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Abstract

The goal of this thesis is to explore how computer algebra systems can be augmented

to allow user-guided transformation and simplification of expressions involving sym-

bolic summation. Mathematical expressions represented as trees are one of the data

objects of computer algebra systems. By accessing and manipulating these data ob-

jects we can simplify and transform expressions involving symbolic summation. To

choose what transformations to be performed is under the discretion of the user. We

present a conceptual framework to perform transformations on expressions involving

symbolic summation. This is done by creating a set of library functions for interactive

manipulation of formal sums. We base our design on the properties of summation.

This idea is also extended to other associative operators such as product and definite

integral.

Keywords. Formal Sums, Computer Algebra System, Associative Operators.
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Chapter 1

Introduction

Symbolic computation refers to automatic manipulation of mathematical expressions

in symbolic form as opposed to finding numerical values for these expressions. A

computer algebra system is a computer program that performs symbolic computa-

tion. Powerful interactive systems for doing symbolic computation have been designed

and built. We still face challenging problems, however, while manipulating and sim-

plifying expressions involving symbolic summation. Existing systems do not provide

an adequate set of tools for transforming symbolic sums in the ways required for

interactive simplification. In a computer algebra system performing direct transfor-

mations on symbolic summations involves a series of operations and can be very hard

and tedious. Such manipulations and transformations are very much needed in many

problems involving formal sums. Consider the following transformations,

2n∑

i=1

xi =⇒
n∑

i=1

x2i +
n∑

i=1

x2i−1

100∑

k=1

G(k) =⇒
10∑

k=1

G(k) +
100∑

k=11

G(k)

b∑

j=a

[P (j) + Q(j)] =⇒
b∑

j=a

P (j) +
b∑

j=a

Q(j)
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In the first transformation, we split the summation into even and odd terms. In

the second we split the summation at a term and in the last transformation we split

the summation based on the sum in the inner expression. To perform these trans-

formations in current computer algebra systems we need to access the parameters of

symbolic summation and then set the values of the resultant summation. This can be

very laborious and often cannot be performed in a single step. Such transformations

are naturally done by hand. There is a huge gap between solving symbolic summa-

tion problems by hand and performing the same operations by a computer algebra

system. In our thesis we try to bridge this gap for formal sums.

The goal of this thesis is to explore how computer algebra systems can be aug-

mented to allow user-guided transformation and simplification of expressions involving

symbolic summation.

Symbolic summation manipulations arise often in practice. Computer algebra sys-

tems should be able to accommodate manipulations and computations of this type.

Mathematical expressions represented as trees are one of the most important data

objects of computer algebra systems. By accessing and manipulating these data ob-

jects we can simplify and transform expressions involving symbolic summation. The

choice of transformations is given by the user. In our thesis we propose a technique

to solve these problems by accessing the parameters of the formal sum. Then we

exploit the axioms of summation to perform the required manipulations. Currently

no symbolic computation system implements these axioms to solve such problems.

We give a conceptual framework and provide symbolic tools to create a problem solv-

ing environment. This is done by creating a set of library functions for interactive

manipulation of formal sums. We base our design on the properties of summation.

This idea is also extended to other associative operators such as products and defi-

nite integrals. The idea is to computationally support the user in solving problems

involving formal sums.

This thesis is organized as follows: In Chapter 2, through examples of symbolic

summation, we show the necessity for user defined transformations and manipulation
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of formal sums. Here we also discuss previously developed methods for expression

manipulation and symbolic summation manipulation techniques.

The transformations and manipulations of expressions are governed by a set of

rules or axioms. Properties of summation form the basis of our design. These details

are covered in Chapter 3.

Chapter 4 gives details of Maple software package containing the library functions

for manipulation of formal sums.

Chapter 5 describes how our algorithms have been extended to other associative

operators such as products and definite integrals.

In Chapter 6 we show how our library functions provide the necessary tools to

manipulate summations, such as the examples of Section 2.1.

Chapter 7 provides our final overview of the project, and gives conclusions and

extensions for future work.
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Chapter 2

Preliminaries

2.1 Motivation

The objective of this section is to present some examples of symbolic summation prob-

lems and discuss the difficulties of applying computer algebra to such problems. The

leading computer algebra systems are powerful tools but they have many drawbacks.

The motivation for our study came when we were trying to derive some identities

involving formal sums on a computer algebra system. We saw that to perform trans-

formations and manipulations on these sums is not so straightforward. The following

examples illustrate typical problems which occur while obtaining these identities in a

computer algebra system.

2.1.1 Example: The Binomial Theorem

The binomial theorem describes the algebraic expansion of powers of a binomial.

According to this theorem, it is possible to expand any power of x + y into a sum

of the form as in (2.1). This example has summation involving binomial coefficients.

There are other ways to do the proof, but this is just being used as an example of

manipulating summations, not as the best way to prove the result. We prove this
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theorem by induction. Note that we are not interested in proving the theorem given by

(2.1), but rather in showing what sorts of transformations are useful in manipulating

formal sums.

To be proved: For any n ǫ N and any x, y ǫ R,

(x + y)n =

n∑

k=0

(
n

k

)

xkyn−k (2.1)

Proof: We prove it by induction. For n = 0 we have

(x + y)0 =

(
0

0

)

x0y0 = 1

Assume the formula holds for some fixed arbitrary n ǫ N. Then,

(x + y)n+1 = (x + y)(x + y)n

= (x + y)

n∑

k=0

(
n

k

)

xkyn−k (2.2)

=

n∑

k=0

(
n

k

)

(x + y)xkyn−k (2.3)

=
n∑

k=0

(
n

k

)

xk+1yn−k

︸ ︷︷ ︸

+
n∑

k=0

(
n

k

)

xkyn+1−k

︸ ︷︷ ︸

(2.4)

set l = k + 1 set l = k

=
n+1∑

l=1

(
n

l − 1

)

xlyn+1−l +
n∑

l=0

(
n

l

)

xlyn+1−l (2.5)

=

n∑

l=1

(
n

l − 1

)

xlyn+1−l + xn+1 + yn+1 +

n∑

l=1

(
n

l

)

xlyn+1−l (2.6)

= xn+1 +

n∑

l=1

[(
n

l − 1

)

+

(
n

l

)]

xlyn+1−l + yn+1 (2.7)
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= xn+1 +
n∑

l=1

(
n + 1

l

)

xlyn+1−l + yn+1 (2.8)

=
n+1∑

l=0

(
n + 1

l

)

xlyn+1−l (2.9)

which completes the proof by induction.

Proving this theorem by hand is much simpler than doing it on a computer algebra

system. The transformation of multiplying the inner expression of the summation

in (2.2) with (x + y) and transforming it to (2.3) is extremely awkward in current

computer algebra systems, such as Maple. Splitting the summation based on the

sum (x + y) as in (2.3) and transforming to (2.4) is also tedious. Then rearranging

or shifting the first summation of (2.4) by 1 and transforming it to (2.5) involves a

number of operations. Later combining the two summations which have the same

range l = 1 .. n in (2.6) and forming (2.7) is also laborious. We apply the Pascal’s

identity,

(
n + 1

r

)

=

(
n

r − 1

)

+

(
n

r

)

to the binomial coefficients of (2.7) and then deduce to (2.8). Finally in (2.9) we

prove the theorem for power n + 1. The intention is not to develop a theorem prover

but rather to develop techniques to perform transformations and manipulations of

summations on a computer algebra system.

2.1.2 Example: Summation involving Stirling Numbers

Stirling numbers often occur in combinatorics. There are two different kinds: the

Stirling numbers of the first kind and the Stirling numbers of the second kind. In this

example we make use of the second kind. The Stirling numbers of the second kind

count the number of ways of partitioning n distinct objects into k non-empty sets.

They are denoted by,
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





n

k






or S(n, k)

Falling power: The expression x to falling power m is denoted by xm whose value is

given by,

xm = x(x − 1)(x − 2)...(x − (m − 1)) (2.10)

According to Theorem [12,4.1] we can convert between powers and falling powers

using the following formula,

xn =
n∑

k=0







n

k






xk or xn =

n∑

k=0

S(n, k)xk

Proof: We will prove this by induction on n.

The base case n = 0 is trivial.

x0 = S(0, 0)x0 = 1 (2.11)

Our induction hypothesis is that xn =
n∑

k=0

S(n, k)xk holds for all n ≤ r

xr+1 = xxr

= x

r∑

k=0

S(r, k)xk (2.12)

=

r∑

k=0

xS(r, k)xk (2.13)

=

r∑

k=0

S(r, k)
[
xk+1 + kxk

]
(2.14)

=

r∑

k=0

S(r, k)xk+1 +

r∑

k=0

S(r, k)kxk (2.15)

=

r+1∑

k=1

S(r, k − 1)xk +

r∑

k=0

S(r, k)kxk (2.16)
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=
r∑

k=1

S(r, k − 1)xk + S(r, r)xr+1 + S(r, 0)x0 · 0 +
r∑

k=1

S(r, k)kxk (2.17)

= S(r, r)xr+1 +
r∑

k=1

[

S(r, k − 1)xk + S(r, k)kxk
]

(2.18)

= xr+1 +

r∑

k=0

S(r + 1, k)xk (2.19)

=

r+1∑

k=0

S(r + 1, k)xk (2.20)

In the first step, we applied our induction hypothesis, then in (2.12) we moved x

inside the sum. The following equation from Lemma [12,4.2] for falling powers is

used to transform (2.13) to (2.14).

xxk = xk+1 + kxk (2.21)

We then split the summation into one summation based on xk+1 and the other based

on xk and later shift the first summation by 1. Again we split the summations at

a term to get them in the same range k = 1 .. r. Now we can pull out the terms

corresponding to k = r + 1 and k = 0 and set S(r, r) = 1 and S(r, 0) = 0. Next we

combine the summations with the same range and transform from (2.18) to (2.19)

using the following equation from Theorem [12,4.2]. Lastly in (2.20) we prove the

theorem for r + 1.

S(n, k) = S(n − 1, k − 1) + kS(n − 1, k) (2.22)

The transformation of multiplying the inner expression of summation in (2.12) with x

and transforming it to (2.13) involves a series of operations. Splitting the summation

based on the sum xk+1 +kxk as in (2.14) and transforming to (2.15) is a bit laborious.

Rearranging or shifting the first summation of (2.15) by 1 and transforming it to (2.16)

involves a series of operations. Later combining the two summations of (2.17) as they
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have the same range k = 1 .. r and forming (2.18) is very time consuming in the

current computer algebra system.

2.1.3 Example: Summation involving functions

In this example, we have an input expression involving summations as in (2.23). We

need to manipulate this expression and transform it to the expression (2.24).

Input:

n−1∑

i=0

[
f(i) + f(i + 1)

]
+

n∑

i=1

[
g(i) + g(i + 1)

]
(2.23)

Output: f(0) + 2f(1) + g(1) + 2

n−1∑

i=2

[
f(i) + g(i)

]
+ f(n) + 2g(n) + g(n + 1) (2.24)

The following steps represent the way we would derive (2.24) by hand.

n−1∑

i=0

[
f(i) + f(i + 1)

]
+

n∑

i=1

[g(i) + g(i + 1)]

=

0∑

i=0

[
f(i) + f(i + 1)

]
+

n−1∑

i=1

[
f(i) + f(i + 1)

]
+

n−1∑

i=1

[
g(i) + g(i + 1)

]

+
n∑

i=n

[
g(i) + g(i + 1)

]
(2.25)

= f(0) + f(1) +
n−1∑

i=1

[
f(i) + f(i + 1)

]
+

n−1∑

i=1

[
g(i) + g(i + 1)

]
+ g(n)

+g(n + 1) (2.26)

= f(0) + f(1) +

n−1∑

i=1

f(i) +

n−1∑

i=1

f(i + 1) +

n−1∑

i=1

g(i) +

n−1∑

i=1

g(i + 1) + g(n)

+g(n + 1) (2.27)

= f(0) + f(1) +
n−1∑

i=1

f(i) +
n∑

i=2

f(i) +
n−1∑

i=1

g(i) +
n∑

i=2

g(i) + g(n)

+g(n + 1) (2.28)
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= f(0) + f(1) +
1∑

i=1

f(i) +
n−1∑

i=2

f(i) +
n−1∑

i=2

f(i) +
n∑

i=n

f(i) +
1∑

i=1

g(i)

+
n−1∑

i=2

g(i) +
n−1∑

i=2

g(i) +
n∑

i=n

g(i) + g(n) + g(n + 1) (2.29)

= f(0) + f(1) + f(1) +

n−1∑

i=2

f(i) +

n−1∑

i=2

f(i) + f(n) + g(1) +

n−1∑

i=2

g(i)

+

n−1∑

i=2

g(i) + g(n) + g(n) + g(n + 1) (2.30)

= f(0) + 2f(1) + g(1) +
n−1∑

i=2

[
2f(i) + 2g(i)

]
+ f(n) + 2g(n) + g(n + 1)

(2.31)

= f(0) + 2f(1) + g(1) + 2

n−1∑

i=2

[
f(i) + g(i)

]
+ f(n) + 2g(n) + g(n + 1)

(2.32)

On observing (2.23), we see that we can combine the two summations if we get

them in the same range. To get the summations in the same range i.e. i = 1 .. n− 1,

we perform a split in the first summation at i = 0 and the second summation at

i = n − 1 and form (2.25). The summations with range i = 0 .. 0 and i = n .. n are

nothing but terms hence we get their values in (2.26). We split the summations based

on the inner expression and form (2.27). The output does not contain any i+1 terms

hence to get this we shift the summations with i + 1 terms by 1 and form (2.28). We

need to get the summations in range i = 2 .. n − 1, hence we split the summations

at corresponding intervals and form (2.29). Summations with intervals i = 1 .. 1 and

i = n .. n are nothing but values hence we get these values and form (2.30). Then we

combine the summations with range i = 2 .. n − 1 and form (2.31). Finally in (2.32)

we factor out 2 from the summation to get the expected output.

As seen in the above three examples it is challenging to solve these symbolic sum-

mation problems in current algebraic systems. To perform such transformations in a

computer algebra system such as Maple, we need to get each operand of summation

and manipulate them and then set the values for the resultant summation. Hence to
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do this we need to understand how expressions are edited, represented and manip-

ulated in the current computer algebra systems, which is described in detail in the

following section.

2.2 Expression Editors

An expression editor provides an interface to create and edit mathematical expressions

in a computer. Expression editors are mathematical manipulation and typesetting

(presentation of textual material in graphic form) programs which help to create and

edit expressions. The main purpose of expression editors are to display and re-arrange

expressions in mathematically meaningful ways and perform transformations to alter

the data and evaluate expressions. User Interface plays an important role in such

an application. Its intuitive GUI offers visual navigation of sub-expressions and an

expression template palette for expression input. The main design criteria for these

editors should be their math capabilities. Several mathematical editors have been

developed in the past ten years. MathEdit, Matlab, Microsoft Equation Editor(for

Microsoft Windows only), Mathcad, IBM MathML expression editor [2] developed

by IBM Research and being acquired by Integre Research Group are a few examples

which are used in computing science and education.

2.2.1 Expression Trees

An expression in an editor is usually structured internally as a tree. The structure

of an expression involves the relationship between the operands and operators. Since

expressions are one of the data objects of computer algebra systems, an understanding

of this structure is essential.

Figure 2.1 shows the structure of an expression tree for a + bx2. The operator at

the root is called the main operator, a designation that emphasizes a + b ∗ x ∧ 2 is

viewed as a sum with two operands a and b∗x∧2. The structure of the tree makes the
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Figure 2.1: Expression tree for a + bx2

order of operations for an expression implicit. It can be thought of as removing the

precedence rules and just having parentheses. The plus sign has the least precedence

and so is on the top. Similarly, x binds tighter to 2 through the power operation than

to b through the times operation. A simple set of rules based on the precedence of each

operator and whether it is left or right associative determines where parentheses are

needed. To simplify this expression we need to perform some evaluations. Evaluation

can be defined as mapping from an object which is the input to another simpler or

more specific object i.e. output.

2.2.2 Serialization Format

Serialization is a process of converting an object or data structure to an ordered series

of bytes for permanent storage or for transmission across the network. It needs to

store enough information of the original object for recreation including other objects

to which it refers. The format used to serialize the expressions should be simple to

parse into an internal representation, easily understood by human to be applied for

various tasks and compatible for wide range of applications. They produce a seman-

tic representation of the expression. During serialization of the tree structure, the

precedence of the operators is examined to determine where parentheses are needed

to faithfully reconstruct the tree. Expression (2.34) illustrates the serialized version
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of (2.33).

√

cos (5x + 2)

4 + sin x
(2.33)

sqrt(cos(5∗x+2))/(4+sin(x)) (2.34)

2.2.3 Presentation versus Content

There are two kinds of expression editors, presentation-based and content-oriented.

Presentation-based editors produce representation of formulae and store the typeset-

ting primitives rather than the meaning. They do not store a representation of the

formula that can be manipulated and computed. For automatic computer processing

the resulting expression in these editors is ambiguous or there is no interpretation to

them as they are based on typesetting language. Content oriented editors are difficult

to find. The few are at a developmental stage: JOME [7] and MathML Expression

Editor [2]. There are some editors which are integrated to a broad spectrum computer

algebra system to perform transformation and manipulations of expressions with a

rich set of mathematical libraries. The math software provides an extensive function

library supporting general math, trigonometric, chemistry, geometric, statistical, and

numerous random number generators following a variety of statistical distribution

and many other function categories.

2.2.4 Web Support

There are few standalone editors, but now most editors provide browser support ei-

ther natively or through a plug-in. It must be flexible and customizable to support

different category of users. For Web publications expressions are created and then

converted to images. HTML has no real support for mathematics, often one must

resort to gif images. Using images results in poor quality printing and loss of all

semantic information. Editors should provide a translation system to mathematics
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entered in the editing window to virtually any text based language. There has histor-

ically been no means to ‘cut and paste’ mathematical expressions from a Web page

into (say) a computer algebra package. This is now possible with two new technolo-

gies OpenMath and MathML. These are two different encoding of mathematics on

the Web. Editors can serialize the content tree to these encodings. MathML is an

xml application to describe mathematical notation and capturing both its structure

and content. It is a standard for representing mathematics on the Web. There are

two kinds of MathML: Presentation and Content. Presentation focuses on how the

expression looks such as color, size and position where as Content as the name implies

focuses on expressing operations such as addition, integration, matrices, etc. Open-

Math is another emerging standard for representing mathematical objects with their

semantics for purposes such as exchanging between computer programs, to be pub-

lished on the Web or to be stored in a database. MathML and OpenMath are highly

complementary. Though MathML does have some limited facilities for dealing with

content, it also allows semantic information encoded in OpenMath to be embedded

inside a MathML structure.

Though expression editors provide a way to create formal sums it is not possible

to manipulate and perform transformations on such sums. These editors support a

set of library functions which can be extended. This thesis is an effort to provide this

functionality by designing and implementing a set of functional commands for such

transformations. Maple is a symbolic and numeric computation system with support

for importing and exporting MathML 2.0, including both presentation and content

forms of MathML.

2.3 Previous Work

It is quite important to understand the methods for expression manipulation and draw

ideas for symbolic summation manipulation. In this section we explore various ways

of expression manipulation and illustrate with examples the train of thought that was
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followed while designing the manipulation of expressions. In Section 2.3.1 we describe

the concept of direct manipulation and discuss some editors which have implemented

this concept. Analytica is a theorem prover which uses summation properties to prove

theorems involving symbolic summation and is discussed in Section 2.3.2. In Section

2.3.3 we discuss the Theorema system which defines rules for various operators and

performs algebraic manipulations based on these rules. Finally in Section 2.3.4 we

show how manipulation of expressions are performed using term rewriting techniques.

2.3.1 Direct Manipulation

Direct manipulation is a very interesting area of expression manipulation. The main

goal of this concept is to combine the process of editing and simplification. In a

direct-manipulation editor for mathematical content we can edit an expression “in

place” as the expression is formatted and displayed on the screen in a traditional

notation. The process of editing and displaying occur simultaneously and the ex-

pression is reformatted at every modification. Amaya, FrameMaker, MathType, LyX

and Mathematica provide direct-manipulation editors. These work on a structured

representation of the document. Mathematical structures contain empty regions for

sub-expressions usually denoted by � for entering sub-expressions. �
√

� and �

�
rep-

resent the structures for roots and fractions respectively. The users can click on any

of these boxes to set the focus and enter the data. These editors have a lot of us-

ability issues such as, performing another intermediate step of mentally parsing the

expression to decide the sequence of structures to be chosen, coordinating between

the presentation and structural representation of expressions and extensibility to new

operators.

There are few editors such as MathEx which allow customization of structural

palettes, keyboard editing and notational presentation. Another example of direct

manipulation would be, for instance moving a symbol in an expression implicitly

means solve the expression with respect to this variable. A few editors also provide

the facility for the user to move sub-expressions around while the system maintains
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the meaning of the surrounding expression or makes substitutions by dragging and

dropping formulas. In most direct-manipulation editors content and presentation

MathML, OpenMath semantic markup are used for internal representation of struc-

tural and presentational information of expressions. Let us see the concept of direct

manipulation implemented in Amaya and JOME.

Amaya

Amaya [21] is a Web editor where in we can create and update documents directly

on the Web. Amaya proposes a WYSIWYG interface where MathML mathematical

expressions are handled as structured components. The input structure for expression

x4

√
y−z

looks as shown in Figure 2.2. In editors such as Amaya the cursor navigation

defines the visual presentation and the content representation is also indicated explic-

itly. In Figure 2.2 the user sets the position of the cursor to change the value of 4,

automatically the pointer in the MathML representation goes to the corresponding

data as shown in Figure 2.3 and updates the value simultaneously.

Figure 2.2: An input structure for expression x4

√
y−z

in Amaya showing the cursor
positioned at 4 for updating
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1 <?xml version=” 1 .0 ” encoding=” iso −8859−1”?>

2 < !DOCTYPE math PUBLIC ”−//W3C//DTD MathML 2.0//EN”

3 ” h t tp : //www.w3 . org /TR/MathML2/dtd/mathml2 . dtd”>

4 < !−− Created by amaya 11 .3 .1 , see h t t p : //www.w3 . org /Amaya/ −−>

5 <math xmlns=” h t tp : //www.w3 . org /1998/Math/MathML”>

6 <mfrac>

7 <msup>

8 <mi>x</mi>

9 <mn>4</mn>

10 </msup>

11 <msqrt>

12 <mi>y</mi>

13 <mo>&minus ;</mo>

14 <mi>z</mi>

15 </msqrt>

16 </mfrac>

17 </math>

Figure 2.3: Presentation MathML for expression x4

√
y−z

in Amaya showing the data
being updated simultaneously with the input

JOME - Java OpenMath Editor

JOME [7] is a self-contained software component for visualization and manipulation

of mathematical formulae. It uses OpenMath for the representation of semantically

rich mathematical objects. It is written in Java and is conceptually based on Model-

View-Controller(MVC) design pattern. It proposes selection/deselection mechanism

for interacting with displayed formula. Selection determines the part of formula to

which the desired manipulation will apply and is the first brick of functionality for

interactivity. According to the element pointed to by the mouse, JOME automatically

fits the selected sub-expression to be the smallest syntactically correct expression.



18

Figure 2.4: A sub-expression manipulated according to the commutative property of
addition

This guarantees the coherence of subsequent operations on the expression. It is

possible to select the whole formula or just parts of it. Once selected, depending on

the properties of the operator for which the selected sub-expression is the operand,

the sub-expression can be manipulated. JOME has some support for manipulating

formulas with semantic drag and drop (the selection can be moved from one side of an

operator to the other with a relevant mathematical transformation performed). For

example consider Figure 2.4, it is possible to “move” the selected operands based on

the commutative property of addition to the extreme right resulting in an expression

as shown in Figure 2.4 (b).

2.3.2 Analytica

A technique similar to our approach exists in Analytica [5], an experimental auto-

matic theorem prover written on top of Mathematica computer algebra system. The

main problem to prove theorems is the large amount of domain knowledge needed

for even the simplest of proofs. Hence Analytica combines theorem proving with the

mathematical knowledge that is built in the symbolic computation so that each sim-

plification step can be rigorously justified. Mathematica is based on term-rewriting

and also provides a powerful rule-based programming language. It also deals with

expressions involving symbolic summation and product operators. In addition to

the simplification rules that are provided by the symbolic computation system, it

makes use of summation properties to prove theorems. The rules in Analytica for

summation are divided into two sets, SumSimplifyRules and SumRewriteRules. The
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former is used to rewrite summation to simpler forms and the latter is used to

rewrite to equivalent form but not necessarily simpler. The following comes from a

lemma used in the proof of existence of a continuous nowhere differentiable function

given by Weierstrass is an example [5] which demonstrates the way Analytica solves

the summation problem.

Summation example in Analytica:

∞∑

n=0

bn cos(πanx) − (−1)α
( ∞∑

n=m

bn(1 + cos(πa−m+nξ(m)))
)

−
∞∑

n=0

bn cos(πa−m+n(1 + α))

+
m−1∑

n=0

bn(− cos(πanx) + cos(πa−m+n(1 + α))) = 0

simplify summations

−
(

(−1)α
( ∞∑

n=m

bn(1 + cos(πa−m+nξ(m)))
))

+

∞∑

n=0

bn(cos(πanx) − cos(πa−m+n(1 + α)))

+

m−1∑

n=0

bn(− cos(πanx) + cos(πa−m+n(1 + α))) = 0

simplify summations

−
(

(−1)α
( ∞∑

n=m

bn(1 + cos(πa−m+nξ(m)))
))

+
∞∑

n=m

bn(cos(πanx) − cos(πa−m+n(1 + α)))

= 0

simplify summations

∞∑

n=m

(−(−1)αbn(1 + cos(πa−m+nξ(m)))) + bn(cos(πanx) − cos(πa−m+n(1 + α))) = 0

reduces to

∞∑

n=m

(bn(− cos(πanx) + (−1)α(1 + cos(πa−m+nξ(m))) + cos(πa−m+n(1 + α)))) = 0

This can be simplified to True by trigonometric rules.
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2.3.3 The Theorema System

A system for computer supported mathematical theorem proving and theory explo-

ration. It is implemented in Mathematica system. In a non-interactive mode, The-

orema solves the given reasoning problems automatically i.e. the inference rules are

applied automatically and the user sees only the output. However in an interactive

mode [18] the system is compelled to stop after every step of applying the inference

rule to wait for a decision from the user which is quite similar to our user directed

manipulation. In Theorema, a user interacts with three blocks of system compo-

nents: reasoners, organization tools and libraries of mathematical knowledge. Basic

building blocks of the system’s reasoners are inference rules which are implemented

as Mathematica functions that can be grouped into modules and then combined with

reasoners. In a Theorema session reasoners which are basically proofs are accessed

by the following call,

Reason[entity, using → knowledge− base, by → reasoner, options]

where Reason is one of Prove, Compute or Solve; entity is a mathematical entity

to which Reason needs to be applied; knowledge-base is knowledge which needs to

referred for reasoning; options are specific information which influence the behavior

of reasoners. After this call is sent for evaluation to the Mathematica kernel, the

system displays the set of inference rules to be applied to the next step and waits for

the decision from the user to choose the rules listed or proceed with a different set of

rules. Finally the output is in the form of a pretty-printed, textbook-style syntax.

2.3.4 Term Rewriting

A reasoning technique for manipulating large expressions by replacing sub-terms of

the expressions with equivalent expressions giving the justification for simplification.

This technique has been extensively used in computerized proof systems and computer

algebra systems. In paper [6] they propose an interactive tool that makes it possible to
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perform frequent rewrite operations using drag-and-drop paradigm. This tool applies

only to certain class of rewrites where the operation can be intuitively interpreted as

a movement of data. Consider the example where in we need to simplify the simple

expression (x + 0) + (x + 0) by rewriting. In the design of the editor proposed in [6],

the user can select the second (rightmost) 0 and drag the mouse to the closest + sign

(the third one) then the proof system generates and executes a command that makes

a new goal appear, where the previous expression is replaced with x + 0 + x.

Figure 2.5: Algebraic manipulation in Term Rewriting

2.3.5 Summation in Finite Terms

This thesis studies the transformation and manipulation of formal sums. A related

problem, that we do not study here, is finding closed-form expressions for summations.

That is, given a formal sum, to find an equivalent expression that does not involve

any summation operators. Computer algebra systems are generally quite good at

this. In (2.35) we give an example of closed form of a summation.

n∑

i=1

i =
n(n + 1)

2
(2.35)

There exist many algorithms which cover various classes of summands for computing

closed forms of indefinite and definite sums. For example, Gosper’s algorithm finds
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closed form of hypergeometric identities. Michael Karr, in his paper[15] finds formulas

for finite sums. The approach taken by him is to pose the problem in algebraic terms

and then to derive constructive terms for summability. The Karr’s summation algo-

rithm has been implemented in Mathematica. Almost all computer algebra systems

such as Maple, Mathematica, Macsyma can actually compute closed form of a sum.

The SumTools package in Maple finds closed form of indefinite and definite sums.

In our thesis, we are not computing closed form of sums, but we are manipulating

summations.
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Chapter 3

Summation

Summations play an important role in symbolic computation. Summation is an addi-

tion of a set of terms. The “terms” to be summed may be natural numbers, complex

numbers, matrices, or still more complicated objects. In mathematics we have a spe-

cial representation for addition of many similar terms. Greek letter
∑

(sigma) is

used as a notation for such a summation. If f(i) represents some function involving

i, then this symbolic expression

b∑

i=a

f(i) (3.1)

is equivalent to the sum,

f(a) + f(a + 1) + f(a + 2) + .... + f(b − 1) + f(b) when a ≤ b

−f(a + 1) − f(a + 2) − .... − f(b − 1) when a > b

i → index of summation which is always an integer.

a → lower limit of summation.

b → upper limit of summation.

This notation means evaluate the expression f(i) of the summation for every

value of i from the lower limit to the upper limit (inclusively) and add the results
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together when the lower limit is less than or equal to the upper limit. We can

explicitly expand this to a sum of b − a + 1 terms. The generalization to the case

when the lower limit is greater than the upper limit is used by many authors, e.g.[15],

and allows more natural identities. It means to find difference of all terms between

lower and upper limit. When a > b many authors take the sum to be zero. This,

however, complicates many simple identities. Instead, we adopt the convention that

the summands are negated, which avoids exceptions, as detailed below. It is hard

in symbolic computation to define what simplest form of an expression means. In

most of the computer algebra systems, the expressions are automatically simplified

by applying algebraic transformations defined by axioms or rule groups. In our thesis

we design and implement the manipulation of symbolic summation of the form as in

(3.1). Automatic simplification is defined as a collection of algebraic transformations

that is applied to an expression as a part of evaluation process. This is governed by

rules (or rule groups). We use the same concept to transform and manipulate symbolic

summation by axioms of summation. We will see these axioms in the following section.

3.1 Properties of Summation

In this section we introduce a number of rules to operate on summations. All these

axioms are simple identities of summation.

I. If C is a constant in the summation and does not depend on k i.e. the iterating

variable, we can factor out a constant i.e. C from the summation.

n∑

k=s

Cf(k) = C

n∑

k=s

f(k)

II. If the inner expression of a summation has a sum (+) or difference (-) as the

highest level operator, then the summation is equal to sum or difference of
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individual summations of those inner expressions.

n∑

k=s

[

f(k) ± g(k)
]

=

n∑

k=s

f(k) ±
n∑

n=s

g(k)

III. This could be another condition of property (I) where the constant being mul-

tiplied is -1.
t∑

n=s

−f(n) = −
t∑

n=s

f(n)

IV. We can split up a summation into several parts based on their limits as far as

the value of indices are maintained. In (3.2) we split the summation with a

range from s to n at jth term.

n∑

k=s

f(k) =

j
∑

k=s

f(k) +
n∑

k=j+1

f(k) (3.2)

This is known as the “Chasles relation” in the French literature. This can have

two conditions when j ≤ n and j > n . It is quite straightforward when j ≤ n.

But for j > n consider this example,

s = 1 n = 4 j = 6

4∑

k=1

f(k) =

6∑

k=1

f(k) +

4∑

k=7

f(k) (3.3)

4∑

k=1

f(k) = f(1) + f(2) + f(3) + f(4) (3.4)

6∑

k=1

f(k) = f(1) + f(2) + f(3) + f(4) + f(5) + f(6) (3.5)

4∑

k=7

f(k) = −f(5) − f(6) (3.6)

In (3.3), we split the summation at a value greater than the upper limit (i.e.

6 > 4). To check whether the split is correct we get the actual terms in (3.4),
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(3.5) and (3.6) and we can see that the split holds good because (3.4) is same

as the sum of (3.5) and (3.6).

We can also split the summation based on even and odd terms. To find a formula

for such a split is not straightforward especially when the lower limit is odd and

upper limit is even and vice versa. Hence we devised the following formula which

works for all conditions,

b∑

k=a

A(k) =

⌊ b

2
⌋

∑

k=⌈a

2
⌉
A(2 k) +

⌈ b

2
⌉

∑

k=StartSplit

A (2 k − 1) (3.7)

where StartSplit=







⌈
a
2

⌉
if a is odd

⌈
a
2

⌉
+ 1 if a is even

Let us take an example and see how we can split the summation into even and

odd terms,

a = 7 b = 1

1∑

k=7

A(k) =
0∑

n=4

A(2k) +
1∑

n=4

A(2k − 1) (3.8)

0∑

k=4

A(2k) = −A(2) − A(4) − A(6) (3.9)

1∑

k=4

A(2k − 1) = −A(3) − A(5) (3.10)

1∑

k=7

A(k) = −A(2) − A(3) − A(4) − A(5) − A(6) (3.11)

Solving (3.7) for the values a = 7 and b = 1 we get (3.8). To check whether the

split is correct we get the actual terms in (3.9), (3.10) and (3.11) and we can

see that (3.11) is same as the sum of (3.9) and (3.10). We could also split a sum

based on the congruence class of the index modulo any number, but the even

and odd case is most common.
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V. We can shift or rearrange the summation by any value p (as in our example). The

summation remains unaltered as it is the same sequence of terms added because

though we add p to the limits it is also being subtracted from the index variable.

n∑

k=s

f(k) =

n+p
∑

k=s+p

f(k − p)

VI. We can reverse the order of terms in a summation as shown below. This will

rearrange the terms from upper limit to lower limit without altering the value.

n∑

k=s

f(k) =

n−s∑

k=0

f(n − k)

Our simplification and transformation of formal sum is based on these identities but

it is user directed simplification and not automatic.
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Chapter 4

The Design Of A Software Package

There are numerous computer algebra systems, and these can be divided into general

purpose and special purpose systems. Maple, Mathematica and Axiom are a few main

general purpose software packages. CoCoA, SINGULAR and Macaulay are special

purpose systems in the field of computational algebraic geometry. Both Maple and

Mathematica provide a rich set of library functions to solve various kinds of problems

in engineering applications and research.

While designing a computer algebra system, it is hard to build-in commands

to anticipate each and every user requirement. Hence, except a few very specific

application-oriented, computer algebra systems provide a programming language to

write user specific commands. General purpose computer algebra systems provide a

language to allow a user to deal with notation and semantics of programming as well

as mathematics. We design and implement a software package in Maple 13.

4.1 Maple

Maple is one of the most powerful computer algebraic systems. It is user friendly,

accurate and provides a high level programming language and provides two and three

dimensional graphical output. It is a procedural programming language. It also has
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a few functional programming constructs. Maple is dynamically typed. No typed

declarations are required but types exist. Symbolic languages such as Maple can per-

form operations on unevaluated objects which is done by sequence of simplifications

using built-in or user defined rules and assignments. The programmer has the control

over the order and depth of evaluation of objects. Let us understand the internal

organization of Maple.

4.1.1 Organization

Maple has three main components a kernel, a library and user interface. The kernel

and library form the computational engine.

4.1.1.1 Kernel

The kernel written in C language is the core component of Maple. It performs fun-

damental or low level operations such as arbitrary precision arithmetic, execution of

Maple language, file input and output etc. The primary responsibility is to interpret

Maple language and represent data structures. It also saves the values of worksheet

variables. While working on many worksheets in the same Maple session, it can be

run in three different kernel modes shared, parallel and mixed modes. In shared

mode, the variable assignments in one worksheet apply to all open worksheets. In

parallel mode, variable assignment of one worksheet cannot be accessed in another.

In mixed mode, the user is prompted to set the mode every time a new worksheet is

open. Setting the mode can be done using the Options tab on the Tools menu. The

compiled kernel of the system is about 100K bytes in size.

4.1.1.2 Library

The library contains most of the mathematical functionality which are written in

Maple language. It consists of two parts main and packages. The main Maple library
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contains the very frequently used commands and packages contain commands for very

specific and related calculations. The library is stored in an archive and the kernel

loads and interprets it on demand.

4.1.1.3 User Interface

Maple has two kinds of user interface: graphical and command-line. The former is

for more interactive use while the latter could be used for batch processing and if we

need to dedicate all the resources for computation.

4.1.2 Internal Functions

The evaluation of expressions are performed by internal functions in Maple. The

internal functions are divided into five distinct groups which are as follows,

4.1.2.1 Evaluators

These are the main functions responsible for evaluation of expressions. There are

six types of evaluations which are algebraic expression, boolean expression, name

forming, statements, arbitrary precision and hardware floating point arithmetic. The

statement evaluator is called after a user interface. After this a lot of interactions

happen between the evaluators. Let us consider this example,

if c ≥ 10 then i := 10.2 ∗ a end if;

The statement evaluator first analyzes this statement and calls the boolean evaluator

to resolve the if condition. If evaluation of the if statement is true then assignment

of i := 10.2 ∗ a is performed by calling the statement evaluator again. This in turn

calls the name forming evaluator to perform the left side of assignment and as the

right side has a floating point number an arbitrary precision floating point evaluator

is invoked.
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4.1.2.2 Algebraic Functions

These are also called “basic” functions. These include finding the coefficients of

polynomials (coeff), finding indeterminates (indets), mapping a function (map) etc.

4.1.2.3 Algebraic Service Functions

These functions serve the functions mentioned in the previous category which are

also algebraic in nature. These cannot be directly called by the user. The examples

include internal arithmetic packages, library functions retrieval etc.

4.1.2.4 Data Structure Manipulation Functions

These are algebraic functions which work on data structures instead of mathematical

objects. The data structures include sums, products, expression sequences or lists.

Examples include operand selection (op), operand substitution (subsop), searching

(has) etc.

4.1.2.5 General Service Functions

These are general purpose functions and not very specific to numeric or symbolic

computation. Examples could be storage allocation, table manipulation, garbage

collection. These functions can be called by any other functions in the system as they

are placed in the lowest hierarchical level.

4.1.3 Modules and Packages

The Maple system can be used interactively as an expression editor and computa-

tional procedures can be written using the high-level Maple programming language

and libraries or packages can be added to the environment to extend capabilities.

Procedures allow us to associate a sequence of commands with a single command.
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Similarly modules associate related procedures and data.

Modules are a type of Maple expression which helps us to write generic al-

gorithms, create packages or use Pascal-style records in programs. The use of

modules satisfies the following important software engineering concepts,

• Encapsulation - It guarantees that an abstraction is used only according to its

specified interface. It is possible to write significant software systems that are

transportable and reusable. This makes code easier to understand and maintain

important properties for large software systems.

• Packages - These gather a number of procedures that enable us to perform

computations in some well-defined domain.

• Object Modeling - Objects are easily represented using modules. In object-

oriented programming and software engineering an object is defined as some-

thing that has both state and behavior. Similarly with modules, we compute

with objects by sending them messages to which they respond by performing

services.

• Generic Programs - These accept objects that possess specific properties or

behaviors. The underlying representation of the object is transparent to generic

programs.

4.2 The Software Package: OpManipulate

Maple has a powerful ability to compute symbolic summations as closed form ex-

pressions, but its ability to do symbolic manipulations on the summation expressions

themselves is limited. The ‘Sum’ command is a general purpose command to create

summation. If the summation’s value can be calculated then sumcomputes a closed

form for the summation, else returns it unevaluated. A summation with symbolic
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range will not be simplified. We restrict ourselves to finite sums. In this section we

explain the need for designing these library functions but a detailed description for

each of these library functions (calling sequence and examples) is given in Section 5.3.

There are numerous computations and mathematical problems involving summa-

tions. Here we take one example from [1] to demonstrate the need for designing and

implementing a few library functions based on the summation properties. Here we

intend to show the summation manipulations and please refer to [1] for mathematical

aspects and terminologies. In statistics, if E[X] is the expected value of a random

variable X, uniformly taking integer values 0, 1, ..., n, then E[X2] may be calculated

as follows:

E[X2] =

n∑

k=0

(k(k − 1) + k)

(
n

k

)

pk(1 − p)n−k (4.1)

=
n∑

k=0

k(k − 1)

(
n

k

)

pk(1 − p)n−k +
n∑

k=0

k

(
n

k

)

pk(1 − p)n−k (4.2)

=
n∑

k=2

k(k − 1)

(
n

k

)

pk(1 − p)n−k +
n∑

k=1

k

(
n

k

)

pk(1 − p)n−k (4.3)

=
n∑

k=2

n(n − 1)

(
n − 2

k − 2

)

pk(1 − p)n−k +
n∑

k=1

n

(
n − 1

k − 1

)

pk(1 − p)n−k (4.4)

=
n−2∑

k=0

n(n − 1)

(
n − 2

k

)

pk+2(1 − p)n−2−k +
n−1∑

k=0

n

(
n − 1

k

)

pk+1(1 − p)n−1−k

(4.5)

= n(n − 1)
n−2∑

k=0

(
n − 2

k

)

pk+2(1 − p)n−2−k + n

n−1∑

k=0

(
n − 1

k

)

pk+1(1 − p)n−1−k

(4.6)

The basic purpose for presenting this proof is to show the kinds of operations that

our library functions must be able to perform. Such transformations are seen in

most of the computations involving summations. Based on this example we list all

the functions designed to implement the basic properties of summation which have
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been explained in detail in Section 3.1.

SplitFunctions

To transform from (4.1) to (4.2) we split the summation based on the sum (k(k −
1) + k), which is the property II of summation. SplitFunctionsfunction splits the

summation based on the additive term in the inner expressions. This property is very

common in most of the summation problems.

ShiftNTerms

While transforming from (4.4) to (4.5), we shift the first summation by 2 and second

summation by 1 which is based on the property V of summation. This function shifts

or rearranges the summation. Though index and the limit values change during this

process, the value of the summation remains the same.

GetNonVariantsOutside

While transforming from (4.5) to (4.6), we get the expression n(n − 1) outside the

first summation and n from the second summation as n is not dependent on the index

variable which is the property I of summation. GetNonVariantsOutsidefunction gets

the variables and constants not dependent on index outside the summation.

SplitOp

In most of the examples involving summation we need to split the summation at a

term that is property IV of summation. SplitOp function implements this property
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as shown in the following example from (2.29).

n−1∑

i=1

f(i) =

1∑

i=1

f(i) +

n−1∑

i=2

f(i)

ReverseOrder

This function implements property VI of summation.

In Table 4.1 we list all the functions designed and implemented based on summa-

tion properties. The function column shows the calling sequence of the functions and

the second column lists the output of these functions for which the values of S, P and

T are assigned.

Table 4.1: Library Functions - Implementing Properties

S=

12∑

i=1

xif(i) P =

b∑

i=a

(f(i) + g(i))xi T=

12∑

i=1

45y5xif(i)

Function Output

SplitOp(S,2)
2∑

i=1

xif(i) +

12∑

i=3

xif(i)

ShiftNTerms(S,5)

17∑

i=6

xi−5f(i − 5)

ReverseOrder(S)
11∑

i=0

f(12 − i)x12−i

SplitFunctions(P)
b∑

i=a

f(i)xi +
b∑

i=a

g(i)xi

GetNonVariantsOutside(T) 45y5

12∑

i=1

xif(i)

We can represent a polynomial as a summation. The following is an univariate poly-
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nomial in x,

n∑

k=0

akx
k (4.7)

GetCoefficient

As in (4.7) when the univariate polynomial is represented as a summation, then we

can access the coefficient of any term of the polynomial using GetCoefficientfunction

as an e.g. a4 is the coefficient of x4 term.

TakeNTermsHigh and TakeNTermsLow

There are a lot of manipulations of summations at the boundary values. In most of the

polynomial manipulations we need the upper and lower terms hence these functions

could be very handy to access the terms of summations towards the boundaries.

TakeTermsValue

Many a times while manipulating summation, we need to calculate the value of few

terms or for all the terms as shown in the following example from (2.25).

0∑

i=0

[
f(i) + f(i + 1)

]
= f(0) + f(1)

There is lot of need in various summation problems to calculate such values.

TakeTermsValuecalculates the value of the summation.

SplitTermsEvenOdd

This function segregates the summation into even and odd terms and implements

(3.7).
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MultiplyOp

This functions helps us to multiply the inner expression of the summation with a

value and is very useful in few of the manipulations.

The above explained functions have been listed in Table 4.2 are those that cannot

be related to any property of summation but we need them for various manipula-

tions hence we call them helper functions. These are very handy while manipulating

expressions and in performing computations.

Table 4.2: Library Functions - Helper Functions 1

S=
12∑

i=1

xif(i) P =
b∑

i=a

(f(i) + g(i))xi T:=45y5

12∑

i=1

xif(i)

Function Output

GetCoefficient(S,r,x) f(r)

TakeTermsValue(S,2,3) x2f(2) + x3f(3)

SplitTermsEvenOdd(S)

6∑

i=1

x2if(2i) +

6∑

i=2

x2i−1f(2i − 1)

MultiplyOp(S, 45y5)

12∑

i=1

45y5xif(i)

TakeNTermsHigh(S,2)

12∑

i=11

xif(i)

TakeNTermsLow(S,k)
k∑

i=1

f(i)xi

PutMultiplicandsInside(T)
12∑

i=1

45y5xif(i)

We now try to manipulate summations when they are operands of an expression.

We pick this theorem from [9,3.8] to see the summation manipulations and please
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refer to [9,3.8] for technical details.

1

λ2
k+1

− 1

λ2
k

= 1 +

k∑

p=2

(−1)p

(
k

p

)

(α2

0...α
2

p−2) −
k∑

p=2

(−1)p

(
k + 1

p

)

(α2

0...α
2

p−2)

−(−1)k+1(α2

0...α
2

k−1) (4.8)

= 1 −
k∑

p=2

(−1)p

[(
k + 1

p

)

−
(

k

p

)]

(α2

0...α
2

p−2) − (−1)k+1(α2

0...α
2

k−1)

(4.9)

= 1 +

k∑

p=2

(−1)p+1

(
k

p − 1

)

(α2

0...α
k
p−2) + (−1)k(α2

0...α
2

k−1) (4.10)

= 1 +
k∑

p=1

(−1)p

(
k

p

)

(α2

0...α
2

p−1) (4.11)

CombineSplitFunctions

To transform from (4.8) to (4.9), we combine the summations as they have the same

range p = 2 .. k. This is the reverse of Splitfunctionsfunction. We implement this

property as CombineSplitFunctionsfunction.

CombineSplitOp

During the manipulation from (4.10) to (4.11) there exist the following intermediate

steps,

= 1 +

k∑

p=2

(−1)p+1

(
k

p − 1

)

(α2

0...α
k
p−2) + (−1)k(α2

0...α
2

k−1) (4.12)

= 1 +
k−1∑

p=1

(−1)p

(
k

p

)

(α2

0...α
k
p−1) +

k∑

p=k

(−1)p

(
k

p

)

(α2

0...α
2

p−1) (4.13)

= 1 +
k∑

p=1

(−1)p

(
k

p

)

(α2

0...α
2

p−1) (4.14)
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The summation in the (4.12) is shifted by −1 and transformed to (4.13). We rewrite

the expression (−1)k(α2
0...α

2
k−1

) as a summation, then the summation in (4.13) has

been split at the kth term. In (4.14) we combine the summations split at a term.

CombineSplitOpperforms such an operation.

Table 4.3: Library Functions - Helper Functions 2

L=

b∑

i=a

f(i)+

b∑

i=a

g(i) and M=

b∑

i=a

f(i)xi+

c∑

i=b+1

f(i)xi

Function Output

CombineSplitFunctions(L)
b∑

i=a

f(i) + g(i)

CombineSplitOp(M)

c∑

i=a

f(i)xi

We group these functions as Helper Functions 2 and are listed in Table 4.3. We

implement the procedures as shown in Tables 4.1, 4.2 and 4.3 and put them all to-

gether in a module called “OpManipulate”. These functions make use of the following

internal functions implemented to access the parameters of summation. The func-

tions basically manipulate the summation by accessing the operands using the op

command in Maple.

• GetRange- This function returns the range value of the summation.

If S=

b∑

i=a

G(i)xi, then GetRange(S)returns i = a .. b.

• GetRangeInitialValue- This function returns the lower limit of the summation.

If S=

b∑

i=a

G(i)xi, then GetRangeInitialValue(S)returns a.

• GetRangeFinalValue- This function returns the upper limit of the summation.

If S=
b∑

i=a

G(i)xi, then GetRangeFinalValue(S)returns b.



40

Figure 4.1: Library functions implemented as context-sensitive menus

• GetExpression- This function returns the inner expression or summand of the

summation.

If S=

b∑

i=a

G(i)xi, then GetExpression(S)returns G(i)xi.

• GetIteratingVariableName- This function returns the index of the summation.

If S=
b∑

i=a

G(i)xi, then GetIteratingVariableName(S)returns i.

• GetSymbolOperator- This function returns the operator whether sum, product

or definite integral.

If S=

b∑

i=a

G(i)xi, then GetSymbolOperator(S)returns Sum.

Adding the package ‘OpManipulate’ to the installation

Depending on the installation, we may add our own modules to the standard library,

or create new libraries in the directory specified by the command libname. Both

of these are bad ideas. Adding a broken module to the standard library can make

Maple non-functioning. We usually create a new library in the empty directory. These

functions are also accessible as context-sensitive menus based on the operators being

selected as shown in Figure 4.1.
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Chapter 5

Generalization To Associative

Operators

In this chapter we show how the design has been extended to other associative oper-

ators such as product and definite integral. To understand the design issues, we need

to examine the properties of associative operators.

5.1 Associativity

In mathematics, associativity is the property that determines the way operators of

the same precedence are grouped when there are no parenthesis.

Consider this expression 8+3+5 = 10, it could be grouped to the left (8+3)+5 =

16 or right 8 + (3 + 5) = 16. Even though the parentheses were rearranged (the first

expression requires adding 8 and 3 first, then adding 5 to the result, whereas the

second expression requires adding 3 and 5 first, then 8), the value of the expression

remains the same. This is true while adding any real numbers. We say operators

with this property, for all arguments, are “associative”.

More formally a binary operation ∗ on Set S is called associative if it satisfies the
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associative law.

(a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ǫ S

If we apply this to multiplication the law holds

(ab)c = a(bc) for all a, b, c ǫ S

The law can be generalized to when there are many ∗ operators. A binary operation

∗ on Set S is called non-associative if it does not satisfy the associative law.

(a ∗ b) ∗ c 6= a ∗ (b ∗ c) for some a, b, c ǫ S

The order of evaluation does matter for these operators. Subtraction, division and

exponentiation are non-associative which is shown in the following examples.

(8 ÷ 4) ÷ 2 6= 8 ÷ (4 ÷ 2)

(9 − 2) − 3 6= 9 − (2 − 3)

The associative law holds for summation, product and definite integral, hence they

are all associative operators, when viewed in the right way. We also need to know

the properties of the product and definite integral to design our library functions to

be generic and work in these cases. We examine these properties in the following

sections.

5.2 Mathematical Aspects

5.2.1 Definite Integral

Let f be a function which is continuous on a closed interval [a, b] . In mathematics,

a continuous function is one in which a small change in the input results in small

change in the output. The definite integral f from a to b is defined to be the limit,
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∫ b

a

f(x) dx = lim
n→∞

n∑

i=1

f(xi) △ x

where

n∑

i=1

f(xi) △ x is a Riemann Sum of f on [a, b].

A Riemann Sum is a method of approximating the total area underneath a curve

on a graph otherwise known as an integral. The variable x which appears in the

definition is dummy variable since the value of integral does not depend on x and it

can be any other variable. There are two ways to think of a definite integral, one way

would be to compute areas and volumes and the other way would be as a “sum”.

5.2.1.1 Properties of Definite Integral

If f(x) and g(x) are defined and continuous on [a, b], except maybe at a finite number

of points, then we have the following linearity principle for the integral.

I. If C is a constant and does not depend on x, we can factor out a constant i.e.

C from the definite integral. When f is a positive function, the height of Cf at

a point x is C times the height of function f , hence the area under the curve

Cf(x) is C times the area under the curve of f(x).

∫ b

a

Cf(x) dx = C

∫ b

a

f(x) dx

II. If the inner expression of a definite integral has a sum or difference then the

summation is equal to sum or difference of individual definite integrals of those

inner expressions.

∫ b

a

[
f(x) ± g(x)

]
dx =

∫ b

a

f(x) dx ±
∫ b

a

g(x) dx
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III. If the lower limit is equal to the upper limit the definite integral value is zero.

As the base length of area bounded by f(x) is zero, the area bounded by f(x)

is also zero.
∫ c

c

f(x)dx = 0

IV. As definite integral of f on the interval [a, b] is the area bounded by f and the

x-axis between x = a and x = b, then it is also true that this area is the sum

of the area bounded between x = a to x = c and x = c to x = b where x = c

splits the region. This holds when the integral is defined as a connected region

containing a, b and c.

∫ b

a

f(x) dx =

∫ c

a

f(x) dx +

∫ b

c

f(x) dx

V. Reversing the limits will negate the value of the integral.

∫ b

a

f(x) dx = −
∫ a

b

f(x) dx

VI. As long as the function and limits are the same the variable of integration that

we use in the definite integral will not affect the answer. Hence the integral is

independent of variable x or t.

∫ b

a

f(x) dx =

∫ b

a

f(t) dt

VII. We can shift the integral by a value i.e. p. Doing so the value is unaltered as

the integral is still f(x) w.r.t x between the interval [a, b].

∫ b

a

f(x) dx =

∫ b+p

a+p

f(x − p) dx
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5.2.2 Product

Product can be defined as multiplication of a sequence of similar terms. The “terms”

to be multiplied may be natural numbers, complex numbers, matrices, or still more

complicated objects. Greek symbol
∏

(Pi) notation is used to write complicated

series of products in a compact way.

b∏

i=a

f(i)

This symbolic expression is equivalent to the product,

f(a)f(a + 1)f(a + 2)....f(b) when a ≤ b

1

f(a + 1)f(a + 2)...f(b − 1)
when a > b

i → index of product which is always an integer.

a → lower limit of product.

b → upper limit of product.

This notation means evaluate the expression f(i) of the product for every value of i

from the lower limit to the upper limit (inclusively) and multiply the results together

when lower limit is less than or equal to upper limit. If lower limit is greater than the

upper limit then it is the inverse of the product of f(i) for every value of i between

the limits. Most of the properties of summation hold true for product as well.

5.2.2.1 Properties of Product

I. We can shift the product by a value i.e. p. The product remains unaltered as it

is the same sequence of terms multiplied because though we add p to the limits
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it is also being subtracted from the index variable.

n∏

k=s

f(k) =

n+p
∏

k=s+p

f(k − p)

II. We can split a product into several parts as far as the value of indices are

maintained. In (5.1) we split the product with range from k = s .. n at jth

term.

n∏

k=s

f(k) =

j
∏

k=s

f(k)

t∏

k=j+1

f(k) (5.1)

This can have two conditions when j ≤ n and j > n . It is quite straightforward

when j ≤ n, but for j > n we generalize the product in the same way we did

the summation, by considering it to be the inverse of the product on an inverted

range. Consider this example,

s = 1 n = 3 j = 6

3∏

k=1

G(k) =

6∏

k=1

G(k)

3∏

k=7

G(k) (5.2)

6∏

k=1

G(k) = G(1)G(2)G(3)G(4)G(5)G(6) (5.3)

3∏

k=7

G(k) =
1

G(4)G(5)G(6)
(5.4)

3∏

k=1

G(k) = G(1)G(2)G(3) (5.5)

We split (5.2) at 6 which is for k greater than 4, the split holds good because

(5.5) is same as the product of (5.3) and (5.4).

We can also split the terms of product on their even and odd indices. (5.6) has
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been split for even and odd terms.

b∏

k=a

A(k) =

⌊ b

2
⌋

∏

k=⌈a

2
⌉
A(2 k)

⌈ b

2
⌉

∏

k=StartSplit

A (2 k − 1) (5.6)

where StartSplit=







⌈
a
2

⌉
if a is odd

⌈
a
2

⌉
+ 1 if a is even

We can test (5.6) with the following values,

a = −11 b = −8

−8∏

k=−11

A(k) =
−4∏

n=−5

A(2k)
−4∏

n=−5

A(2k − 1) (5.7)

−4∏

k=−5

A(2k) = A(−10)A(−8) (5.8)

−4∏

k=−5

A(2k − 1) = A(−11)A(−9) (5.9)

−8∏

k=−11

A(k) = A(−11)A(−10)A(−9)A(−8) (5.10)

For the given values of a and b, the split is as shown in (5.7), we can see that

(5.10) is same as the product of (5.8) and (5.9). We had to take care of various

conditions when the lower and upper limits are even and odd and vice versa,

keeping this in mind (5.6) was devised.

III. If the inner expression of a product has a ‘×’ then the product is equal to

multiplication of individual products of those inner expressions.

n∏

k=s

[
f(k)g(k)

]
=

n∏

k=s

f(k)

n∏

k=s

g(k)

IV. We can reverse the order of terms in a product as shown below. This will

rearrange the terms from upper limit to lower limit without altering the value.
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n∏

k=s

f(k) =
n−s∏

k=0

f(n − k)

Stating the axioms of definite integral and product we can see that they are so

much similar to formal sums. Hence we designed and implemented library functions

to be more generic and also accommodated manipulations for product and definite

integral other than summation. In the following section we see in detail the calling

sequence and description for all the functions.

5.3 Software Aspects

In this section we explain each of the library function’s calling sequence, parameters

to be passed and few samples on a Maple session. The functions are written in a

very generic way to accommodate similar operators. There are many computations

involving definite integrals and product manipulations that can be solved with

these functions. As these functions are accessible through context-sensitive menus,

performing manipulations is much easier. All examples given in this paper are

executed on Maple 13.

SplitOp

The SplitOp function splits the summation and product at a term and definite

integral at an interval. This implements property IV of summation, property IV of

definite integral and property II of product.

• Calling Sequence

SplitOp(expr, c)

• Parameters

expr - summation, product or definite integral

c - value at which expr should be split

• Description
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– if expr is a summation then the split is at c th term and the second

summation starts at c+1 th term.

– if expr is a definite integral the split is at interval c and the second integral

starts at interval c.

– if expr is a product then the split is at c th term and the second product

starts at c+1 th term.

• Maple Sample Output

> S:=Sum(f(i)*xˆi,i=1..10);

S :=
∑10

i=1
f (i)xi

> SplitOp(S,3);
∑3

i=1
f (i)xi +

∑10

i=4
f (i)xi

> T:=Product(A(k),k=a..b);

T :=
∏b

k=a A (k)

> SplitOp(T,c);
∏c

k=a A (k)
∏b

k=c+1
A (k)

> Q:=Int(xˆ2,x=1..12);

Q :=
∫ 12

1
x2dx

> SplitOp(Q,6);
∫ 6

1
x2dx +

∫ 12

6
x2dx

MultiplyOp

The MultiplyOp function exponentiates the base operator, “+” to “⋆”, “⋆” to “∧”.

The multiplicand can contain the iterating variable or index of summation, product

or definite integral.

• Calling Sequence

MultiplyOp(expr, c)

• Parameters

expr - summation, product or definite integral

c - value to be multiplied.

• Description

– multiplies inner expression of expr with c.

• Maple Sample Output

> S:=Sum(G(k),k=1..4);
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S :=
∑4

k=1
G (k)

> MultiplyOp(S,xˆk);
∑4

k=1
xkG (k)

> P := Product(x[k], k = 1 .. 14);

P :=
∏14

k=1
xk

> MultiplyOp(P,c);
∏14

k=1
xk

c

> T:=Int(eˆx,x=1..100);

T :=
∫ 100

1
exdx

> MultiplyOp(T,(a+b));
∫ 100

1
(a + b) exdx

SplitFunctions

The SplitFunctions function splits summation and definite integral based on the

additive term and product based on the multiplicative term in the inner expression.

This implements property II of summation, property II of definite integral and prop-

erty III of product.

• Calling Sequence

SplitFunctions(expr)

• Parameters

expr- summation, product or definite integral

• Description

– if the expr is a summation and the inner expression has a sum, then it

splits expr for each operand of the inner sum.

– if the expr is a definite integral and the inner expression has a sum, then

it splits expr for each operand of the inner sum.

– if the expr is a product and the inner expression has multiplication, then

it splits expr for each operand of the inner expression.

• Maple Sample Output

> S:=Sum(x*(g(k)+h(k)),k=1..4);

S :=
∑4

k=1
x (g (k) + h (k))

> SplitFunctions(S);
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∑4

k=1
xg (k) +

∑4

k=1
xh (k)

> P:=Product(E*F,i=a..b);

P :=
∏b

i=a EF

> SplitFunctions(P);
∏b

i=a E
∏b

i=a F

> T:=Int(eˆx+fˆx,x=1..100);

T :=
∫ 100

1
ex + fxdx

> SplitFunctions(T);
∫ 100

1
exdx +

∫ 100

1
fxdx

TakeNTermsHigh

The TakeNTermsHigh function gets the higher terms of summation, product and

definite integral.

• Calling Sequence

TakeNTermsHigh(expr, n)

• Parameters

expr - summation, product or definite integral

n - number of terms to be fetched if expr is summation or product else the

limit if expr is a definite integral

• Description

– if expr is a summation or product then gets the n number of higher terms

of expr.

– if expr is a definite integral then returns the integral with interval [upper

limit-n+1,upper limit].

– n should be a positive integer if not it throws an exception.

• Maple Sample Output

> S:=Sum(xˆj,j=a..b);

S :=
∑b

j=a xj

> TakeNTermsHigh(S,2);
∑b

j=b−1
xj

> P:=Product(f(i)*xˆi,i=1..12);

P :=
∏12

i=1
f (i)xi

> TakeNTermsHigh(P,1);
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∏12

i=12
f (i)xi

> Q:=Int(x,x=1..4);

Q :=
∫ 4

1
xdx

> TakeNTermsHigh(Q,4);
∫ 4

1
xdx

TakeNTermsLow

The TakeNTermsLow function gets the lower terms of summation, product and

definite integral.

• Calling Sequence

TakeNTermsLow(expr, n)

• Parameters

expr - summation, product or definite integral

n - number of terms to be fetched if expr is summation or product else the

limit if expr is a definite integral

• Description

– if expr is a summation or product then gets the n number of lower terms

of expr.

– if expr is a definite integral then returns the integral with interval [lower

limit,lower limit+n].

– n should be a positive integer if not it throws an exception.

• Maple Sample Output

> S:=Sum(xˆj,j=a..b);

S :=
∑b

j=a xj

> TakeNTermsLow(S,2);
∑a+1

j=a xj

> P:=Product(f(i)*xˆi,i=1..12);

P :=
∏12

i=1
f (i)xi

> TakeNTermsLow(P,1);
∏1

i=1
f (i)xi

> Q:=Int(x,x=1..4);

Q :=
∫ 4

1
xdx

> TakeNTermsLow(Q,4);
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∫ 4

1
xdx

ShiftNTerms

The ShiftNTerms function shifts or rearranges summation, product and definite

integral. This implements property V of summation, property VII of definite integral

and property I of product.

• Calling Sequence

ShiftNTerms(expr, n)

• Parameters

expr - summation, product or definite integral

n - value by which expr should be shifted

• Description

– if expr is summation then it shifts or rearranges the terms of expr by n,

this is done by adding n to the lower and upper limit and subtracting the

index variable in the inner expression by n.

– if expr is a definite integral then it shifts the interval of expr by n, this is

done by adding n to the lower and upper limit and subtracting the index

variable in the inner expression by n.

– if expr is product then it shifts or rearranges the terms of expr by n, this

is done by adding n to the lower and upper limit and subtracting the index

variable in the inner expression by n.

• Maple Sample Output

> S:=Sum(xˆj,j=a..b);

S :=
∑b

j=a xj

> ShiftNTerms(S,2);
∑b+2

j=a+2
xj−2

> P:=Product(f(i)*xˆi,i=1..12);

P :=
∏12

i=1
f (i)xi

> ShiftNTerms(P,c);
∏12+c

i=1+c f (i − c)xi−c

> Q:=Int(x,x=1..4);

Q :=
∫ 4

1
xdx

> ShiftNTerms(Q,4);
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∫ 8

5
x − 4dx

SplitTermsEvenOdd

The SplitTermsEvenOdd function splits summation and product into even and

odd terms.

• Calling Sequence

SplitTermsEvenOdd(expr)

• Parameters

expr- summation or product

• Description

– splits the expr into even and odd terms as in (3.7) for summation and

(5.6) for product.

• Maple Sample Output

> S:=Sum(xˆj,j=2..11);

S :=
∑11

j=2
xj

> SplitTermsEvenOdd(S);
∑5

j=1
x2 j +

∑6

j=2
x2 j−1

> P:=Product(f(i)*xˆi,i=1..12);

P :=
∏12

i=1
f (i)xi

> SplitTermsEvenOdd(P);
∏6

i=1
f (2 i)x2 i

∏6

i=1
f (2 i − 1)x2 i−1

ReverseOrder

The ReverseOrder function reverses the order of terms for summation and prod-

uct and intervals for definite integral. This implements property VI of summation,

property V of definite integral and property IV of product.

• Calling Sequence

ReverseOrder(expr)

• Parameters

expr- summation, product or definite integral

• Description
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– if expr is summation then it reverses the order of terms.

– if expr is a definite integral then it reverses the interval.

– if expr is product then it reverses the order of terms.

• Maple Sample Output

> S:=Sum(xˆj,j=2..11);

S :=
∑11

j=2
xj

> ReverseOrder(S);
∑9

j=0
x11−j

> P:=Product(f(i)*xˆi,i=1..12);

P :=
∏12

i=1
f (i)xi

> ReverseOrder(P);
∏11

i=0
f (12 − i)x12−i

> Q:=Int(x,x=1..3);

Q :=
∫ 3

1
xdx

> ReverseOrder(Q)

−
∫ 1

3
xdx

GetCoefficient

The GetCoefficient function gets the coefficient of a term in a univariate polynomial

which is represented as a summation.

• Calling Sequence

GetCoefficient(expr,k,invar)

GetCoefficient(expr,invar∧k)

• Parameters

expr - summation

k - coefficient for kth term

invar - variable for which coefficient needs to be fetched

• Description

– gets the coefficient of invar∧k when the summation represents a polyno-

mial.

• Maple Sample Output

> S:=Sum(A(j)*xˆj,j=2..11);
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S :=
∑11

j=2
A (j)xj

> GetCoefficient(S,2,x);

A (2)

> GetCoefficient(S,xˆ2);

A (2)

TakeTermsValue

The TakeTermsValue function gets the terms of summation and product and value

of the definite integral. If the input is a summation then it returns the closed form

of summation if it can be evaluated else it returns the summation unevaluated.

• Calling Sequence

TakeTermsValue(expr,start,end)

TakeTermsValue(expr)

• Parameters

expr - summation, product or definite integral

start - lower limit of expr starting from which the terms or value need to be

fetched

end - upper limit of expr until which the terms or value need to be fetched

• Description

– if expr is summation or product then gets the actual terms of expr starting

from start to end (if start and end parameters are passed) else returns

the terms with the lower and upper limits of expr (actual terms as an

expression and not symbolic).

– if expr is a definite integral then gets the value of expr starting from start

to end (if start and end parameters are passed) else returns the value with

the lower and upper limits of expr (actual value as an expression and not

symbolic).

• Maple Sample Output

> S:=Sum(xˆj,j=2..4);

S :=
∑4

j=2
xj

> TakeTermsValue(S);

x2
(
1 + x + x2

)

> P:=Product(f(i)*xˆi,i=a..b);

P :=
∏b

i=a f (i)xi
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> TakeTermsValue(P,1,1);

f (1)x

> Q:=Int(x,x=1..3);

Q :=
∫ 3

1
xdx

> TakeTermsValue(Q);

4

CombineSplitFunctions

The CombineSplitFunctions function combines the summations and definite inte-

grals split on additive terms and products split on multiplicative terms. This performs

reverse operation as in case of SplitFunctions function.

• Calling Sequence

CombineSplitFunctions(expr)

• Parameters

expr - expression

• Description

– if the highest level operator is ‘+’, it scans through expr and combines all

the summations which have the same range value.

– if the highest level operator is ‘*’, it scans through expr and combines all

the products which have the same range value.

– if the highest level operator is ‘+’, it scans through expr and combines all

the definite integrals which have the same interval.

• Maple Sample Output

> S:=Sum(xˆj,j=2..4)+Sum(yˆj,j=2..4)+Sum(zˆj,j=2..4);

S :=
∑4

j=2
xj +

∑4

j=2
yj +

∑4

j=2
zj

> CombineSplitFunctions(S);
∑4

j=2
xj + yj + zj

> P:=Product(f(i)*xˆi,i=a..b)*Product(g(i)*xˆi,i=a..b);

P =
∏b

i=a f (i)xi
∏b

i=a g (i)xi

> CombineSplitFunctions(P);
∏b

i=a f (i)
(
xi

)2
g (i)

> Q:=Int(x,x=1..3)+Int(eˆx,x=1..3);
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Q :=
∫ 3

1
xdx +

∫ 3

1
exdx

> CombineSplitFunctions(Q);
∫ 3

1
x + exdx

CombineSplitOp

The CombineSplitOp function combines summation and product split at a term

and definite integral split at an interval. It performs reverse operation as in case of

SplitOp function.

• Calling Sequence

CombineSplitOp(expr)

• Parameters

expr - expression

• Description

– if the highest level operator is ‘+’, it scans through expr and combines all

the summations which are split at a term.

– if the highest level operator is ‘*’, it scans through expr and combines all

the products which are split at a term.

– if the highest level operator is ‘+’, it scans through expr and combines all

the definite integrals which are split at an interval.

• Maple Sample Output

> S:=Sum(xˆj,j=2..4)+Sum(xˆj,j=5..8);

S :=
∑4

j=2
xj +

∑8

j=5
xj

> CombineSplitOp(S);
∑8

j=2
xj

> P:=Product(f(i)*xˆi,i=a..b)*Product(f(i)*xˆi,i=b+1..c);

P :=
∏b

i=a f (i)xi
∏c

i=b+1
f (i)xi

> CombineSplitOp(P);
∏c

i=a f (i)xi

> Q:=Int(eˆx,x=1..3)+Int(eˆx,x=3..15);

Q :=
∫ 3

1
exdx +

∫ 15

3
exdx

> CombineSplitOp(Q);
∫ 15

1
exdx
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GetNonVariantsOutside

The GetNonVariantsOutside function gets the constants and variables not depen-

dent on iterating variable outside summation and definite integral.

• Calling Sequence

GetNonVariantsOutside(expr)

• Parameters

expr - summation or definite integral

• Description

– gets the non variants (constants or variables not depending on the index

variable) in the inner expression of expr outside.

• Maple Sample Output

> S:=Sum(aˆc*xˆj,j=2..4);

S :=
∑4

j=2
acxj

> GetNonVariantsOutside(S);

ac
∑4

j=2
xj

> Q:=Int(45*y*x,x=1..3);

Q :=
∫ 3

1
45 yxdx

> GetNonVariantsOutside(Q);

45y
∫ 3

1
xdx

PutMultiplicandsInside

The PutMultiplicandsInside function moves the multiplicands to the inner expres-

sion of summation and definite integral.

• Calling Sequence

PutMultiplicandsInside(expr)

• Parameters

expr - summation or definite integral

• Description

– moves the outer variables and constants to the inner expression of expr.
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• Maple Sample Output

> S:=45*y*Sum(xˆj,j=2..4);

S := 45y
∑4

j=2
xj

> PutMultiplicandsInside(S);
∑4

j=2
45 yxj

> P:=eˆx*Int(x,x=2..4);

P := ex
∫ 4

2
xdx

> PutMultiplicandsInside(P);
∫ 4

2
exxdx

5.3.1 Testing Tool

An automated testing tool has been written in Maple to test these library functions.

Basically a file has been created for each library function that contains the test

cases. Each test case has the parameters to be passed for the library function and

the expected output. The tool takes each file at a time and runs the corresponding

library function with each test case and gets the actual output. If the actual output

is the same as the expected output, then the output file is updated with ‘OK’ for

the corresponding test case otherwise an ‘Error’. This process is repeated for all the

library functions. We now show an example of the input test case and the way the

output file is updated,

An input test case for the CombineSplitFunctionsfunction:

Sum(A(i), i = 10.. − 10) + Sum(B(i), i = 10.. − 10)
︸ ︷︷ ︸

Input Parameter

Sum(A(i) + B(i), i = 10.. − 10)
︸ ︷︷ ︸

Expected Output

The output file is updated with the following row when the above test case is run:

Sum(A(i), i = 10.. − 10) + Sum(B(i), i = 10.. − 10) Sum(A(i) + B(i), i = 10.. − 10) OK
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Chapter 6

Examples Using the New Package

6.1 Example: The Binomial Theorem

At the beginning of this thesis, in Example 2.1.1, we discussed how it was difficult

to use a computer algebra system to transform expressions involving summations,

illustrating with the manipulations for an explicit proof of the Binomial theorem. We

designed and implemented the library functions for performing manipulations and

transformations on expressions involving summations. Now let us use these functions

to perform the manipulations. The functions here are called from the command line

in Maple 13 worksheet which can also be called using context sensitive menus.

Solution as a Maple session:

First we assign the expression to be manipulated to XplusYraisetoN.

> XplusYraisetoN:=Sum(binomial(n, k)*xˆk*yˆ(n-k), k = 0 ..n);

XplusY raisetoN :=
∑n

k=0

(
n

k

)
xkyn−k

We multiply XplusYraisetoNwith (x+y) to prove the theorem for n + 1.

> S := (x+y)*XplusYraisetoN;

S := (x + y)
∑n

k=0

(
n

k

)
xkyn−k
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We need to move x + y to the summand of S. Now it is effortlessly done by calling

PutMultiplicandsInside.

> S1 := PutMultiplicandsInside(S);

S1 :=
∑n

k=0
(x + y)

(
n

k

)
xkyn−k

Then we split S1 based on the sum (x + y) using SplitFunctions.

> SplitS1 := SplitFunctions(S1);

SplitS1 :=
∑n

k=0

(
n

k

)
xk+1yn−k +

∑n

k=0

(
n

k

)
xkyn−k+1

To get the first operand of SplitS1we make use of Maple’s op.

> S2 := op(1, SplitS1);

S2 :=
∑n

k=0

(
n

k

)
xk+1yn−k

We need to shift S2 by 1, which is done by calling ShiftNTerms. While shifting S2 to

ShiftS2 the value remains unchanged. This is because even if the lower bound k is

increased by 1 the value of k in the inner expression is changed to k − 1. Hence S2 is

same as ShiftS2.

> ShiftS2 := ShiftNTerms(S2, 1);

ShiftS2 :=
∑n+1

k=1

(
n

k−1

)
xkyn−k+1

We need to get the summation with range k = 1 .. n. Hence ShiftS2 is split at nth

term using SplitOp which also separates the (n + 1) th term.

> SplitShiftS2 := SplitOp(ShiftS2, n);

SplitShiftS2 :=
∑n

k=1

(
n

k−1

)
xkyn−k+1 +

∑n+1

k=n+1

(
n

k−1

)
xkyn−k+1

> result1 := op(2, SplitShiftS2);

result1 :=
∑n+1

k=n+1

(
n

k−1

)
xkyn−k+1
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Summation with range k = n + 1 .. n + 1 is nothing but a term which has a value.

To get this value we call TakeTermsValueand assign it to result1value.

> result1value := TakeTermsValue(result1);

result1value := xn+1

The steps explained are also true when we transform S3 to result2value.

> S3 := op(2, SplitS1);

S3 :=
∑n

k=0

(
n

k

)
xkyn−k+1

> SplitS3 := SplitOp(S3, 0);

SplitS3 :=
∑

0

k=0

(
n

k

)
xkyn−k+1 +

∑n

k=1

(
n

k

)
xkyn−k+1

> result2 := op(1, SplitS3);

result2 :=
∑

0

k=0

(
n

k

)
xkyn−k+1

> result2value := TakeTermsValue(result2);

result2value := yn+1

> result3 := op(1, SplitShiftS2)+op(2, SplitS3);

result3 :=
∑n

k=1

(
n

k−1

)
xkyn−k+1 +

∑n

k=1

(
n

k

)
xkyn−k+1

We combine the summations with the same range k = 1 .. n and form result3value

using CombineSplitFunctions.

> result3value := CombineSplitFunctions(result3);

result3value :=
∑n

k=1
xkyn−k+1

((
n

k−1

)
+

(
n

k

))

The final output is the sum of result1value, result3valueand result2value.

> result1value+result3value+result2value;
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xn+1 +
∑n

k=1
xkyn−k+1

((
n

k−1

)
+

(
n

k

))
+ yn+1

We stop the transformations here and conclude that the manipulated expression is

the same as the following expression.

xn+1 +
n∑

k=1

(
n + 1

k

)

xkyn+1−k + yn+1

6.2 Example: Summation involving Stirling Num-

bers

We take Example 2.1.2 and perform symbolic summation manipulations using our

library functions. We implement a function for falling powers ff(x,k) which performs

the operation as shown below where x is any arbitrary expression and k is an integer.

ff(x, k) = x(x − 1)(x − 2)...(x − k + 1)

Solution as a Maple session:

In Maple, Stirling numbers are implemented in package combinat.

> with(combinat);

[Chi, bell, binomial, cartprod, character, choose, composition, conjpart, decodepart,

encodepart, eulerian1, eulerian2, fibonacci, firstpart, graycode, inttovec, lastpart,

multinomial, nextpart, numbcomb, numbcomp, numbpart, numbperm, partition,

permute, powerset, prevpart, randcomb, randpart, randperm, setpartition, stirling1,

stirling2, subsets, vectoint]

We assign the expression to be transformed to S. We can observe that stirling2 gets

automatically associated to combinat:-stirling2.

> S := Sum(stirling2(r, k)*ff(x,k), k = 0 .. r);

S :=
∑r

k=0
‘combinat:-stirling2‘(r, k)ff (x, k)
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Next we multiply S with x.

> S := x*S;

S := x
∑r

k=0
‘combinat:-stirling2‘(r, k)ff (x, k)

We move x to the inner expression of the S by calling PutMultiplicandsInside.

> S := PutMultiplicandsInside(S);

S :=
∑r

k=0
x‘combinat:-stirling2‘(r, k) ff (x, k)

From (2.21), we know that xff(x,k)=ff(x,k+1)+xff(x,k) . To substitute xff (x, k), we call

MultiplyOp passing the second parameter as (ff(x,k+1)+k*ff(x,k))/(x*ff(x,k)) .

> S := MultiplyOp(S, (ff(x,k+1)+k*ff(x,k))/(x*ff(x,k)));

S :=
∑r

k=0
(ff (x, k + 1) + kff (x, k)) ‘combinat:-stirling2‘(r, k)

We perform a split based on the addition in the inner expression of the summation

using SplitFunctions.

> S := SplitFunctions(S);

S :=
∑r

k=0
‘combinat:-stirling2‘(r, k) ff (x, k + 1) +

∑r

k=0
‘combinat:-stirling2‘(r, k) kff (x, k)

To get the first term of S we make use of Maple’s op function and assign it to S1.

> S1 := op(1, S);

S1 :=
∑r

k=0
‘combinat:-stirling2‘(r, k)ff (x, k + 1)

We need to shift S1by 1, which is done by calling ShiftNTermsfunction and assign it

to ShiftS1. While shifting S1to ShiftS1the value remains unchanged. This is because

even if the lower bound k is increased by 1 the value of k + 1 in the inner expression

is changed to k. Hence S1 is same as ShiftS1.

> ShiftS1 := ShiftNTerms(S1, 1);
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ShiftS1 :=
∑r+1

k=1
‘combinat:-stirling2‘(r, k − 1)ff (x, k)

We need to get the summation with range k = 1 .. r. Hence, ShiftS1 is split at rth

term using SplitOp which also separates the (r + 1)th term.

> SplitShiftS1 := SplitOp(ShiftS1, r);

SplitShiftS1 :=
∑r

k=1
‘combinat:-stirling2‘(r, k − 1)ff (x, k) +

∑r+1

k=r+1
‘combinat:-stirling2‘(r, k − 1) ff (x, k)

Summation with range k = r + 1 .. r + 1 is nothing but a term which has a value. To

get this value we call TakeTermsValueand assign it to result1.

> result1 := TakeTermsValue(op(2, SplitShiftS1));

result1 := ‘combinat:-stirling2‘(r, r)ff (x, r + 1)

We substitute ‘combinat:-stirling2‘(r, r) value as 1.

> result1:=ff(x,r+1);

result1 := ff (x, r + 1)

The steps explained are similar when we transform S2 to result2.

> S2 := op(2, S);

S2 :=
∑r

k=0
‘combinat:-stirling2‘(r, k) kff (x, k)

> SplitS2 := SplitOp(S2, 0);

SplitS2 :=
∑

0

k=0
‘combinat:-stirling2‘(r, k) kff (x, k) +

∑r

k=1
‘combinat:-stirling2‘(r, k) kff (x, k)

> result2 := TakeTermsValue(op(1, SplitS2));

result2 := 0
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We combine the summations with the same range k = 1 .. r and form result3using

CombineSplitFunctions.

> result3 := CombineSplitFunctions(op(2, SplitS2)+op(1, SplitShiftS1));

result3 :=
∑r

k=1
ff (x, k) (‘combinat:-stirling2‘(r, k) k + ‘combinat:-stirling2‘(r, k − 1) )

The final output is the sum of result1, result2and result3.

> result1+result2+result3;

ff (x, r + 1) +
∑r

k=1
ff (x, k) (‘combinat:-stirling2‘(r, k) k + ‘combinat:-stirling2‘(r, k − 1) )

Now we stop performing transformations using the library functions. We can further

substitute the inner expression of summation and perform transformation as in (2.18)

to (2.19). We can finally prove it for r + 1.

6.3 Example: Summation involving functions

In Example 2.1.3 we explained the difficulties of transforming (2.23) to (2.24) in

a computer algebra system. Now we perform the transformations with the library

functions on a Maple worksheet. There are different ways to transform the input

expression to output, but we use the following way to demonstrate TakeNTermsHigh

and TakeNTermsLowfunctions.

Input:

n−1∑

i=0

[f(i) + f(i + 1)] +

n∑

i=1

[g(i) + g(i + 1)]

Output: f(0) + 2f(1) + g(1) + 2

n−1∑

i=2

[
f(i) + g(i)

]
+ f(n) + 2g(n) + g(n + 1)

Solution as a Maple session:

We first assign the expression to be transformed to Input.

> Input := Sum(f(i)+f(i+1), i = 0 .. n-1)+Sum(g(i)+g(i+1), i =1 .. n);
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Input :=
∑n−1

i=0
f (i) + f (i + 1) +

∑n

i=1
g (i) + g (i + 1)

We can combine these summations if we get them in the same range i.e. i = 1 .. n−1.

To do this we get the first summation using Maple’s op and assign it to Input T1.

> Input T1 := op(1, Input);

Input T1 :=
∑n−1

i=0
f (i) + f (i + 1)

Next we get n-1number of higher terms using TakeNTermsHighand assign to Input H.

> Input H := TakeNTermsHigh(InputT1, n-1);

Input H :=
∑n−1

i=1
f (i) + f (i + 1)

We also assign the remaining terms of Input T1 to Input T1 L i.e. nothing but the

zeroth term of Input T1.

> Input T1 L := TakeNTermsLow(InputT1, 1);

Input T1 L :=
∑

0

i=0
f (i) + f (i + 1)

TakeTermsValuegets the value of Input T1 L and sets it to Input T1 L val

> Input T1 L val:=TakeTermsValue(InputT1 L);

Input T1 L val := f (0) + f (1)

Next we perform similar transformations on second operand of Input until we get

Input T2 H val.

> Input T2 := op(2, Input);

Input T2 :=
∑n

i=1
g (i) + g (i + 1)

> Input L := TakeNTermsLow(InputT2, n-1);

Input L :=
∑n−1

i=1
g (i) + g (i + 1)
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> Input T2 H := TakeNTermsHigh(InputT2, 1);

Input T2 H :=
∑n

i=n g (i) + g (i + 1)

> Input T2 H val:=TakeTermsValue(InputT2 H);

Input T2 H val := g (n) + g (1 + n)

We split Input H based on the additive term f(i) + f(i + 1) in the inner expression

and assign it to Input H Split.

> Input H Split := SplitFunctions(InputH);

Input H Split :=
∑n−1

i=1
f (i) +

∑n−1

i=1
f (i + 1)

Next we manipulate the first operand of Input H Split. We need to get the summations

in the range i = 2 .. n− 1. To do this, we split the first operand of Input H Split at 1

and assign it to Input H SpSh1by calling SplitOp.

> Input H SpSh1 := SplitOp(op(1, InputH Split), 1);

Input H SpSh1 :=
∑

1

i=1
f (i) +

∑n−1

i=2
f (i)

Then we assign Input H SpSh11Valwith the value of first operand of Input H SpSh1

by calling TakeTermsValue.

> Input H SpSh11Val := TakeTermsValue(op(1, InputH SpSh1));

Input H SpSh11V al := f (1)

There is no summation in the output with summand containing i+1. Hence we need

to remove these terms from the summation. We shift second operand of Input H Split

by 1 using ShiftNTermsand assign it to Input H SpSh2.

> Input H SpSh2 := ShiftNTerms(op(2, InputH Split), 1);

Input H SpSh2 :=
∑n

i=2
f (i)
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We split Input H SpSh2at n-1 and assign it to Input H SpSh2Splitfor the same reason

i.e. to get them in range i = 2 .. n − 1.

> Input H SpSh2Split := SplitOp(InputH SpSh2, n-1);

Input H SpSh2Split :=
∑n−1

i=2
f (i) +

∑n

i=n f (i)

> Input H SpSh2Split2Val := TakeTermsValue(op(2, InputH SpSh2Split));

Input H SpSh2Split2V al := f (n)

Then similar steps are worked on Input L until Input L SpSh2Split2Val.

> Input L Split := SplitFunctions(InputL);

Input L Split :=
∑n−1

i=1
g (i) +

∑n−1

i=1
g (i + 1)

> Input L SpSh1 := SplitOp(op(1, InputL Split), 1);

Input L SpSh1 :=
∑

1

i=1
g (i) +

∑n−1

i=2
g (i)

> Input L SpSh11Val := TakeTermsValue(op(1, InputL SpSh1));

Input L SpSh11V al := g (1)

> Input L SpSh2 := ShiftNTerms(op(2, InputL Split), 1);

Input L SpSh2 :=
∑n

i=2
g (i)

> Input L SpSh2Split := SplitOp(InputL SpSh2, n-1);

Input L SpSh2Split :=
∑n−1

i=2
g (i) +

∑n

i=n g (i)

> Input L SpSh2Split2Val := TakeTermsValue(op(2, InputL SpSh2Split));

Input L SpSh2Split2V al := g (n)
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Input CombineH is obtained by adding the second operand of Input H SpSh1and

first operand of Input H SpSh2Split. The constant value 2 is moved inside the

summation using PutMultiplicandsInside.

> Input combineH := PutMultiplicandsInside(op(2,InputH SpSh1)+op(1,InputH SpSh2Split));

Input combine H :=
∑n−1

i=2
2 f (i)

Similarly, we get Input CombineL.

> Input combineL := PutMultiplicandsInside(op(2,InputL SpSh1)+op(1,InputL SpSh2Split));

Input combine L :=
∑n−1

i=2
2 g (i)

Then we combine Input CombineH and Input CombineL using CombineSplitFunctions

and assign it to combinedInput.

> combinedInput := CombineSplitFunctions(InputcombineH+Input combineL);

combined Input :=
∑n−1

i=2
2 f (i) + 2 g (i)

Then we factor out 2 from the inner expression using GetNonVariantsOutsideand

assign it to CombinedInput 2.

> combinedInput 2 := GetNonVariantsOutside(combinedInput);

combined Input 2 := 2
∑n−1

i=2
f (i) + g (i)

The sum of Input T1 L val, Input L SpSh2Split2Valand Input L SpSh11Valis assigned

to PartialOutput1.

> PartialOutput1 := InputT1 L val+Input L SpSh2Split2Val+InputL SpSh11Val

PartialOutput1 := f (0) + f (1) + g (n) + g (1)

Similarly, we assign the value for PartialOutput2.

> PartialOutput2 := InputT2 H val+Input H SpSh2Split2Val+InputH SpSh11Val;
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PartialOutput2 := g (n) + g (1 + n) + f (n) + f (1)

Then we add PartialOutput1, combinedInput 2 and PartialOutput2to get the expected

output.

> Output := PartialOutput1+combinedInput 2+PartialOutput2;

Output := f (0) + 2 f (1) + g (n) + g (1 + n) + 2
∑n−1

i=2
f (i) + g (i) + g (1) + f (n)
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Chapter 7

Conclusion and Future Work

We have investigated and demonstrated how to perform transformations and ma-

nipulate symbolic summations. While doing so we have shed some light on current

symbolic computation inabilities in computer algebra systems. We have shown how

these ideas can be extended to develop a more general set of tools to manipulate a

wider range of expressions.

We illustrated our work with some examples and solved them using our package.

These transformations were based on a user’s directions.

There are a number of interesting problems which would provide a path for future

work. One of them would be to transform and manipulate a symbolic summation

involving multinomial expansion in the inner expression.
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