routes require more careful consideration and a possible reshaping

of some rules described in Chapter 3. As the integration into an existing compiler

is complex, concrete rules are needed for opaque object type creation which may

change over the course of future work. Several possible solutions need to be evaluated

and tested extensively in order to justify fundamentally modifying implementation

of the proposed approach. Some uncertainties have various solutions that at first
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glance seem equally viable. Research and testing should allow us to discern which

alternatives will yield the best results for the solution.

The benefits a native implementation will introduce are numerous. Firstly, ease of

use of opaque types should encourage developers to utilize their efficiency and safety.

Secondly, integration into an existing compiler will allow for further optimization tech-

niques by combining implemented optimization methods with those that are possible

only in the case of opaque types (i.e. eventual primitive types). Such optimizations

may shed more light on how to improve compilation and optimization of structures

similar to C-type structs as a byproduct.

Finally, introducing this approach into the world of mainstream compilers will

greatly increase its exposure allowing further improvements and fixes by other re-

searchers and developers working with the Java programming language. As the tech-

niques are further developed, the approach suggested here must become more robust

and versatile, able to handle a variety of situations that may occur as Java is used

for development. The foundation for success of this development undoubtedly lies

in a concrete native implementation that increases the method’s availability across

different audiences. The subject of native implementaion is touched on in more detail

in Chapter 6.
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Figure 4.9: Ant build script

1 <project based i r=” . ” d e f au l t=”main”>
2 <property f i l e=”conv . p r op e r t i e s ”/>
3 <property name=” converter−c l a s s ” va lue=”MainConverter”/>
4 <property name=” converter−j a r ” value=” conver t e r . j a r ”/>
5

6 <property name=” f a s t s r c . d i r ” value=” . . / $ { pro j e c t−name}/ f a s t s r c ”/>
7 <property name=” f a s t b i n . d i r ” va lue=” . . / $ { pro j e c t−name}/ f a s t b i n ”/>
8

9 < !−− Clean t a r g e t s −−>
10 <target name=” c l ean ”>
11 <delete d i r=”${ f a s t b i n . d i r }”/>
12 <delete d i r=”${ f a s t s r c . d i r }”/>
13 </target>
14

15 < !−− Convert t a r g e t s −−>
16 <target name=”convert−compi le ”>
17

18 < !−− Copy source −−>
19 <mkdir d i r=”${ f a s t s r c . d i r }”/>
20 <copy t od i r=”${ f a s t s r c . d i r }” ove rwr i t e=” true ”>
21 <f i l e s e t d i r=” . . / $ { pro j e c t−name}/${ s r c . d i r }”/>
22 </copy>
23

24 < !−− Convert −−>
25 <java jar=”${ converter−j a r }” fo rk=” true ”/>
26

27 < !−− Fast −−>
28 < !−− Compile −−>
29 <mkdir d i r=”${ f a s t b i n . d i r }”/>
30 <javac s r c d i r=”${ f a s t s r c . d i r }” d e s t d i r=”${ f a s t b i n . d i r }”>
31 <classpath>
32 <pathelement path=”${ f a s t s r c . d i r }”/>
33 <pathelement path=”${ f a s t b i n . d i r }”/>
34 </classpath>
35 </ javac>
36 </target>
37

38 < !−− Run t a r g e t s −−>
39 <target name=”run”>
40 <java classname=”${main−c l a s s }”>
41 <classpath>
42 <pathelement path=”${ f a s t s r c . d i r }”/>
43 <pathelement path=”${ f a s t b i n . d i r }”/>
44 </classpath>
45 </ java>
46 </target>
47

48 <target name=”main” depends=”clean , convert−compile , run”/>
49 </project>
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Chapter 5

Performance

5.1 Performance benchmarks

One of the main goals for introducing opaque object types is to improve application

performance. Here, we define the overall application performance by the time it takes

the program to execute, and memory consumed during its execution. We compare

performance of Java code using regular objects and code which has been converted

to use opaque objects. The applications accomplish identical tasks and have minimal

implementation differences aside from the use of opaque types. The test cases range

from simple classes implementing only a few methods with shallow class hierarchy

to classes with a large internal representation (e.g. a large integer array), several

constructors, and a large number of methods. All types of tests were run enough

times until the average results stabilized and consequent runs did not create significant

variation in the data. The tests were executed with varying total data size in order to

maximize the accuracy of results and demonstate generally applicable benefits. The

types of tests were chosen to reflect varying uses and applications a developer may

encounter when writing Java code for a typical project.

Implementations have been tested on varying platforms (including different CPUs,

RAM, and operating system types). The platform used for a particular test is men-

tioned in each table depicting the results. This was done mostly due to different avail-

ability of computing environments during testing, as tests were developed throughout

the evolution process of opaque types. However, running of experiments on different

platforms has also given us a an opportunity to look at the variance in underlying

software and hardware that affects the performance of Java applications using opaque

types.

Execution time and memory use were measured using built-in Java tools for deter-
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mining system time - System.currentTimeMillis(), and tools for determining how

memory is currently used by the Java Virtual Machine - Runtime methods named

totalMemory() and freeMemory(). All tests measuring memory use were carefully

designed to avoid involuntary garbage collection and execution time tests were aver-

aged to account for varying CPU load during the experiments.

5.2 Direct testing of compound statements, decla-

rations, instantiations

We conducted several kinds of tests comparing regular and opaque objects. The goal

of the tests is to determine whether objects that had undergone the transformation to

the underlying primitive type performed significantly faster and took up considerably

less memory space than regular objects. Usage tests varied by type of declaration and

calling convention for the objects. For example, some tests measured only how regular

objects perform during declaration and instantiation versus opaque objects, while

others used the objects in longer compound statements without explicit declaration

or instantiation. A compound statement may involve passing function values directly

as arguments to another function or object constructor.

The contrast between the two compared sets of statements is illustrated in Figure

5.1. The first set of statements involves using a regular object method and passing

the result to another method inside of a longer compound statement. The second set,

shows a similar outer method being applied to an argument which is computed by a

public static method of an opaque type, whose underlying primitive type is int.

Figure 5.1: Instantiation followed by compound statement

1 for ( int i = 0 ; i < DATA SIZE ; i ++){
2 o b j I n s t a n c e [ i ] = new RegObject ( i ) ;
3 t e s tMethod ( o b j I n s t a n c e [ i ] . objMethod ( ) ) ;
4 }

1 for ( int i = 0 ; i < DATA SIZE ; i ++){
2 p r i m i t i v e I n s t a n c e [ i ] = OpaqueObject . New( i ) ;
3 t e s tMethod ( OpaqueObject . method ( p r i m i t i v e I n s t a n c e [ i ] ) ) ;
4 }

The first difference which can be noted between code using regular objects and
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that using converted opaque classes is the constrasting instantiation of the variables.

In the case of a regular object, objInstance[i] is initialized using the RegObject’s

constructor. The primitiveInstance[i] variable, post conversion, bares the under-

lying primitive type of OpaqueObject, namely, int. The call to New returns a value of

type int to be assigned to primitiveInstance[i]. However, due to primitive types

being initialized to zero by default, this initialization is unnecessary.

Java utilities for measuring memory use are not as sensitive as we would have

ideally liked, therefore, for small data sizes, the difference in memory use is not

apparent. The tools measure memory use on the heap and therefore fail altogether

for sufficiently small sample sizes of primitively typed variables. For small total

data size regular objects are still allocated on the heap while opaque objects reside

completely on the stack. This is due to a much smaller foot print that opaque objects

(sized no bigger than the largest primitive type) have in memory. In fact, because

opaque objects are compiled to primitive types, they are given preference to reside on

the stack just like ordinary primitive types.

This result is summarized in Table 5.1 and shown on plot Figures 5.2 and 5.3.

Data allocation on the heap is characteristic of traditional object types during both,

conventional declaration as well as use in compound statements. In contrast, use

of the stack is prominent for opaque objects as expected. In fact, for compound

statements, opaque objects are not allocated on the heap at all, even for large data

sizes. Meanwhile, heap space use begins to be noticable enough once the total size of

regular objects reaches about 500KB.

Worth noting is the fact that for large data sizes (1,000,000 and higher), it was

necessary to add the -Xmx N flag to the application launch command where N is the

maximum Java heap size the JVM is allowed to use in megabytes.

Declaration and instantiation of regular objects versus opaque objects yielded

expected results.[9] Due to opaque objects being converted to primitive types prior

to compilation, the memory taken by them is identical to that of their representative

type. For example, Table 5.2 shows that declaring two arrays of opaque objects

both represented by the primitive type int, is similar to just declaring two integer
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Figure 5.2: Compound statement memory use

Figure 5.3: Compound statement execution time

arrays. The memory space taken up by each object is exactly the same as an int

type (i.e. 4 bytes). Unconverted object types with the same functionality as the

corresponding opaque types took roughly 5 times more space for straight declaration

and instantiation statements. Results of Table 5.2 are plotted on 5.4 and 5.5.
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Figure 5.4: Declaration and instantiation memory use

Figure 5.5: Declaration and instantiation execution time

Once again, larger data sizes required manually increasing the allowed Java heap size

by using the -Xmx N when launching the tests.
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5.3 Opaque types with a more complex represen-

tation

Similarly to the opaque types used through this work, it is possible to represent object

types by single primitively typed array fields of fixed size. For example, an opaque

type object may be represented by 256 bits, or an array of size 4 of type long[]. The

next set of tests deals with objects represented by different sized arrays of primitively

typed variables. The tests attempt to use the same, previously shown, metrics in

measuring execution speed and memory use. Implementation of the actual accom-

plished operation is kept as identical as possible to avoid performance differences due

to algorithm efficiency. This assures that we compare directly the speed and size of

regular objects versus opaque objects without introducing unnecessary bias.

Figure 5.6 illustrates an OpaqueObject represented by the long[] type and a Re-

gObject that has a field of type long[]. Both objects have the similarly implemented

method called setBit. Method setBit takes an argument of type int that corresponds

to the bit number that must be set to 1 in the internal representation of OpaqueOb-

ject o or the field of the RegObject with 0 being the least significant bit. Imagine

arranging either the internal long[] representation of OpaqueObject or the field of

RegObject as sets of back-to-back 64 bit sets (each set represented by a long type

value) where significance of the bits increases with the array index of the respective

field. Thus operation setBit is potentially able to turn on a single bit in a bit set of

size over 2,000,000,000. For the test, however, we limit the size of the long array to

4.

Results comparing performance of these two objects are presented in Table 5.3

and plotted on 5.7 and 5.8.

Test results shown in Table 5.3 are very important as they show that extending opaque

types to primitive type array representation preserves lower memory use and faster

execution speed, to some degree. This is a powerful augmentation of the opaque

object approach as it allows representations which are much more complex to be

applied with the same ease.
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Figure 5.6: Regular and opaque objects with array typed fields

1 @Opaque ( ‘ ‘ long [ ] ’ ’ )
2 public c l a s s MyOpaqueObject {
3 protected long [ ] r ep ;
4 private OpaqueObject ( long [ ] a r g ){
5 r ep = new long [ a r g . l e n g t h ] ;
6 for ( int i = 0 ; i < a rg . l e n g t h ; i ++)
7 r ep [ i ] = a rg [ i ] ;
8 }
9 public s t a t i c OpaqueObject New( long [ ] a r g ){

10 return new OpaqueObject ( a r g ) ;
11 }
12 public s t a t i c OpaqueObject s e t B i t ( OpaqueObject o , int i ){
13 long mask = ( long ) ( 1 << ( i % 6 4 ) ) ;
14 o . r ep [ i / 6 4 ] |= mask ;
15 return o ;
16 }
17 . . .
18 }

1 public c l a s s RegObject {
2 private long [ ] r ep ;
3 public RegObject ( long [ ] a r g ){
4 r ep = new long [ a r g . l e n g t h ] ;
5 for ( int i = 0 ; i < a rg . l e n g t h ; i ++)
6 r ep [ i ] = a rg [ i ] ;
7 }
8 public void s e t B i t ( int i ){
9 long mask = ( long ) ( 1 << ( i % 6 4 ) ) ;

10 r ep [ i / 6 4 ] |= mask ;
11 }
12 . . .
13 }

Analyzing the data in Table 5.3 shows that the performance gains are somewhat

diminished as opaque type underlying primitive representation becomes more complex.

The diminished performance improvement is due to the way Java handles primitively

typed arrays. In every representation, an array is automatically converted to an object

in Java, thus deteriorating execution speed and increasing memory use. Nevertheless,

by using opaque objects in place of regular objects, the conversion utility takes off

a “layer” in the object hierarchy, replacing it by a primitive type. This accounts

for the, somewhat smaller, performance gains. Opaque types still outperform regular

object types in both execution speed (roughly by a factor of 2.0) and in memory use
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Figure 5.7: Instantiation of complex objects memory use

Figure 5.8: Instantiation of complex objects execution time

(roughly by a factor of 5). As program size and memory footprint increase, these

gains become more significant in real world applications.
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5.4 A more involved experiment

The next set of performance comparison tests consists of two implementations of a

typical Chess board. A conventional chess board is an 8 by 8 board with black and

white squares with at most 32 pieces on the board at any given time. The game of

chess is rich in theory and has been used for computing performance measurement

for several decades. The most prominent approach to implementing chess playing

computer programs can be classified as a combination of brute force and heuristic

algorithms. As the game is turn based, there is a finite number of consequent moves

for any possible position. By constructing a game tree, and analyzing each path

in this tree (representing a sequence of moves) heuristically, today’s chess playing

programs are able to play at a very high level. Since the number of possibilities at

each level in the tree grows nearly exponentially, computational speed becomes of

high importance and the measure of quality of play is reduced to the number of tree

paths and path depth that is analyzed successfully in a limited amount of time.

The first implementation is a traditional approach to actualizing chess using an

Object-Oriented language. It makes use of Java enum type and has clear distinctions

between elements involved in the game of chess. The implementation consists of four

main classes: ChessPosition, ChessSquare, ChessPiece, and ChessMove. Intuitively,

the class ChessPiece represents any chess piece available to be placed on the board.

ChessSquare represents a square on the chess board identified by two cartesian style

coordinates (but called by their chess names: file [a letter from a to h], and rank

[a number from 1 to 8 ]) and a ChessPiece that possibly occupies that square. A

ChessPosition consists of an array of ChessSquare’s of size 64 - representing a full

chess board and the pieces present at any given time during the game. Finally,

ChessMove assists in implementing a single chess move (or, more accurately, a ply -

i.e. a move completed by a single player) possible in a game of chess. The move is

represented simply by an initial and a destination square and all validity checking, as

well as, move application is done given a ChessPosition.

Shown next are some relevant parts of the traditional implementation. These

code samples help illustrate the difference between traditional and opaque type style

implementations. The explainations that follow attempt to highlight parts of the

code where the opaque type approach gains its performance benefits without losing

approach clarity and abstraction. The implementation is simplified and is meant to

minimally demonstrate how a realistic application can be represented in traditional

Java versus Java augmented with opaque types.
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Figure 5.9: Traditional implentation: ChessSquare

1 public class ChessSquare {
2 char f i l e ;
3 int rank;
4 ChessPiece piece ;
5

6 public ChessSquare(char f , int r , ChessPiece p){
7 f i l e = f ;
8 rank = r ;
9 piece = p;

10 }
11

12 public ChessSquare(char f , int r , ChessPosition cp){
13 f i l e = f ;
14 rank = r ;
15 piece = cp.board[ getLocation( f i l e , rank) − 1] . piece ;
16 }
17

18 public int getLocation(){
19 int col = (int)( f i l e − ’a ’ ) + 1;
20 int row = 8 − rank;
21 return row * 8 + col ;
22 }
23

24 public static int getLocation(char f , int r){
25 int col = (int)( f − ’a ’ ) + 1;
26 int row = 8 − r ;
27 return row * 8 + col ;
28 }
29 }

The ChessSquare class provides an intuitive implementation of a chess square.

Each cell is labeled by a file and rank and has a ChessPiece associated with it. In the

case of an empty square, the ChessPiece field is set to null. The ChessPiece class

provides a basic implementation of the various chess pieces, which can be encountered

in the game. In total, there are 12 possible pieces (6 different pieces times 2 different

colours). These are implemented using Java enum types, thus adding two fields to the

ChessPiece type, namely Color and Type members.

ChessSquare provides a utility method getLocation for converting from the con-

ventional chess system of files and ranks to an integer corresponding to the array

index in the board’s internal representation. In this case, the convention is to start

at 1 (corresponding to square a8 on the board) and end with 64 (corresponding to

square h1 ).
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Figure 5.10: Traditional implentation: ChessPosition

1 public class ChessPosition {
2 ChessSquare [ ] board;
3 /* Main constructor :
4 * Init ia l ize the board with
5 * 64 new (empty) ChessSquares
6 */
7 public ChessPosition(){
8 board = new ChessSquare [64] ;
9 for (int i = 0; i < board. length ; i++){

10 char f i l e = (char) ( i % 8 + ’a ’ ) ;
11 int rank = 8 − i / 8;
12 board[ i ] = new ChessSquare(
13 f i l e , rank , (ChessPiece)null ) ;
14 }
15

16 // Init ia l ize board to starting position
17 . . .
18 }
19

20 . . .
21 public boolean applyMove(ChessMove cm){
22 i f ( !cm. isValid(this))
23 return false ;
24

25 // ini t ia l square becomes empty
26 int ind = cm. init . getLocation() − 1;
27 Color c ;
28 i f ((( int) (cm. init . f i l e − ’a ’ )
29 + cm. init . rank) % 2 == 0)
30 c = Color .WHITE;
31 else
32 c = Color .BLACK;
33 board[ ind ] . piece = new ChessPiece(
34 c , Type.EMPTY);
35

36 // final square is occupied by piece
37 ind = cm. fin . getLocation() − 1;
38 board[ ind ] . piece = cm. init . piece ;
39

40 // move succeeded
41 return true ;
42 }
43 }

The ChessPosition class, shown in 5.10, serves as a representation of a chess po-

sition at any point in time during the game. It includes all 64 ChessSquare’s and

provides methods that correspond to possible events that can happen during transi-
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tion from one position to the next. The essential code that supplies this functionality

is located in the applyMove method. Given a ChessMove, a decision is made whether

the move is legal for the current position and if it is; the move is carried out. Some

implementation details of this class are omitted here.

The second implementation, using opaque-typed code, is an attempt to represent

the game of chess in a more compact manner. In this approach we take advantage

of the fact that there are only 12 different pieces present at any time during the

game (pawn, rook, knight, bishop, queen, king of black and white colours). Since a

square on the chess board may also be unoccupied, we can add the “empty square”

as a possibility to the already present 12 chess pieces, bringing the total to 13. 13

patterns may be represented in binary as four bits. There are 64 squares on the chess

board, therefore the total number of bits needed to represent a board in binary is 256.

Although this is not the best we can do, it is easier to work with this representation

and it is sufficient to demonstrate a low level implementation abstracted by Java

classes.

The goal of this implementation is to provide identical functionality to the tra-

ditional approach, leaving calling conventions and ease of use in tact, and improve

code performance through use of primitive types. To further optimize the low-level

implementation, the use of opaque types eliminates “object-wrapper” code from the

primitively-typed fields prior to compliation. This effectively transforms the end ap-

plication into a series of bit shuffling operations that execute quickly and leave a small

footprint in memory.

Figures 5.11 and 5.12 show partial implementations of the ChessBoard and Chess-

Game opaque classes. The algorithms developed in both opaque objects rely heavily

on the underlying primitive representation of a ChessBoard. The long[] type field

contained in ChessBoard is conventionally initialized to size 4 when the object’s New

method (omitted in the figure) is called, thus representing an entire chess position in

just 256 bits (64 squares, at 4 bits each). Despite this low, bit-level, representation,

all operations provided by the ChessBoard and ChessGame are intuitive and straight

forward to use. The actions which can be applied to these objects correspond to

the operations implemented by the traditional approach. This is accomplished via

abstracting low level bit-shifting operations behind static methods in the opaque

classes and allows code using these objects to be written in the traditional Java style.

ChessBoard and ChessGame objects are declared and analyed normally while main-

taining their primitive type representation after the code conversion utility is invoked.
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Figure 5.11: Opaque-typed representation: ChessBoard

1 @Opaque ( ‘ ‘ long [ ] ’ ’ )
2 public c lass ChessBoard {
3 s tat i c f i na l long EMPTY = 0 ;
4 s tat i c f i na l long WPAWN = 1 ;
5 s tat i c f i na l long W KNIGHT = 2 ;
6 s tat i c f i na l long W BISHOP = 3 ;
7 s tat i c f i na l long WROOK = 4 ;
8 s tat i c f i na l long W QUEEN = 5 ;
9 s tat i c f i na l long W KING = 6 ;

10 s tat i c f i na l long B PAWN = 8 ;
11 s tat i c f i na l long B KNIGHT = 9 ;
12 s tat i c f i na l long B BISHOP = 10 ;
13 s tat i c f i na l long B ROOK = 11 ;
14 s tat i c f i na l long B QUEEN = 12 ;
15 s tat i c f i na l long B KING = 13 ;
16

17 protected long [ ] r ep ;
18

19 private ChessBoard ( ){
20 rep = new long [ 4 ] ;
21 ChessBoard . f i l l S t a r t i n g ( this ) ;
22 }
23

24 public s tat i c void f i l l S t a r t i n g ( ChessBoard b ){
25 // f i l l b l a c k p i e c e s
26 b . rep [ 0 ] |= B ROOK | (B KNIGHT << 4)
27 | (B BISHOP << 8) | (B QUEEN << 1 2 ) ;
28 b . rep [ 0 ] |= (B KING << 16) | (B BISHOP << 20)
29 | (B KNIGHT << 24) | (B ROOK << 2 8 ) ;
30 for ( long i = 32 ; i < 64 ; i += 4)
31 b . rep [ 0 ] |= (B PAWN << i ) ;
32

33 // f i l l empty s qua r e s
34 b . rep [ 1 ] = 0L ;
35 b . rep [ 2 ] = 0L ;
36

37 // f i l l wh i t e p i e c e s
38 for ( long i = 0 ; i < 32 ; i += 4)
39 b . rep [ 3 ] |= (WPAWN << i ) ;
40 b . rep [ 3 ] |= (WROOK << 32) | (W KNIGHT << 36)
41 | (W BISHOP << 40) | (W QUEEN << 4 4 ) ;
42 b . rep [ 3 ] |= (W KING << 48) | (W BISHOP << 52)
43 | (W KNIGHT << 56) | (WROOK << 6 0 ) ;
44 }
45 . . .
46 }
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Figure 5.12: Opaque-typed representation: ChessGame

1 @Opaque ( ‘ ‘ long [ ] ’ ’ )
2 public c lass ChessGame {
3 protected long [ ] r ep ;
4

5 public s tat i c ChessBoard applyMove ( ChessBoard b , short move ){
6 int i n i t = move & 0x3F ;
7 int f i n = move & 0xFC0 ;
8 long [ ] board = b . rep ;
9

10 long mask = 15L ;
11 int i n i t I n d = i n i t / 16 ;
12 int f i n I n d = f i n / 16 ;
13 long i n i t P i e c e = board [ i n i t I n d ]
14 & (mask << ( ( i n i t % 16) * 4 ) ) ;
15 // ze ro d e s t i n a t i o n square
16 board [ f i n I n d ] &= ˜(mask << ( ( f i n % 16) * 4 ) ) ;
17 // ze ro i n i t i a l s quare
18 board [ i n i t I n d ] &= ˜(mask << ( ( i n i t % 16) * 4 ) ) ;
19 i f ( i n i t I n d == f i n I n d ) {
20 i f ( i n i t > f i n )
21 i n i t P i e c e <<= ( i n i t − f i n ) ;
22 e lse i f ( i n i t < f i n )
23 i n i t P i e c e >>= ( f i n − i n i t ) ;
24 }
25 e lse {
26 i n i t P i e c e >>= ( ( i n i t % 16) * 4 ) ;
27 i n i t P i e c e <<= ( ( f i n % 16) * 4 ) ;
28 }
29 board [ f i n I n d ] |= i n i t P i e c e ;
30 b . rep = board ;
31 return b ;
32 }
33 . . .
34 }

The ChessGame class in Figure 5.12 is also represented by the primitive long

type array. The class plays the role of a sequence of consecutive moves in a single

chess game. Therefore it implements a particular important method, applyMove. The

method takes a ChessBoard and a short move as parameters and attempts to apply

the said move to the given ChessBoard representation. Each chess move is represented

by a short type value where the bits signify the initial and final squares of the move.

This is discussed further when move generation for the two types of implementations

is compared.

Given this implementation we can carry out several important performance tests
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comparing traditional and opaque-typed approaches. Once again, the main criteria

tested are execution time and memory usage. The tests consist of creating and ma-

nipulating a large number of chess positions. This simulates realistic operations that

happen during a chess program’s execution. During the engine’s “thinking” phase,

new positions in the game tree are constantly created and evaluated against some set

of heuristics and are then discarded or saved accordingly. The speeds of retrieval,

manipulation, and storage directly affect the overall performance of the application.

Performance is compared in three stages. First, the regular implementation of

ChessPosition is used to initialize a number of positions. Some moves are applied

to the positions to simulate varying states of the game. The time taken to allo-

cate the required memory for these positions is recorded and averaged over several

runs. Memory use is also averaged to avoid skewed test results due to differences in

representation of equally likely board positions.

A similar set of tests is then executed on the opaque-typed code using the Chess-

Board class. The tests are performed without invoking the code conversion utility in

order to accurately measure gains achieved simply by moving to an alternative inter-

nal representation of the game board. Measuring the execution speed and memory

use of the alternate representation also allows us to gauge the difference that the code

conversion utility makes. This particular measure is important because it comes at no

cost to the developer. The code requires no changes prior to invoking the conversion

utility as long as it was properly annotated from the start. Results are shown in

Table 5.4 and plotted on 5.13 and 5.14.

These results are very impressive. They indicate that the structure of opaque types

alone plays an important role in performance improvements they allow. Execution

time is decreased by a factor of about 5-10 when opaque ChessBoard class is used

instead of the regular implementation of of ChessPosition even prior to converting

ChessBoard to its underlying long[] type. Meanwhile, memory use is decreased by

a factor of 3 demonstrating how much difference static methods used by the opaque

ChessBoard make.

Next we compare the same ChessPosition implementation with the converted

implementation of opaque ChessBoard. Therefore, Table 5.5 essentially shows the
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Figure 5.13: Initialization and storage of chess positions memory use

Figure 5.14: Initialization and storage of chess positions execution time

comparison in execution speed and memory use of the ChessPosition object and the

primitively typed long array. Results are plotted on 5.15 and 5.16.
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Figure 5.15: Initialization and storage of chess positions memory use

Figure 5.16: Initialization and storage of chess positions execution time

In order to complete these tests, the available memory for JVM heap space had to be

raised to approximately 1600MB (-Xms1600M -Xmx1600M).

The testing of more realistic objects shows just how beneficial opaque types can

be in Java applications in terms of gaining performance. Non-trivial implementations

demonstrate that primitive types vastly outperform object types when it comes to

execution time and memory use. The classes which were declared and initialized are
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able to perform exactly the same operations; however, the opaque type objects (later

converted to their respective primitive type representation) performed an astonish-

ing 15-20 times faster and took up an amazing 40-45 times less heap space. This

indicates the realistic potential of the approach presented in this work. The trade

off of working out a somewhat more complex implementation for opaque type meth-

ods yields an enormous performance improvement in an application where space and

speed are of vital importance.

It is important to highlight that going just from opaque objects to converted

opaque types (which comes at a very low cost and practically no effort) improved ex-

ecution speed 2-5 times, and reduced memory use by a factor of about 15. This is a

very satisfying result. It demonstrates that, not only does the opaque types approach

enforce general code structure that is more efficient but it allows for further perfor-

mance improvements without sacrficing readability and abstraction. Since the code

changes the conversion utility applies are not major, in combination with opaque type

declaration and use conventions, the two-step process yields significant performance

benefits without severely hindering the expressive power of the language.

5.4.1 Measuring move generation and evaluation.

The following experiments build on the previous representations of the chess board

(ChessPosition and ChessBoard) by implementing procedures for move generation

and evaluation given a particular board position. This kind of test represents another

realistic gauge of performance for an application manipulating and accessing large

sets of data.

Delving further into more complex operations allows for a better picture of the gen-

uine potential that opaque types entail; and while it is no secret that primitive types

outperform object types in practice, working with built-in types quickly becomes

a chore without a more sophisticated mechanism. With opaque types, we make an

attempt at exactly that, a well developed technique for manipulating and implement-

ing complicated concepts while using primitive types and reaping the performance

benefits this brings about.

Move generation is an important part of any chess playing software. It simulates

thorough access of the underlying data. A given chess position must be fully examined

in order to return a structure containing every possible move allowed by one or both

of the sides. This provides opportunity to compare performance of regular objects

and opaque types not only in data storage but also, and primarily here, in data
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retrieval, which is also vital in majority of realistic applications. Measuring the speed

of data retrieval and its manipulation allows us to make preditictions regarding the

overall performance of the application as all major areas of interaction with data are

covered. The chess board is first declared, initialized, and then stored in memory.

The internal representation is then retrieved, analyzed, and changed according to

some rules. Finally, the resulting data is once again stored, thus completing the cycle

and supplying us with a good estimate on the total application performance.

Figure 5.17: Regular MoveGenerator - Representation

1 public class MoveGenerator {
2

3 /*
4 * Checking squares in d i f f e ren t direct ions
5 * given an i n i t i a l square , th i s enumeration
6 * provides a d i f f e ren t implementation of the
7 * move method depending on direct ion of
8 * and piece type being moved
9 */

10 public enum Direction {
11 E {
12 ChessSquare move(ChessSquare s , ChessPosition cp) {
13 i f ( s . f i l e < ’h ’ )
14 return new ChessSquare ((char)( s . f i l e + 1) , s . rank , cp ) ;
15 else
16 return null ;
17 }
18 } ;
19

20 /*
21 * All other relevant direct ions implemented here
22 */
23 . . .
24

25 abstract ChessSquare move(ChessSquare s , ChessPosition cp ) ;
26 }
27

28 . . .

The regular object-based MoveGenerator class conveniently uses a Java enum to

represent all directions that a chess piece can move on the board. The enumeration

provides a straight forward implementation of the move method for each appropriate

direction (and where necessary, appropriate piece). The move method returns a new
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ChessSquare where the current piece would finish as a successful result of the move

the given Direction.

In order to utilize the different implementaions of the move method, we would

like to generate all possible moves that a particular ChessPosition contains. The

following continuation of the MoveGenerator class illustrates the construction of the

generate method.

Figure 5.18: Regular MoveGenerator - generate method

1 . . .
2 /*
3 * Given a ChessPosition , generate a l l l e ga l moves
4 * allowed for the posit ion .
5 */
6 public static Vector<ChessMove> generate (ChessPosition pos){
7 Vector<ChessMove> moves = new Vector<ChessMove>();
8

9 // look at every square in pos
10 for (ChessSquare curSquare : pos . board){
11 i f ( curSquare . piece . type != Type .EMPTY){
12 Vector<ChessSquare> legalSquares = new Vector<ChessSquare>();
13

14 i f ( curSquare . piece . type == Type .ROOK)
15 for ( Direction d :
16 EnumSet . of ( Direction .E, Direction .N, Direction .W, Direction .S))
17 getLegalSquares ( curSquare , curSquare . piece , pos , legalSquares , d ) ;
18

19 else i f ( curSquare . piece . type == Type .KNIGHT)
20 for ( Direction d : EnumSet . range ( Direction .NEE, Direction .SEE))
21 getLegalSquares ( curSquare , curSquare . piece , pos , legalSquares , d ) ;
22 . . .
23 }
24

25 for (ChessSquare sq : legalSquares )
26 moves . add(new ChessMove( curSquare , sq ) ) ;
27 }
28 }
29 return moves ;
30 }

The generate method returns a Vector<ChessMove> of legal ChessMove’s given

a particular ChessPosition. The use of a Java enum allows application of some of the

EnumSet methods that limit which subsets of the enumeration are counted. This

presents an opportunity to reduce the code size somewhat and artificially implement

different chess piece behaviour by using only the legal directions of the particular
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pieces. for loops on lines 15 and 19 demonstrate this particularly well for the rook

and knight pieces.

Generation of possible moves in this, regular object based implementation, occurs

when the static generate method is called and passed, as a parameter, a particular

ChessPosition. Every square in the given position is then analyzed, and the occupied

squares are passed to the helper method getLegalSquares along with the piece type

occupying them. The method returns all legal squares that the current piece may

occupy as a result of a move on the pertinent board position. Finally, all the legal

moves are packed together into ChessMove objects (which are represented by an

initial and final squares) and returned as a vector.

The helper getLegalSquares is illustrated in Figure 5.19 to emphasize how the

object based implementation is accessed through the move generation task.

The implementation attempts to use Object-Oriented Design paradigms where

possible. The code tries to be clear and self-explanatory with regards to checking

various properties pertaining to legality of chess moves.

Figure 5.20 depicts part of the opaque type based MoveGenerator class. The

class is annotated with @Opaque(“user”) type as does not have a primitive type

representation and serves only as a method facility for accessing, manipulating, and

storing chess positions.

genMoves method accomplishes the same task that the generate method did in

the regular object implementation of the MoveGenerator (Figure 5.18, line 6). This

method, however, returns an array of Shorts (“boxing” class for the primitive short

in Java) each of which represents a separate possible chess move. The method get-

Squares is this object’s equivalent of the getLegalSquares method presented in Fig-

ure 5.21. It scans the current position and returns all possible moves that can be

applied from a given square (granted it is occupied by a chess piece).

The method undertakes a similar linear analysis of the board squares relevant

to the current square being examined and the chess piece occupying it. The major

difference lies in the lack of a Java enum type to aid with changing the direction of

movement along the 2-dimensional board. This puts a strain on the readability of the

code but not to the point of making the code completely cryptic. Most of the analysis

is done by representing and numbering the board squares linearly, i.e., the squares

are numbered 0 through 63, with the top left square (a8) being 0 and bottom right

(h1) being 63. The examination of various squares can then be done without the need
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Figure 5.19: Regular MoveGenerator - helper method

1 private static void getLegalSquares (ChessSquare s ,
2 ChessPiece curPiece ,
3 ChessPosition pos ,
4 Vector<ChessSquare> sqs ,
5 Direction dir ) {
6

7 ChessSquare potential = dir .move( s , pos ) ;
8 // pawn move
9 i f (EnumSet . range (

10 Direction .WPAWNONE, Direction .BPAWNTWO) . contains ( dir ))
11 i f ( potential != null )
12 i f ( potential . piece . type == Type .EMPTY)
13 sqs . add( potential ) ;
14 // pawn capture
15 i f (EnumSet . range (
16 Direction .WPAWNCAPNW, Direction .B PAWN CAP SE) . contains ( dir ))
17 i f ( potential != null )
18 i f ( potential . piece . type != Type .EMPTY
19 && potential . piece . color != curPiece . color )
20 sqs . add( potential ) ;
21 // we ’ re s t i l l on the board
22 i f ( potential != null && curPiece . type != Type .PAWN){
23

24 i f ( potential . piece . type != Type .EMPTY) {
25 // piece of opposite color ,
26 // so can capture , but can ’ t go any further
27 i f ( potential . piece . color != curPiece . color )
28 sqs . add( potential ) ;
29 }
30 // i t ’ s an empty square
31 else {
32 sqs . add( potential ) ;
33 i f ( curPiece . type == Type .ROOK
34 | | curPiece . type == Type .BISHOP
35 | | curPiece . type == Type .QUEEN)
36 getLegalSquares ( potential , curPiece , pos , sqs , dir ) ;
37 }
38 }
39 }

for nested loops, which are usually natural for accessing and mutatting 2-dimensional

data structures. Instead, the board is “flattened” and relevant squares simply become

carefully chosen subsets of the {0 .. 63} set.

Comparison of the two implementations (regular object and opaque object) con-

sists of declaring a number of chess positions using the respective representations;

then applying a number of moves to the boards in order to create a small amount of
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Figure 5.20: Opaque MoveGenerator

1 @Opaque( ‘ ‘ user ’ ’ )
2 public class MoveGenerator {
3 /*
4 * Generate a l i s t of a l l poss ib l e moves given
5 * a board posit ion . Each move i s represented by
6 * a short (ChessMove ) . Bits 0−5 represent the
7 * i n i t i a l square , b i t s 6−11 represent the f ina l
8 * square .
9 */

10 public static Short [ ] genMoves(ChessBoard pos){
11 int currentPiece = 0;
12 int currentSquare = 0;
13 long mask = 15L;
14 Vector<Short> moves = new Vector<Short >();
15

16 for ( long l : pos . rep ){
17 long sqs = l ;
18 currentPiece = ( int ) ( sqs & mask) ;
19 Integer [ ] relevantSquares =
20 getSquares ( currentSquare , currentPiece , pos ) ;
21 for ( Integer i : relevantSquares )
22 moves . add((short )( currentSquare & ( i << 6) ) ) ;
23 }
24

25 return (Short [ ] ) moves . toArray ( ) ;
26 }
27 . . .

variation in the positions. Finally, the possible moves for each position are generated

using the respective methods shown in Figures 5.18 and 5.20 and if the number of

possible moves returned is greater than 30, one of the moves is chosen at random and

applied to the current position. Once again, two sets of tests are performed to gauge

the significance and impact both opaque type structure and conversion of opaque types

to underlying primitive types have on application performance.

The data sizes have been decreased and brought closer together in this set of tests due

to the complexity of the undergoing operations. Move generation is a time and space

consuming task for both types used in Table 5.6. However, even prior to conversion,
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Figure 5.21: Opaque MoveGenerator

1 public static Integer [ ] getSquares
2 ( int square , int piece , ChessBoard posit ion ){
3

4 Vector<Integer> sq = new Vector<Integer >();
5

6 i f ( piece == ChessBoard .BROOK | | piece == ChessBoard .WROOK)
7 sq . addAll (getRookMoves( square ) ) ;
8

9 else i f ( piece == ChessBoard .B KNIGHT | | piece == ChessBoard .WKNIGHT){
10 int [ ] d i f f = {17 , 15 , 10 , 6} ;
11 for ( int d : d i f f ){
12 i f ( square − d >= 0)
13 sq . add( square − d) ;
14 i f ( square + d <= 63)
15 sq . add( square + d) ;
16 }
17 }
18

19 . . .
20 return ( Integer [ ] ) sq . toArray ( ) ;
21 }

we once again see that use of the opaque ChessBoard class yields much better results

than the regular object ChessPosition. Since both board declarations were initialized

to starting positions and only several moves were applied to each position prior to

move generation; majority of positions generated a number of moves that is greater

than 30. Therefore, the move generation tests were not only heavy in position access

but also in position manipulation as a lot of move application occurred.

The next set of tests conducted, once again involved move generation given a

number of positions. This time, however, the opaque ChessBoard objects were con-

verted to their underlying long[] type. The conversion of opaque classes ChessBoard,

ChessGame, and MoveGenerator took a very small amount of time for the code size

of the respective objects demonstrating that code conversion is an insignificant factor

in measuring execution speed. This is due to the number of changes that the con-

verter makes to the code being very small and the conversion utility completing the

transformation in a single pass.
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Figure 5.22: Move generation memory use

Figure 5.23: Move generation execution time

Once again, converted ChessBoard objects and static methods acting on them in

the ChessBoard and ChessGame opaque classes show a significant improvement over

the unconverted opaque types and regular object implementations. The converted

ChessBoard objects (or long type arrays) performed on average 18-20 times faster

than the regular object types and showed an small improvement (about 1.5-2 times)

in execution speed over unconverted opaque types. The long type arrays also used
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Figure 5.24: Move generation memory use

Figure 5.25: Move generation execution time

approximately 13-18 times less memory in order to accomplish the same tasks as the

regular object ChessPosition counter-parts; and 1.3-1.5 times less memory than the

unconverted ChessBoard and ChessGame opaque types.

Finally, it is useful to compare the performance results of the “move generation”

tests visually, together on a single graph. The execution time and memory use values

of Tables 5.6 and 5.7 are plotted in Figures 5.26 and 5.27 respectively. The figures
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demonstrate the improvement code conversion creates without any additional work

other than invoking the conversion utility on the already efficient implementation of

the opaque typed code.

Figure 5.26: Move generation memory use

Figure 5.27: Move generation execution time
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The performance tests conducted and summarized in this section all but confirm

opaque type superiority to regular object types in execution speed and memory use.

The results shown here are just a fraction of the experiments that were carried out

to measure and maximize performance of opaque types in Java. The majority of

the performance experiments were done using small to medium sized classes in or-

der to preserve the one-to-one correspondence between regular and opaque classes.

Conducting the tests in this manner allowed us to focus on precisely comparing the

implemented opaque type features versus the constructs already available in standard

Java. Isolating and comparing the features directly gives a more detailed overview

of exactly why opaque types perform that much better than regular object types.

Hence, the tests were conducted throughout the theory development process in or-

der to shape, guide, and when necessary, correct the ideas suggested throughout the

lifetime of the approach development.

Testing of application performance using different programming languages is an

acknowledged area of research with many articles and results published on the sub-

ject. Therefore, we considered it vital to include the more involved application of

opaque types (section 5.4.1) in the performance chapter in order to give the reader

the satisfactory feeling of seeing realistic results that have come out of implementing

the theory behind opaque types. It was also useful in showing that code conversion

plays a significant enough role in performance improvement without any noticable

overhead; implying that even lexical code conversion is a viable approach to opaque

type implementation and realization.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The approach described in this work is intended to be an easy-to-use tool to allow fast

type safe Java code while preserving existing features of abstraction and robustness.

Scarsity of restrictions and ease of use makes possible for flexible and straight forward

implementations of a vast variety of concepts without a steep learning curve. The use

of metadata in the form of code annotations allows for efficient code transformation

that yields immediate and noticable performance improvements.

Performance is vital in software; opaque object types should allow for Java to

become a more versatile language and make it possible to be used for large scale

projects where speed and resource use are of great concern. Performance experiments

that were carried out demonstrate the flexibility of our approach and its ability to

improve resource use with sacrificing code integrity.

During our experiments we were able to achieve performance that is 15-20 (de-

pending on application) times faster in execution speed and took up 40-45 less heap

space when using opaque types instead of regular object types. The goal of the per-

formance investigations was to measure exactly how much more efficient opaque types

are compared to object types. Achieving these figures shows the true potential of

our approach in making Java a more desirable language for performance-essential ap-

plications. The approach attempts to put Java at the forefront of high performance

general programming languages while maintaining its power to express a high variety

of problems.

Our method complements the research and implementations that have been done

in the past. Techniques that have had varying degrees of success may benefit from
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the approach and become more commonplace. The proposed concept deals with an

industry standard language thus establishing its importance immediately.

It is the hope of the authors that this work demonstrates a viable tool for expand-

ing Java’s general application domain as well as, a valuable step along the way to

general purpose programming languages becoming more efficient and able to solve a

greater variety of problems.

6.2 Native implementation

Current implementation of the approach relies heavily on the use of external tools.

The code converter is a utility written in Java and distributed as a jar file that has to

be referenced during compilation. Despite the converter having been shown to be a

very efficient tool, it is easy to see how a more immediate, low-level, implementation

can benefit the opaque types approach.

The build script, which automates the conversion and compilation process is writ-

ten in Ant and requires ant to run. Meanwhile integration into Eclipse is already

partially completed with the Ant build script approach, it is not as intuitive and

versatile as regular Java language features that are implemented at a deeper level.

Usability and versatility are not the only factors that must be considered when

popular languages are augmented with useful features. In order to promote adoption

by the language standard, the new language features should seamlessly integrate

into the language without causing any awkwardness in their application. The new

constructs (opaque types) should also not hinder the long-standing good performance

and reputation of the language with bloated external tools and alternate building

processes.

Seamless implementation into an existing compiler would speed up the building

process somewhat and, more importantly, make it more convenient for the developers

to employ the power of opaque types. Making opaque types easier to use will help with

adoption for applications where performance may not be vital. Introduction into the

language standard will also be aided by this as the use for external tools would cease

to exist and experimental use by a wider audience would have a greater opportunity

to begin.

In turn, distribution of the implementation would no longer be a difficult step in

encouraging Java developers to try out opaque types. Thus the benefits of using the

new types could be more easily used to convince the general Java developer to find

applications for opaque types where he or she can get the most out of them.
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There are several approaches to providing a more concrete implementation for the

building process. A “convert” or “opaque” flag for an existing compiler is perhaps

the most straight forward. Given the flag, any properly annotated code can be con-

verted prior to compilation. This does not alter the existing building process much

except for speeding it up and making it more invisible. In addition, a more efficient

implementation of the converter utility can be employed to speed up the process

further.

Another alternative to improving opaque type intergration into Java is implement-

ing the approach into an existing Java IDE (e.g. Eclipse). Since some IDE’s keep

an up-to-date internal representation of the code, compilation time is significantly

improved. Adding the capability to recognize and represent opaque types using the

internal syntax helps abstract the feature implementation and speeds up the building

process.

Although not as attractive as direct compiler and JVM implementation, augment-

ing a high level Java code representation is a natural next step to take for the opaque

types approach. Implementing opaque types in an alternative representation should

shed light on further developements the approach could take as more factors come

into play.

6.3 Computer algebra applications

There are many areas where the Java programming language lacks expressive power

and efficiency for a reasonable implementation of a particular application. One of such

areas is computer algebra applications where problems require high level language

features to express but grow quickly in size requiring very efficient implementations

to perform reasonably.

Allowing use of primitive types while preserving the high level Java language fea-

tures should prove valuable in designing solutions to mathematical problems. Prob-

lems that previously required algorithms to be optimized mostly by hand, due to

complex internal structure, could be handled easier by general optimizing compilers.

While Java’s expressive power might still lag behind some of the languages specifically

designed for representing mathematical problems, Java would become a viable choice

for subroutine and algorithm implementations that in turn become parts of a larger

application.

This is the general aim of a native implementation of opaque types as it broadens

the spectrum of possible uses and audiences for Java; meanwhile maintaining its status



83

as a general purpose language that can solve a variety of problems from different

domains elegantly and efficiently.

6.4 Digital ink applications

Compact and efficient representation of digital ink is another application where the

opaque types approach could be an important step forward. Ink can be represented as

a series of points and strokes on the 2-Dimensional plane. As the amount of points and

strokes increases, the size of the data required to store the ink quickly grows. Opaque

types would allow efficient storage and manipulation of ink data without obfuscating

the already complex algorithms used for its analysis and recognition.

For instance, points in the X-Y plane are currently represented by regular objects

with two floating point fields standing for X and Y coordinates. The coordinates could

potentially be converted into int types and “packed” into a single long type object

field. This is a very natural application of the opaque types approach that could be

implemented naturally as only “packing” and “unpacking” operations would need to

be developed from scratch in order to start utilizing the benefts of opaque types.

We aim to make use of opaque types in existing digital ink software in the near

future. We expect this to introduce the observed performance benefits of opaque types

to the analysis and recognition software currently used researchers in the area.

6.5 Java generics

A relatively recent important feature of Java is generics. It is an important branch

of the language that the opaque types approach has not touched upon. As part of

the future work, it is very important to put in place theory and implementation to

incorporate Java generics into the techniques introduced in this thesis.

Development of general algorithms that work on many data types is a valuable

byproduct of Java generics. Combining generics and opaque types will take Java

further in the direction of being a language with great expressive power and efficient

resource use.
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