
On the Simplification of Tensor Expressions

by

Nabil Obeid

Graduate Program in Computer Science

3
Submitted in partial fulfillment

of the requirements for the degree of

Master of Science

Faculty of Graduate Studies

The University of Western Ontario

London, Ontario

August, 2001

© Nabil Obeid 2001

Abstract

Tensors are mathematical objects that generalize vectors and matrices. They describe

geometrical quantities and they are used in various applied settings including mathe­

matical physics. The indicial notation of tensors permits us to write an expression in a

compact manner and to use simplifying mathematical operations.

In a large number of problems in differential geometry and general relativity, the time

consuming and straightforward algebraic manipulation is obviously very important. Thus,

tensor computation came into existence and became necessary and desirable at the same

time.

Over the past 25 years, few algorithms have appeared for simplifying tensor expres­

sions. Among the most important tensor computation systems, we can mention SHEEP,

Macsyma !Tensor Package, MathTensor and GRTensorII.

Meanwhile, graph theory, which had been lying almost dormant for hundreds of years

since the time of Euler, started to explode by the turn of the 20th century. It has now grown

into a major discipline in mathematics, which has branched off today in various directions

such as coloring problems, Ramsey theory, factorization theory and optimization, with

problems permeating into many scientific areas such as physics, chemistry, engineering,

psychology, and of course computer science.

Investigating some of the tensor computation packages will show that they have some

deficiencies. Thus, rather than building a new system and adding more features to it,

it was an objective in this thesis to express an efficient algorithms by removing most, if

not all, restrictions compared to other packages, using graph theory. A summary of the

implementation and the advantages of this system is also included.

iii

Acknowledgments

I am thankful to my supervisor, Professor Stephen Watt, who taught me everything I

needed to know about tensor expressions, for accepting to supervise me, for his kindness

and generous contributions of time and for his careful commentary of my thesis. Without

him, this work would never been completed.

Also, I would like to thank every person in the SCL lab for their helpful advice and

useful comments on this thesis. Furthermore, I am sincerely grateful to my parents who

kept supporting me regardless of the consequences and to my family, especially my wife,

for their endless support and love. I shall never forget that.

Finally, I would like to acknowledge the School of Graduate Studies, the Department

of Computer Science and Professor Watt for their financial support.

iv

Contents

Ceritificate of Examination

Abstract

Acknowledgments

Contents

List of Tables

List of Figures

Abbreviations

1 Introduction

1.1 Overview .

1.2 Basic Tensor Arithmetic

1.3 Graph Theoretic Approach .

1.4 Tensor Packages and Related Work

1.5 Representation of Tensors in Computer Algebra Systems

1.6 Comparison of different packages

2 Tensor Algebra

2.1 Tensors Defined

2.2 Definition of Spinors

2.3 First View of Tensors

2.3.1 Aims of Tensor Calculus

v

ii

iii

iv

v

ix

x

xii

1

1

3

5

6

10

11

13

13

14

16

16

2.3.2 Tensor Indices and their Order

2.3.3 Index Conventions

2.3.4 Rank of Tensors ..

2.3.5 Tensors vs. Matrices

2.4 Algebraic Operations with Tensors

--~ 2.4.1 Addition ..

2.4.2 Contraction

2.4.3 Tensor Product

2.4.4 Raising and Lowering Indices

2.4.5 Permutation of Indices

2.4.6 Symmetry Properties .

2.5 Introduction to Specific Tensors

3 Graph Theory

3.1 Introduction .

3.2 Basic Graph Theory

3.3 Graph Isomorphism and Canonical Relabeling

3.4 Graph Operations

3.5 Matrix Representations .

4 Formulation of Tensor Algebra as an Algebra of Graphs

4.1 Introduction

4.2 Relabeling Dummy Indices .

4.3 Tensor Monomials as Multi-graphs

4.4 Tensor Algebra and Algebra of graphs

4.4.1 Addition ..

4.4.2 Contraction

4.4.3 Tensor Product

4.4.4 Raising and lowering indices

vi

17

18

19

20

21

21

22

23

25

26

26

27

30

30

31

34

35

39

42

42

43

44

44

45

46

47

49

4.4.5 Permutation of indices 50

4.4.6 Symmetries 52

5 Canonical Labeling of Graphs 54

5.1 Introduction 54

5.2 Algorithm of Vertex Labeling 55

5.3 Algorithm of Edge Labeling 56

5.4 Symmetries 59

6 Algebraic Simplification of Tensors 62

6.1 Introduction 62

6.2 Canonical Relabeling of Vertices . 63

6.3 Relabeling the Edges .. 66

6.4 Tensor Canonicalization 67

7 Basic Algebraic Operations on Tensor Expressions 69

7.1 Introduction 69

7.2 Graphical Pattern Matching Technique 71

7.3 Addition 73

7.4 Product 75

8 Symmetries 79

8.1 Introduction . 79

8.2 Non-Symmetry 80

8.3 Symmetry ... 81

8.4 Antisymmetry . 82

8.5 Mixed Symmetries 83

9 Aldar Implementation 87

9.1 Introduction to Aldar . 87

9.2 Implementation of graphs 88

Vil

9.2.1 Vertices 88

9.2.2 Edges 89

9.3 Implementation of Tensors 90

9.3.1 Name of Tensor .. 90

9.3.2 Indices and Types . 91

9.3.3 Symmetries 91

9.4 Output 92

9.4.1 Dummy Indices 92

9.5 Code to Show 93

9.6 Experimental Implementation 94

10 Conclusion 96

Bibliography 99

Vita 103

Vlll

List of Tables

3.1 Binary Operations of Graphs . 38

4.1 Contracting ii and i2 in a tensor T. 47

4.2 Permuting the indices in a tensor T. 51

5.1 Algorithm of Vertex Labeling. 55

5.2 Algorithm of Edge Labeling. . 57

7.1 Graphical Pattern Matching Technique for Li and L2 .• 72

7.2 Multiplication of TEi by TE2 77

8.1 Applying non-symmetry, antisymmetry or symmetry to T. 82

8.2 Applying mixed symmetry to T 84

8.3 The algorithm for simplifying a monomial TM. 86

ix

List of Figures

1.1

3.1 Representation of a multi-graph

3.2 A graph and its degree.

3.3 Different drawings of the same undirected graph.

3.4 Canonical labeling of a graph

3.5 Adding and deleting a vertex t and an edge e.

3.6 A graph and its adjacency matrix.

4.1 Representation of Rabmn · Rmncd and Rabij · RiJ°cd respectively.

4.2 Representation of 3A abi aib and Rabmn · Rmnad respectively .

4.3 Representation of 2 * (-3A abi cib)

4.4 Representation of -2Rabcd, Viad and -2Rabcdviad respectively.

4.5 Representation of 3A ab ic/
4.6 Representation of Rdcba and Rabcd respectively.

4.7

5.1 Representation of 3Aab/ib ...

5.2 Representation of Ajik, AkiJ and Aijk .

6.1 The representation of Aij k Aabk ynm

6.2 The adjacency matrices for G and G1 respectively

63 Th h fA lkA atyndmc dA lkA at ymdn c · e grap s O ljd i t kabn c an ij! t d bka n c · ·

x

6

31

33

34

35

37

40

45

46

47

49

49

50

53

58

60

65

65

66

7.1 The representation of 2(Tabcyecvb - Tacbyebvc) ·Rad as a tree. 78

Xl

NM(T)

i

SI(i)

'? _!.

IL(T)

FL(T)

DL(T)

Pos(i, IL(T))

TM

TE

G(T)

V(G(T))

EF(i)

ED(i)

E(G(T))

Abbreviations
name of a tenosr T

index i

symbol of index i

verify the type of i

list of indices of T

list of symbols of free indices of T

list of symbols of dummy indices of T

position of i in IL(T)

tensor monomial

tensor expression

graph of a tensor monomial T

set of vertices of G(T)

edge represents a free index i

edge represents a dummy index i

set of edges of G(T)

xii

Chapter 1

Introduction

1.1 Overview

During the second half of the 19th century and the first two decades of the 20th century,

tensors were introduced, were systematized and were brought to definitive form. This

introduction made tensors the ideal tool in several areas such as mathematics, physics

and mechanics.

Tensors are mathematical objects that generalize vectors and matrices, describe geo­

metrical quantities and can be used in various applied settings, including mathematical

physics. The indicial notation of tensors permits us not only to write an equation in a

compact manner, but also to use simplifying mathematical operations.

Quantities such as the mass of a satellite or the temperature at certain points in a

body have a definite magnitude. They can be represented adequately by single numbers

or scalars. These are tensors of order or rank zero. Throughout this thesis, we will use

the term rank in preference to the term order.

Properties such as the position or velocity of a satellite or the flow of heat in a body

have both magnitude and direction. They can be represented by directed line segments

1

Chapter 1: Introduction 2

or by vectors. These are objects with one index or tensors of rank one. For example, Vi,

or U" are vectors or tensors of rank one [Dan97].

Other quantities such as the stress inside a fluid may be characterized by matrices.

These are objects with two indices or tensors of rank two. For example, V;j, V/, Vi j and

yii are tensors of rank two.

Tensors of higher rank must have a corresponding number of indices. For example,

R"bij is a Riemann tensor of rank 4 since it has 4 non-repeated indices. In mathematics,

tensorial objects must satisfy many special properties which we shall not detail here. We

shall describe only the formal properties which must be respected by simplification rather

than transformation.

Thus, tensors are defined as quantities which are represented as letters with uppercase

and/ or lowercase indices attached to the letters. In general, the number of uppercase

and/ or lowercase indices determine the rank of the tensor. For example, a tensor with n

indices is an n rank tensor.

Tensors may be used to express the relation between physical quantities and they are

ideal to formulate physical laws such as partial differential equations. These expressions

are commonly known as tensor expressions. For example, a tensor expression such as

R"bij + V;iU"Vi, can be created by multiplying V;j by U" and then by Vi, and finally

adding the result to R"bij·

Tensor expressions can have intricate properties. For example, the Riemann tensor

has special symmetry properties with respect to the permutation of its indices. Thus,

the problem of simplification of tensor expressions naturally appears in this context. The

objective of this thesis is to express effective algorithms to simplify tensor expressions

using graph theory.

Chapter 1: Introduction 3

1.2 Basic Tensor Arithmetic

While tensors are used to great effectiveness in various areas of pure and applied mathe­

matics as multi-linear objects and differential geometry and for the purpose of this thesis,

we shall treat them as purely formal objects obeying arithmetic rules.

The purpose of this section is to establish several basic rules of operations with tensors.

These operations are algebraic in character. We present these rules here. The development

of this section is summarized from [Sok64].

Definition 1.1 The name of a tensor is a letter from the alphabet used to express the

tensor. For example, the name of the Riemann tensor Rabe d is R.

Definition 1.2 A non-repeated index is an index shown only once in a subscript or in

a superscript position in a tensor. Meanwhile, a repeated index is an index shown twice

in a tensor in a subscript and in a superscript position.

Property 1.1 The sum or difference of two tensors exists if and only if each tensor

has the same non-repeated subscript indices and the same non-repeated superscript indices.

Two tensors with this property are said to be of the same type.

Property 1.2 The multiplication of two tensors is possible if and only if the intersec­

tion of the subscript indices of both tensors is empty and the intersection of the superscript

indices of both tensors is empty too. In this thesis, the multiplication of two tensors is

commutative; i.e., vc Uab = Uab vc.

Remark 1.1 Tensors do not obey all rules of ordinary arithmetic. For example, we can

only add or multiply two tensors if the conditions of summation, as in Property 1.1, and

multiplication, also as in Property 1.1, exist.

Property .1.3 The intersection of the non-repeated indices and the repeated indices

should always be empty.

Chapter 1: Introduction 4

Property 1.4 A set of indexed quantities is said to be symmetric in any number of its

indices, subscript or superscript, if their values remain unchanged by any permutation of

that group of indices. For example, let AkiJ be a symmetric tensor. Then, AkiJ = A;Jk =

Akii·

Property 1.5 A tensor is said to be antisymmetric in a specific group of their indices,

subscript or superscript, if they remain unchanged by a finite even number of permutation

of these indices and if they simply change their sign by a finite odd number of permutation

of the index group. In general, the permutation of indices in a tensor is not always

commutative; i.e. Uab f. Uba· Note that, a tensor can combine this property and Property

Remark 1.2 A linear combination of tensors exists if and only if Property 1.1, Property

1.2 and Property 1. 3 are satisfied.

Example 1.1 Let Uabc y:c W, Uacb V"b W and A ad be three different tensor monomials.

Thus,

(Uabc y:c W + Uacb V"b W") · A ad (1.1)

is a tensor expression since:

1. each expression in the sum in (1.1) has the same non-repeated indices, {a, e}, which

satisfies Property 1.1,

2. the operands in the product have disjoint non-repeated index set and so satisfy Prop­

erty 1. 2, and

3. the non-repeated index set n repeated index set = 0, as in Property 1. 3.

Chapter 1: Introduction 5

1.3 Graph Theoretic Approach

Certain problems in physics can be formulated as problems in graph theory. Tensors are

the perfect example to show that. For example, let U/k be a tensor and let G be an empty

graph. In each graph, V 0() will be a reserved vertex to represent the set of non-repeated

indices. Thus, U/k can be formulated as the following:

1. the name of the tensor, U, will be represented as a vertex, say V 1 (), in G,

2. the indices, {i, j, k }, will be represented as the edges of G, such that

(a) the type of each index, subscript or superscript, will be represented as the

direction of the edge, and

(b) the position of the index in the tensor will be shown on the edge.

The method of labeling the vertices and the edges is fully described in Chapter 5.

The main computational problem is to devise an algorithm to reorganize each tensor

expression into a simplified form. This simplification may involve the combination of a

very large number of similar terms in a sum or factors in a product. Each monomial in

every expression need to be represented as a separate graph. Adding or comparing these

graphs allows us to add or to multiply tensor monomials and thus simplify the tensor

expression.

For example, let Expr = R"bcdVaivci\ be a tensor. The free indices of Expr are

b, d, i,j which are added to V0 (). Meanwhile, V 1(), V 2 () and V3 () represent the name of

R"bcd> Vai and vci\ respectively. Thus, the graph will contain 4 vertices: V 0 (b, d, i,j),

In Expr, .there exist 4 non-repeated and 3 repeated indices. The non-repeated ones

are represented as edges related to V 0 (b, d, i,j). Since each repeated index can be found

Chapter 1: Introduction 6

in one or 2 tensors, it will be represented as an edge going from one vertex to another but

not V 0 (b, d, i, j). The type of the indices will specify the direction of the edges. The full

representation of Expr can be found in Figure 1.1.

Note that, the representation of tensors in this package uses a rank-independent no­

tation. It is a useful notation since:

1. this representation provides a natural and straightforward conceptual interface,

2. the treatment of the problem of dummy indices is natural, and

3. it is easy to add and to compare graphs.

1.4 Tensor Packages and Related Work

The use of computers to manipulate mathematical equations and expressions in symbolic

forms is becoming more acceptable than manipulating the numerical quantities repre­

sented by those symbols. The advantages of using such a symbolic system can be resumed

as the following: symbolic integration or differentiation, substitution of one expression into

another, simplification of an expression, change of subject, etc.

Chapter 1: Introduction 7

Some of the best known symbolic mathematical software packages are AXIOM,

MACSYMA, Maple, Mathematica and REDUCE. Others of historical interest in­

clude MATHLAB and SHEEP [Int95].

Over the past 25 years, a few different algorithms and packages have appeared to

simplify tensor expressions. Tensor analysis requires both Indicial and Component Tensor

Manipulations.

1. Component tensor manipulation means that geometrical tensor objects are usually

represented as arrays or matrices. Tensor operations such as contraction or covariant

differentiation are carried out by actually summing over the repeated indices. That

is, one explicitly performs operations on the appropriate tensor components stored

in an array or matrix.

2. Indicial tensor manipulation is implemented by representing tensors as functions

of their covariant, contravariant and derivative indices. Tensor operations such as

contraction or covariant differentiation are performed by manipulating the indices

themselves rather than the components to which they correspond.

Among the early systems for relativistic applications, we can mention LAM, ALAM

and CLAM. ALAM and CLAM are systems for symbolic mathematics especially for

General Relativity. They were first implemented in ATLAS assembly language and later

Lisp. These systems are only capable of component tensor calculations and they have

been used for various applications [Ray70] [RC71].

In late 1970 and up to early 1980, SHEEP, which is an algebraic package for symbolic

mathematics especially tensor analysis and general relativity developed by Inge Frick,

surpassed the previous systems. It was implemented in assembly language then in LIPS

and it is specialized in manipulating components of tensors [ea93]. It was written to treat

a data type indicial formula representing formulas containing tensors or spinors with

symbolic or letter indices [Hi:ir79].

Chapter 1: Introduction 8

The MACSYMA I tensorial package implements symbolic tensor manipulation of two

distinct types:

1. Explicit tensor manipulation, ETENSOR, and

2. Indicial tensor manipulation, !TENSOR.

The MACSYMA !TENSOR package was the first computer system capable of

performing indicial tensor calculations while ETENSOR is specialized in manipulating

components of tensors. Macsyma, as with many other software systems, has been used

to investigate the validity of gravity theory [The83].

STEN SOR of L. Hornfeldt [Hor85] can also, as with all other systems, cope with sym­

bolic indices, covariant differentiation and complicated symmetries. STENSOR has been

used for applications in classical relativity, quantum gravity and super gravity. STEN­

SOR is known as component calculations and indicial tensor manipulations.

MathTensor, which was implemented in Mathematica, developed by L. Paker and

S. Christensen [CP90], is one of the more recent tensor computation package which has

both indicial manipulation and component calculations. Among the new features, Math­

Tensor provides the definition of rules and their applications, the differential forms and

the pattern matching techniques used in the simplification of algebraic expressions.

In 1992, S.A. Fulling et al. [FKWC92] described an algorithm to enumerate the

independent monomials built from the Riemann tensor and its covariant. They presented

explicit tables for monomials of rank up to 12 in derivatives.

In the same year and using the same algorithm, Meller and Wybourne [WM92] enu­

merated up to the rank 14.

GRTensor II, developed by K. Lake and P. Musgrave [grt94], is a computer algebra

package for performing calculations in the general area of differential geometry. The

,,_-

Chapter 1: Introduction 9

purpose of this package is the calculation of tensor components in curved space times

specified in terms of a metric or set of basis vectors. This package contains a library of

standard definitions of a large number of commonly used curvature tensors, as well as

the Newman-Penrose formalism. GRTensor II is only dedicated to component tensor

calculations.

In 1994, M. Kavian [kMG97] developed TCP, Tensor Computation Package, and

implemented in Maple. TCP was devised to have some new features compared to other

packages. Among these features, a database of rules and components containing definition,

identities and precomputed values of various invariants associated with different metric

tensors.

In 1996, V.A. Ilyin and A.P. Kryukov [IK96] presented a package written using RE­

DUCE to simplify tensor expressions called ATENSOR. The proposed algorithm is

based on the consideration of tensor expressions as vectors in some linear space which is

formed by all the elements of the group algebra of the corresponding tensor expression.

After two years, R. Portugal [Por98] presented an algorithm based on Griibner bases.

This algorithm simplifies tensor expressions by representing them in a canonical form

taking into account the symmetries with respect to index permutations and the renaming

of dummy indices.

In the following year 1999, Portugal [Por99] presented another algorithm for simplify­

ing tensor expressions. First, he defines the canonical form of a single tensor and shows

that the problem of finding the canonical form of a generic tensor expression reduces to

finding the canonical form of a single tensor using the automorphism group of the sym­

metries. Then, the algorithm for simplifying the cyclic symmetry of the Riemann tensor

is presented. By using this algorithm, Portugal shows how to simplify Riemann tensor

polynomials.

Chapter 1: Introduction 10

1.5 Representation of Tensors in Computer Algebra

Systems

In addition to the Indicial and the Component tensor manipulations, it is important in

tensor analysis to check certain conditions, such as the symmetric properties of a tensor

under interchange of the indices and also some other properties of certain tensors.

One useful approach for a tensor analysis package is the ability to simplify tensor

expressions with a pattern matching technique giving some flexibility to define some rules

then using them whenever appropriate.

Coordinate transformations have also become one of the new features of some tensor

packages such as Math Tensor. Coordinate transformation transforms the components of

a tensor from one coordinate system to another [PC94].

Solving the Indicial tensor equations by converting those equations to components and

then solving for the associated Finite Difference Equations is another strategy which is

used by the Macsyma !Tensor Package [The83].

In any tensor package, we can always define a tensor by calling a function and spec­

ifying its attributes. In MathTensor, this can be done with the command DefineTensor

as follows:

• · DefineTensor[cyc, "c", {{3,1,2}, 1}]

In Macsyma !Tensor Package, the symmetric properties of tensors are defined by a

function called decsym. For example,

• decsym(B, 5, 3, [SYM(1,2), ANTI(3,4)], [CYC(ALL)])

declares B to be symmetric in its first and second indices and antisymmetric in its third

Chapter 1: Introduction 11

and fourth covariant indices and cyclic in all of its contravariant indices.

One of the major differences between MathTensor and Macsyma !Tensor Package is

the representation of the indices. In Math Tensor, the covariant and contravariant indices

are represented in only one bracket such that la, lb, ... , lo represent the covariant free

indices and ua, ub, ... , uo represent the contravariant free indices [The83].

For example, MAXWELL[la, lb] represents the Maxwell field tensor Fab with co­

variant indices a and b while MAXWELL[la, ub] represents the Maxwell tensor F.b

with contravariant index a and covariant index b.

1.6 Comparison of different packages

The advantage of using the symbolic coordinate indices can be summarized by representing

any tensor as a n dimensional vector where n is the total rank of the tensor. For example,

all the functions to manipulate vectors in Mathematica can be used in order to simplify

expressions including tensorial ones.

Meanwhile, one of the disadvantages for using such a notation to define a tensor in

a system as Macsyma !Tensor Package is the representation of the lower and the upper

indices. These indices should be separated in two brackets. Thus, this definition will not

allow tensors to have mixed lower and upper indices.

For instance, The Riemann tensor Rab cd can not be represented in Macsyma ETensor

Package. Therefore, this package is unable to perform index manipulations which is

the key element to the algebraic simplification of expressions containing tensorial objects

[Kav94].

In contrast, we are able to represent such a tensor with a mixture of lower and upper

indices in MathTensor but we are not allowed to use some letters to represent the dummy

Chapter 1: Introduction 12

indices. For instance, the letters lp, .. ., lz and up, .. ., uz are only reserved to be used to

represent the dummy indices.

GRTensor is dedicated only to Component tensor calculations and not for algebraic

operations on tensorial expressions.

In TCP(Tensor Computation Package), the process of renaming the dummy indices

is not well controlled all the time. Representing on the situation, TCP changes the name

of the free and dummy indices to be different ones. One example of such performance

would be the Binachi identity.

For example, let TMJ = RefpqFpq be a tensor monomial. It is defined as the following

TMl := Tensor(Riem(abcd)*Maxwell(AB));

In this tensor, there are only two free indices c and d, which are replaced by e and

f. Meanwhile, the dummy indices a and b are replaced by p and q. The problem occurs

when simplifying such a tensor containing all the alphabets as indices.

Chapter 2

Tensor Algebra

2 .1 Tensors Defined

Tensors are a beautiful and simple language useful to describe natural phenomena. They

are defined as quantities having physical significance and satisfy certain transformation

law. Tensor fields are the abstract symbols of this language. Each tensor field represents

a single physical quantity that is associated with certain points in three-dimensional space

and instants of time.

Tensors, which can be defined using mathematical objects as mentioned in Section

1.1, are classified as:

1. Zero-rank Tensors or Scalars. Tensors of rank zero are scalars. They are

quantities that are independent of the orientation of axes. A tensor of rank zero

or a scalar determines the scalar field. For example, the work, the pressure, and

the density. Note particularly that we can always specify each of these quantities

merely by giving a single number denoting its magnitude or its value.

2. First-rank Tensors or Vectors. Tensors of rank one are the ordinary vectors

defined as quantities having magnitude and direction. A tensor of rank one deter-

13

Chapter 2: Tensor Algebra 14

mines a vector field. For example, the position, the velocity, the gravity assist, and

the mechanics of a particle.

3. Higher-rank Tensors. The quantity which we shall call a tensor is, in reality, a

tensor of rank two or higher. Note that scalars and vectors are in the same family

as tensors. For example, the stress inside a solid or fluid, the trajectories of point

masses in a gravitational field, the motion of finite rigid bodies, the transfer of heat

by conduction, and the deformation of solids.

A tensor is more than an array of numbers since the entries transform in related

ways under coordinate transformations. Tensors are in particular useful to be used for

equations which keep the same form under coordinate trajectories. In fact, a special

form of differentiation, called the covariant derivative, can be used to write the partial

differential equation in a tensorial form. Normal partial derivatives are not tensorial

quantities.

In applications, several different specific tensors appear. For example, the Riemann

tensor, the Ricci tensor, and metric tensors. In the differential geometry, field theory, the

general theory of relativity and fluid mechanics, the laws of motion and field equations

are expressed in a tensorial form to reflect the coordinate invariance of the equations. An

additional advantage of tensor formalism is the compactness of tensorial expressions.

2.2 Definition of Spinors

Consider two vectors X1 = (x1, y1, zi) and X2 = (x2, Y2, z2) of the Euclidean space E3

with the same origin which are. orthogonal and have equal norms. These vectors define a

plane, and if we consider these vectors as being ordered, this order defines a direction of

rotation.

Chapter 2: Tensor Algebra 15

In order to introduce algebraically a representation of the order in which the vectors

X1 and X2 have been considered, it is convenient to multiply the components of the

second vector by the imaginary number i. We can thus form the three complex numbers:

(2.1)

Then, these three numbers are able to form the components of Z which is equal to:

Z = (x,y,z). (2.2)

Thus,

(2.3)

as X 1 and X2 are orthogonal with equal norms. The relation (2.3) between the three

complex numbers x, y and z allows us to express them by means of just two complex

numbers.

This relation can be put into the form:

Then, if we set

z2 = -(x2 + y2)

= -(x + iy)(x - iy).

{
x + iy = -2¢2

,

x-iy=2'1/P,

'I/! and ¢ will allow us to calculate x, y and z. In fact, we have:

(2.4)

(2.5)

Chapter 2: Tensor Algebra

x = 'lj;2 - ¢2,

y = i('lj;2 + ¢2),

z = ±27/J</J.

16

(2.6)

For the value of z, one of the signs, +or -, can be chosen arbitrarily where we choose

the negative sign. Thus, the two complex numbers 'lj; and <P form a representation for the

two vectors X 1 and X2 as well as the rank chosen for these two vectors.

We define a spinor to be the pair ('lj;, <P) which is related to the vectors X 1 and X2 by

the relation (2.6) [Hla99]. In general, spinors are subject to the same simplification issues

as tensors except when otherwise mentioned.

2.3 First View of Tensors

In this section, we will discuss the physical representation characterized by scalars, vectors

and tensors of rank two or higher which will be denoted by bold capital letters such as R,

U and V. This representation is used for spin ors as well as tensors, except when otherwise

mentioned.

2.3.1 Aims of Tensor Calculus

Tensor Calculus is a branch of geometry that allows us to formulate geometrical and phys­

ical theorems, usually as differential equations, in a way independent from the influence

of the underlying arbitrarily chosen coordinate system.

It formulates equations valid for a family, or group, of coordinates that are obtained

from each other by well-defined transformations, of various degrees of generality. For this

reason tensor calculus is an ideal tool in several areas of mathematics such as differential

geometry [Pap99].

Chapter 2: Tensor Algebra. 17

It is desirable and often convenient to use tensor calculus as a mathematical back­

ground in which such laws can be formulated. In particular, Einstein found it an excellent

tool for the presentation of his General Relativity theory.

As a result, tensor calculus came into great prominence and is now invaluable in

its applications to most branches of theoretical physics. It is also indispensable in the

differential geometry of hyperspace.

2.3.2 Tensor Indices and their Order

In mathematical or physical approaches, the name of symbols or kernels, tensorial or not:

uppercase and/ or lowercase, Latin and/ or Greek is characterized by one or more indices

or suffixes. These indices are indicated with notational variations such as: upper vs.

lower, Greek vs. Roman, superscript(up or contra.variant - not to be taken for powers!)

vs. subscript(down or covariant), accented vs. unaccented, diacritical marks, etc.

For the rest of the thesis, the notations of covariant and contravariant will be used to

define the position of each index.

For example, let

(2.7)

be tensors such that R, F and C are the kernels and a, (3, i, i', j, k, k0 and l are the indices

at which i is the only contravariant index.

To avoid ambiguity with raising of a lower index and lowering of an upper index, it is

sometimes necessary for tensors to specify the order of indices when both subscripts and

superscripts occur. For example, the tensor V 1 nm in (2.8) is not necessarily the same as

the tensor V1
mn.

Chapter 2: Tensor Algebra 18

Note that, we should not place the upper and the lower index in the same vertical

line. For example,

Tii mn u.k yi
kl i nm· (2.8)

Note that the index rank is always important for spinors which is not the case for

tensors. For example, the tensor Tk k is equal to the tensor Tk k which is not the case for

spinors. Thus, the position of each index in a tensor is important.

Finally, if two or more covariant or two or more contravariant indices are equal in a

tensor, then the tensor itself will be equal to zero [Spa65].

2.3.3 Index Conventions

We shall now adopt an important convention with regard to indices. Since we are dealing

with sum of products, and since it is difficult to keep writing summation signs within sum­

mation indices, we shall follow Einstein's example and adopt the convention by which we

omit the summation index wherever it occurs simultaneously at two types one covariantly

and one contravariantly. Thus, in these sums:

(2.9)

we cannot omit the summation index. Thus, the terms in (2.9) are not tensors. Only

certain sums are admitted in a monomial to be a tensor. However, the sums

n
:E AikBki

i,k=l

can be abbreviated (omitting the summation index) as:

(2.10)

Chapter 2: Tensor Algebra 19

This shorthand notation for a sum is called the summation convention (introduced

by Einstein).

Since the repeated index is to be summed, it follows that the particular letter used for

the repeated index is quite immaterial, and we may substitute it by any letter we please

without altering the value of the expressions we are dealing with.

For this reason, the repeated index is often referred to as a dummy index. For

example, in (2.10) we can replace the dummy index i with the index j without changing

the summation. An index which is not repeated in any single term is known as a free

index [McC57].

2.3.4 Rank of Tensors

The rank of a tensor is the sum of the covariant and the contravariant free indices.

1. A scalar contains only dummy indices. For example, h/i 1 and Uiiyji·

2. A vector have only one free index. For example, Ai, Ai and Ui~Vt

3. A tensor of rank two is classified into one of three classes:

(a) Contravariant Tensor contains exactly 2 contravariant free indices. For

example, Tkl.

(b) Covariant Tensor is a tensor which contains 2 covariant free indices. For

example, Tkt·

(c) Mixed Tensor is a partly covariant and partly contravariant tensor. For

example, T/ or T1i. In particular, a mixed tensor transform as a contravariant

vector with respect to the covariant index and like a covariant vector with

respect to the contravariant index.

Chapter 2: Tensor Algebra 20

Thus, the components of a mixed tensor need exactly two free indices such that one

index is a covariant index while the other is contravariant one. The position of these

indices will indicate the class into which the tensor belongs.

If these classes are accepted, there is nothing to prevent an extension to higher rank

tensors, with mixture of covariant and contravariant indices. Therefore, tensors of higher

rank can be defined in the same way as tensors of rank two.

2.3.5 Tensors vs. Matrices

Tensors and Matrices are different and they are frequently confused for each other.

1. The Cartesian components of the tensor T;j can always be used to create a square

matrix T:

Tn T12 T13

T = T21 T22 T23

Tai Ta2 Taa

We call T the matrix of the tensor T. Then, the components can be manipulated by

standard techniques of matrix algebra. Thus, a tensor of rank two can be represented

by an n x n square matrix. Meanwhile, a general n x m non-square matrix cannot

be represented by a tensor.

2. A tensor with rank higher than two can not be in general represented by a one single

matrix but its components can be arranged to form matrices of higher dimensions.

For instance, the components of Bijk form a cubic array in three dimensions.

Chapter 2: Tensor Algebra 21

2.4 Algebraic Operations with Tensors

We must now summarize the algebraic rules for manipulating tensors. In this section,

tensors are taken to be of the same rank, which could be two or higher, except when

otherwise mentioned. Most formulas are also valid when these tensors are vectors.

The fundamental operations of tensor algebra are addition, contraction, multiplication,

permutation of indices, and symmetries. Addition and multiplication are governed by

most of the rules as in the arithmetic of real numbers.

2.4.1 Addition

The sum of two tensors having the same free covariant indices and the same free con­

travariant indices is a tensor of the same name and the same rank as the original ones.

Tensors are added by adding their corresponding coordinates. For example, consider the

two tensors:

Their sum is

Thus,

and

T=U+ V=V+U;

~+~+T=U+~+T)=U+V+T;

there exists a null tensor 0 s.t. 0 + T = T;

for each T, there exists -T s.t. T + (-T) = 0.

(2.11)

(2.12)

Chapter 2: Tensor Algebra 22

Therefore, tensors with the same free covariant indices and the same free contravariant

indices form an Abelian group under addition. It is always true that tensors with a

different number of covariant and/ or different number of contravariant indices cannot be

added together.

For instance, it is clear that we cannot expect to give any tensorial meaning to the

expression UiJ +Vi. Moreover, the operation can be immediately extended to find the

sum of any number of tensors provided that they all have the same free covariant indices

and the same free contravariant indices. Subtraction of similar tensors is immediate.

2.4.2 Contraction

Let T be a mixed tensor of rank r. If we set a subscript index to be equal to a superscript

one, then we create a pair of dummy indices. According to the summation conversion as

in Section 2.3.3, summing this tensor with respect to the dummy index produces a new

tensor, mixed or not, of rank r - 2. This process of forming a new tensor by summing

over a new dummy indices is called contraction.

The only restriction on naming the contracted indices is that the name should not

conflict with the names of free or dummy indices. In general, the treatment of the dummy

indices is one of the most difficult problems in any computer algebra package.

For example, let U;/ be a mixed tensor of rank 3. If we set k equal to j, then the

result appears as U ;/. Since only one index is left as a free one, the result is the same

as a covariant vector. We say that this vector is obtained from a third-rank tensor by

contracting j and k.

This operation can evidently be repeated several times with respect to any pair of

indices, one of which is a subscript index and the other is a superscript index. As just

shown, contraction lowers the rank of a tensor by two.

Chapter 2: Tensor Algebra 23

2.4.3 Tensor Product

There exist different types of multiplication in tensor algebra. The most knows ones are:

the outer and the inner product. Tensors in tensor product can have different name or

rank.

Scalar Product

The multiplication of a tensor T with a scalar A produces a tensor S with the same

characteristics as T such that S = .XT. We denote the scalar product of T with A by

A· T. This indicates that each coordinate of T is obtained by multiplying the corresponding

coordinate of T by the same scalar factor .X. Thus, tensors can be multiplied by numbers

just like vectors can [GoL74].

The multiplication of similar tensors with a negative scalar is immediate. Multiplica­

tion by a zero always yields a tensor with all of its coordinates are zero. Such tensors are

referred to as null or zero tensors. Thus,

Outer Product

O·T = T·O= 0,

(-.X) · T = T · (-.X) = -.XT,

c · (dT) = (cd) · T = cd · T.

Just as for vectors, different tensors can be multiplied together. In fact, we can always

construct a new tensor from any two given ones, say S and T of rank s and r respectively,

by taking their outer product. We denote this by T · S of rank t such that t = s + r.

Thus, the components of the outer product of two tensors is the product of the compo­

nents of the separate tensors. It is obvious that the result of the multiplication will always

be a tensor of the sum of given ranks. The only restriction for applying the outer product

Chapter 2: Tensor Algebra 24

is that the intersection of the covariant indices of both tensors and the intersection of the

contravariant indices of both tensors should always be empty, as mentioned in Property

1.2.

For example, let gab and Tk1 be two tensors of rank 2. Then, the outer product of both

tensor~ is a tensor Tkz gab of rank 2 + 2 = 4. Meanwhile, the outer product of tensors is

always associative and distributive with respect to addition. Thus,

(g + T) · U = g · U + T · U;

(g · T) · U = g · (T · U) = g · T · U.

Note that, tensors do always not obey the rules of ordinary arithmetic. For example,

let g and T be two tensors of rank s and t respectively. Then, the equation g · T = 0

does not necessarily imply that g or T are null tensors.

Inner Product

The inner product of two given tensors g and T of rank s and t respectively can be

constructed from the outer product of both followed by the contraction of any two indices

such that each index is coming from different tensor. The rank of the inner product is

always less than the sum of both ranks by two; i.e., < s + r - 2.

Note that it is not intended to use more than one contraction in the inner product.

For example, contracting the outer product Tkzgab of the tensors Tkz and gab yields to

either: Tkzgkb or Tk1g1 b·

In particular, the inner product of two vectors Ui and Vj is a tensor Uk Vk of rank

zero and it is called scalar product.

Chapter 2: Tensor Algebra 25

Integral Powers

Similar to vectors, a tensor can be multiplied by itself n times, n is an even number, to

give a scalar. By convention, T 2 is a self contraction of all free indices. For example, let

Ti"a be a tensor of rank one. Thus, (Ti".) 2 = Tia"T;b b.

Thus, integral powers of a tensor T are defined inductively by:

T 0 -1 - ,
T 1 =T,

I
Tn = Tn-1, T , (2.13)

where m and n are nonnegative even integers.

It should be noted that the integral powers do not obey all the time the rules of

ordinary powers. For example, if T is a given tensor, then the relations in (2.13) do not

apply for an odd integer ::=:: 3.

2.4.4 Raising and Lowering Indices

The metric tensor is represented by the special symbol g. The main use of this tensor in

this thesis is usually used to raise and/ or lower indices of a tensor.

To raise and/or lower an index of a tensor T, we form an inner product of T with

the covariant or the contravariant metric tensor. For example, let vi be a contravariant

vector. The contraction of vi with the metric tensor 9ij forms g;jVj. Thus, the new vector

transforms covariantly and it is denoted by v;.

Similarly, vi = gijvj. It should be noted that the method of raising and/or lowering

Chapter 2: Tensor Algebra 26

indices is not confined to vectors, but may be applied to any index of a tensor of any

rank.

Thus, these operations change the type of a tensor T but preserve its rank. They do

not alter the tensor in any fundamental way; i.e., it is the same tensor but in a different

representation. Thus, Rk1Sr and Rk1Sr are equivalent.

Also these operations are invertible: raising and then lowering the same index, and

vice versa, leads to the original tensor.

2.4.5 Permutation of Indices

In general, we can permute a set of indices in a given tensor. This permutation leads

to another tensor. For example, let Uijk ... m and Ujki ... m be two tensors. Thus, Ujki ... m

differs from the tensor Uijk ... m by permuting some of its indices. The importance of this

operation appears by defining the property of symmetries for tensors [Aki72].

2.4.6 Symmetry Properties

If two covariant, contravariant or mixed indices of a tensor of rank r can be interchanged

without chan~ the sign of the tensor, then the tensor is said to be symmetric with

respect to both indices. For instance, if Hij kl = Hji kl, the tensor Hij kl is symmetric with

respect to i and j.

If symmetry in a tensor holds for the permutation of any two same type or mixed

indices, then the tensor is a completely symmetric or simply a symmetric tensor. For

instance, the metric tensor is symmetric since 9ab = 9ba· Note that the symmetry is

invariant under transformation of coordinates.

Similarly, if the interchange of same type or mixed pair indices of a tensor changes the

sign of the tensor, then it will be called completely antisymmetric or simply antisymmetric

Chapter 2: Tensor Algebra 27

with respect to both indices.

Meanwhile, the tensor is antisymmetric if the sign of the tensor changes by an odd

number of permutation of any two indices of the tensor. For example, if Tij = -Tji,

then the tensor Tij is antisymmetric with respect to i and j. The symmetry and the

antisymmetry of tensor Tij can be summarized by the formulas:

Tis symmetric -¢==? Tij = T 1i,

Tis antisymmetric -¢==? Tij = -Tji·

Many tensors have special symmetries under the permutations of their indices. They

can have a combination of both types of symmetries. For instance, Rabcd represents the

Riemann tensor with four indices, namely a, b, c and d. This tensor is antisymmetric

under the change of the first pair of indices, {a, b}, or the last pair of indices, { c, d}. At

the same time, it is symmetric with respect to both pairs, {a, b} and { c, d}.

Other symmetries relate multiple terms. For example, the sum of terms obtained by

cyclic interchange of the last three indices of the Riemann tensor is zero. For example,

let Rdcba be a Riemann tensor. Thus,

{Rd -Rc -Rc -R" cba - - dba - - dab - bcdi

Rdbca + Rdcab + Rdabc = 0.
(2.14)

2.5 /introduction to Specific Tensors

As introduced in the previous section, the Riemann tensor has exactly 4 different indices

which they can permute only as explained previously. From the presence of this tensor,

we can derive many different ones such as the Ricci tensor, the Einstein tensor, and

the Weyl tensor.

Chapter 2: Tensor Algebra 28

The Ricci tensor of first kind is simply the contraction of the first and the last indices

of a the Riemann tensor introduced in (2.14) such that:

(2.15)

The last index can be raised to yield the Ricci tensor of the second kind:

R b_ brR
c = g er· (2.16)

As a consequence of the Riemann tensor, the Ricci tensor is symmetric. If this tensor

is contracted by letting c = b, we get the Ricci curvature scalar such that:

R". =R. (2.17)

Meanwhile, the combination of

(2.18)

is known as the Einstein tensor. It is called after Einstein since its importance for

gravity was first understood by Einstein.

Now, by subtracting from Rabcd the appropriate terms formed from its contractions, we

can construct a tensor that has no non-zero contractions which known as the projective

tensor or Weyl tensor. This tensor has all the symmetry properties of the Riemann

tensor and it has the following form for space of dimension n > 2:

R;jhl

I
1

(n _ 2) (g;hRJt - 9ilRJh - 9JhR;t + 9JtR;h) (2.19)

Chapter 2: Tensor Algebra 29

It can be shown that the Wey! tensor is zero in 3 dimensions.

Finally, The Maxwell tensor, denoted by pij, is an antisymmetric tensor and it was

introduced to explain Maxwell's theory in a compact form. Maxwell started from the idea

that a spatially distributed electromagnetic field possesses certain properties of elasticity,

and when constructing its model he used the analogy with the theory of elastic continuum

which was then already developed in all details.

Chapter 3

Graph Theory

3.1 Introduction

Throughout the many branches of mathematics, one frequently encounters the fundamen­

tal concepts of sets and relations. The theory of graphs offers no exception to that. In

fact, a graph may be defined as a finite nonempty set with some kind of relations.

Graph theory, which had arisen out of puzzles solved for the sake of curiosity, has now

grown into a major discipline in mathematics with problems permeating into almost all

subjects such as physics, chemistry, engineering, psychology, and computer science. This

subject, which has been lying almost dormant for hundreds of years since the time of

Euler, suddenly started exploding by the turn of the 20th century, and it has branched

off today in various directions such as coloring problems, Ramsey theory, factorization

theory, computer science and optimization.

Some puzzles and various problems of a practical nature have been instrumental in the

development of various topics in graph theory. The famous Konigsberg Bridge problem

has been the inspiration for the development of graph theory. In fact, graph theory can

be counted as a mathematical subject for over three centuries.

30

Chapter 3: Graph Theory 31

In this chapter, we will introduce a few terms of graph theory, present some examples,

state some graph isomorphisms and canonical relabeling, and describe some useful graph

operations.

3.2 Basic Graph Theory

We can think of a graph as a set of points in a plane and as a set of line segments, possibly

curved, each of which either joins two points or joins a point to itself [GY94].

v
b c

g

w

Figure 3.1: Representation of a multi-graph

Graphs are highly versatile models for analyzing a wide range of practical problems

in which points and connections between them have some physical or conceptual inter­

pretation. In this thesis, each graph consists of a list of vertices, list of edges and their

components. The construction of graphs in here is similar to the one used in graph theory.

The following development is summarized from [GY94].

Definition 3.1 A Graph G = (V, E) is a mathematical structure consisting of two sets:

V and E. The elements of V are called vertices, nodes or kernels and the elements

of E are called edges. Each edge has a set of one or two vertices associated to it. A

loop-edge is an edge going from a vertex to itself.

Example 3.1 The graph in 3.1 has vertex-set V = { u, v, w} and edge-set E = {a, b, c, d, f,

g, h, k }. The edges {a, b, k} are edges that join a single vertex to itself, and the set of

Chapter 3: Graph Theory 32

{ c, d, f, g, h} are edges connected to more than one vertex.

Remark 3.1 Let G = (V, E) be a graph. We denote IVI and IEI to be the number of

vertices and the number of edges respectively in the graph G.

Remark 3.2 An edge between two vertices may be considered as a connection in either

direction. Assigning a direction makes one of these forward and the other backward. In a

line drawing, the choice of forward direction is indicated by placing an arrow on the edge.

Definition 3.2 A graph is said to be labeled, if its n vertices are distinguished from one

another by labels such as {v1,v2, ... ,vn} [RB99}. For example, the graph in Figure 3.1 is

labeled.

Definition 3.3 Let G = (V, E) be a graph such that !VI > 1. We say that V is in

a lexicographical order if the vertices are ordered based on their labels. For example,

{ v1 , v2 , ... , Vn} are ordered in a lexicographical order.

Remark 3.3 Let G = (V, E) be a graph such that V = {Vo, v1,. .. , Vn}· We can always

relabel a graph G with an integer i by adding the subscript integer of each vertex to the

integer i. For example, let G = (V, E) be a graph such that V = { vo, v1, v2}. By relabeling

G with the integer i = 3, the new graph G1 = (Vi, E1) will be modified such that the list

of vertices V = {v3,V4,v5}.

Definition 3.4 A directed edge is an edge, one of whose endpoints is designated as the

tail with the other endpoint designated as the head.

Definition 3.5 Let e1 and e2 be 2 directed edges. We say that ei = e2 if the head of ei

is equal to the head of e2 and if the tail of e1 is equal to the tail of e2.

Definition 3.6 Let e1 and e2 be 2 different directed edges. We say that ei < e2 if the

label of the head of e1 is smaller of the label of the head of e2. If both labels are equal,

then e1 < e2 if the label of the tail of ei is smaller of the tail of e2.

Chapter 3: Graph Theory 33

Definition 3.7 Let V be a non-empty set, and let E ~ V x V. A directed graph or

digraph G = (V, E) is a graph such that all edges are directed. An undirected graph

G1 = (Vi, E 1) is a graph with all edges undirected. For example, the abstract representation

of computer programs can be represented only by directed graphs.

Definition 3.8 A directed or undirected graph G = (V, E) is called a multi-graph or

multi-edges graph if for some u, v E V, there are two or more directed or undirected

edges from u to v or from v to u.

Definition 3.9 Let G = (V, E) be a multi-graph such that IEI > 1. By ordering the

elements of E as mentioned in Definition 3. 6, we can say that E is in a lexicographical

order.

Definition 3.10 Let G = (V, E) be a multi-graph. We say that G is in order if V and

E are in lexicographical order as mentioned in Definition 3.3 and in Definition 3.9.

Definition 3.11 Let G be a directed, undirected or multi-graph. For any vertex v of G,

the degree of that vertex is the total number of edges in G, denoted by dega(v), that

begins or ends with v. The degree of a loop is considered to count as 2.

Figure 3.2: A graph and its degree.

Example 3.2 In Figure 3.2, dega(v1) = dega(va) = dega(v5) = dega(v5) = 2, dega(v2) =

4, dega(v4) = 0, and deg0 (v7) = 1. For v0, the dega(vo) = 3 since we count the loop

twice.

Chapter 3: Graph Theory 34

3.3 Graph Isomorphism and Canonical Relabeling

Deciding when two line drawings represent the same graph can be quite difficult for

graphs containing more than a few vertices and edges. A related task is deciding when

two graphs with different specifications are structurally equivalent, that is, whether they

have the same pattern of connections.

Designing a practical algorithm to make these decisions is a famous unsolved problem,

called the graph-isomorphism problem. Since the shape or length of an edge and its

position in space are not part of a graph's specification, each graph has infinitely many

special representations.

b

ct?
c u r:\u

a "ob w d
c

v
a c

w v

w
b

Figure 3.3: Different drawings of the same undirected graph.

The vertices and edges in the three drawings above have matched labels. Since each

graph has exactly three matched vertices and same four edges, it is easy to recognize that

these three drawings represent the same graph.

Definition 3.12 Let G1 = (Vi, E1) and G2 = (1;2, E2) be two graphs. A function f :

Vi ---+ V2 is called a graph isomorphism if:

1. f is one-to-one and onto and

2. for all u, v E Vi, (u, v) E E1 if and only if (J(u), f(v)) E E2.

Chapter 3: Graph Theory 35

When such a function exists, G1 and G2 are called isomorphic graphs. [Grag4}

Figure 3. 4: Canonical labeling of a graph

Definition 3.13 Let G = (V, E) be a graph and let K be a class of graphs having the

same vertex set V. We assume that if G1 and G2 are isomorphic graphs with V1 = V2 = V,

then G1 E K implies G2 E K. Let JVJ = n. By a canonical labeling of the class K, we

mean a function L whose domain is K such that:

1. L(G) is a labeling of G, i.e. a bijection V-+ {l, ... , n} for any GE K,

2. If G1 and G2 belong to K, then they are isomorphic if and only if the map L(G2)-1 o

L(G1) : V-+ Vis an isomorphism G1 -+ G2 .

Clearly, a canonical labeling can be used to decide whether the graphs G1 and G2 are

isomorphic, provided at least one of them belongs to K. [Bab80}

3.4 Graph Operations

Computer scientists often regard a graph as a modifiable data structure. Accordingly, the

configuration that results when a vertex or an edge is added to or deleted from a graph G

is considered to be a new value of G. These basic operations are part of the graph, just as

the operations of addition and scalar multiplication are part of the definition of a vector

space.

Chapter 3: Graph Theory 36

The following development is summarized from [GY94].

Definition 3.14 Two graphs G1 = (Vi, Ei) and G2 = (Vi, E2) are equal if, and only if,

Vi = Vi and Ei is identical to E2.

Remark 3.4 Let G = (V, E) be a multi-graph and let v E V . We define Ord{v) to be

an ordered list of edges, as defined in 3. 6, such that the header is always v.

Remark 3.5 Let G1 = (Vi, E 1) and G2 = (Vi, E 2) be two ordered multi-graphs. We say

that Ei < E2 if IE1I < IE2I· If IE1I = IE2I, then Ei < E2 if the first element of Ei is

smaller than the first element of E2 and so on as explained in Definition 3. 6.

Remark 3.6 Let G1 = (Vi, Ei) and G2 = (Vi, E2) be two graphs. We say that G1 < G2

if IVil < IVil- If IVil = IVil, then G1 < G2 if Ei < E2·

Definition 3.15 If v is a vertex of a graph G, then the vertex-deletion G-v is a graph

induced by the vertex-set Va - { v}. That is,

1. Va-v =Va - {v }, and

2. Ea-v = {e E Ea: v ¢ head(e) and v ¢ tail(e)}.

More generally, if U <:;; Va, then the result of iteratively deleting all the vertices in U

is denoted by G - V.

Definition 3.16 Adding a vertex v to a graph G, where v is a new vertex not already

in Va, means creating a new graph, denoted GU { v}, with vertex-set Va U { v} and edge-set

Ea.

Definition 3.17 If e is an edge of a graph G, then the edge-deletion G - e is a graph

induced be the edge-set Ea - { e}. That is,

1. Va-e = Va, and

Chapter 3: Graph Theory 37

2. Ea-e =Ea - {e}.

More generally, if D ~ Ea, then the result of iteratively deleting all the edges in D is

denoted by G - D.

Definition 3.18 Adding an edge between two vertices u and w of a graph G means

creating a new graph, denoted G U { e}, with vertex-set Va and edge-set Ea U { e}, where

e is a new edge with endpoints u and w.

Remark 3. 7 Each operation of adding or deleting a vertex or adding or deleting an edge

is called a basic operation. In general, we can combine and/or repeat one or more

basic operation. Whether or not a person is designing a software, it is mathematically

interesting to analyze or synthesize a graph construction as a sequence of basic operations.

In general, all non-basic operations can be constructed by combining and/ or iterating the

basic operations.

v v
+t, +e.,

-t, -e
w

Figure 3.5: Adding and deleting a vertex t and an edge e.

In mathematics, we can always generate many new graphs from a given set of graphs.

In this section, we consider some of the methods to generate new graphs from a given

pair of graphs.

Let 0 1 = (Vi, E1) and 0 2 = (Vi, E2) be two directed graphs or directed multi-graphs.

Note that these two graphs do not need to be disjoint.

Chapter 3: Graph Theory 38

Table 3.1: Binary Operations of Graphs

Operation Symbol Number of vertices Number of edges

Union G1 UG2 Vi+Vz-VinVz E1 + E2 - E1 n E2

Sum G1 +G2 Vi+ Vz E1 +Ez

Intersection G1nG2 Vi nVz E1 nE2

Join G1 V G2 Vi+ Vz E1 +Ez +E1E2

Definition 3.19 Union of two graphs: The graph G = (V, E), where V = V1 U Vz

and E = E1 U E2 is called the union of G1 and G2 and is denoted by G1 U G2.

Remark 3.8 When G1 and G2 are vertex disjoint, G1 U G2 is denoted by G1 + G2 and

is called the sum of the graphs G1 and G2 . It is always true that the union and the sum

of graphs are commutative; i.e., G1 U G2 = G2 U G1 and G1 + G2 = G2 + G1.

Definition 3.20 Intersection of two graphs: If Vi n Vz # 0, then the graph G =

(V, E), where V = Vi n V2 and E = E1 n E2, is the intersection of G1 and G2 and it will

denoted by G1 n Gz.

Definition 3.21 Join of two graphs: Let G1 and G2 be vertex-disjoint graphs. Then

the join graph, G1 VG2, of G1 and G2 is a new graph in which each vertex of G1 is adjacent

to every vertex of Gz.

For each of the above operations, we can calculate the number of vertices and the

number of edges in the resulting graph, as shown in Table 3.1.

Remark 3.9 There exist more operations to be considered such as:

1. The Cartesian product: G1 x G2,

Chapter 3: Graph Theory 39

2. Composition product: Gi[G2],

3. Normal product: G1 o G2 , and

4. Tensor product or Kronecker product: Gi 0 G2 .

These operations are less important for us than the ones in Table 3.1.

Remark 3.10 By contracting an edge e, we refer to the operation of removing e and

identifying its end vertices. A graph G is contractible to a graph H if H can be obtained

from G by a sequence of contractions.

Remark 3.11 We can always create a new directed graph or directed multi-graph, say

G3 = (V3, E3) from Gi, by changing the direction of one or more of its directed edges.

Finally, we need to introduce the powers for a graph G.

Definition 3.22 The kth power Gk of G has V(Gk) = V(G), where u and v are adjacent

in Gk whenever deg0 (u, v) :'::'. k [RB99}.

3.5 Matrix Representations

A graph G can be completely determined either by its adjacencies or by its incidences.

There are a variety of standard data structure representations for graphs. This informa­

tion can be conveniently stated in matrix form.

Indeed, with a given graph adequately labeled, there are several associated matrices,

including the adjacency matrix, incidence matrix, distance matrix, and cocycle matrix.

It is often possible to make use of these matrices in order to identify certain proper­

ties of a graph. Furthermore, representing graphs by matrices remains important as a

Chapter 3: Graph Theory 40

conceptual and theoretical tool. It helps us to bring the power of linear algebra to graph

theory.

For example, suppose we want to test a conjecture of a graph with the aid of a

computer. A standard technique is to represent, store, and manipulate the graph in

computer memory using a matrix. A common matrix used in this way is the adjacency

matrix.

The adjacency matrix is called a binary matrix if all the entries of that matrix are

either 0 or 1.

Definition 3.23 The adjacency matrix of a directed multi-graph G, denoted Aa, is

the matrix whose rows and columns are both indexed by identical orderings of Va, such

that:

{

the number of edges from u to v
Aa[u, v] =

the number of self - loops at v

if u f= v,

if u = v

While the adjacency matrix for an undirected graph is symmetric, the adjacency matrix

for a directed graph is antisymmetric.

v

u v w x

'\,=:(!~~~)
x 0 2 1 0

w x
Figure 3.6: A graph and its adjacency matrix.

Chapter 3: Graph Theory 41

Example 3.3 Let G = (V, E) be a multi-graph. Then, Aa is the adjacency matrix for

the directed multi-graph G, as shown in Figure 3. 6, by using the vertex ordering u, v, w,

and x.

Usually the vertex order is implicit from the context, in which case the adjacency

matrix Aa can be written as a matrix without an explicit row or column labeling.

Proposition 3.1 Let G be a direct multi-graph with Va= { v1, v2 , •.. , vn}· Then the sum

of the elements of row i of the adjacency matrix Aa equal to the outdegree of vertex Vi,

and the sum of the elements of column j equal to the indegree of vertex Vj.

Remark 3.12 Proposition 3.1 implies that two graphs are isomorphic if it is possible to

order their respective vertex-sets in a way that their adjacency matrices are identical.

Since the adjacency matrix of a graph is square, we can investigate its determinant.

Clearly, the determinant of A is independent of the labeling of the nodes of G. Hence we

may say that the determinant of a graph G is the determinant of any adjacency matrix

of G (FB89].

Chapter 4

Formulation of Tensor Algebra as an

Algebra of Graphs

4.1 Introduction

In general, tensors are mathematical objects with a finite number of indices. Tensors

can have different properties such as symmetries and invariance with respect to a specific

renaming of dummy indices. This indicial notation method permits us:

1. to use simplifying mathematical operations, and

2. to write equations in a compact manner.

As mentioned in Section 1.3, each tensor consists of four parts. They are summarized

as follows by its:

1. name such as R, T, C, ... ,

2. indices which may be categorized free or dummy,

3. position of each index first, second, third, ... , and

42

Chapter 4: Formulation of Tensor Algebra 43

4. type of each index such as subscript or superscript.

On the other hand, graph theory is a mathematical branch which has many appli­

cations in different areas. Graphs successfully serve as mathematical models for many

concrete real-world problems.

Certain problems in physics, chemistry, statistics, engineering, psychology, commu­

nications science, operational research, and computer technology can be formulated as

problems in graph theory. Also, many branches of mathematics, such as group theory,

number theory, matrix theory, combinatorics, probability, and topology have lots of in­

teractions with graph theory.

The purpose of this chapter is to formulate each basic operation in tensor algebra to

a similar one in graph theory.

4.2 Relabeling Dummy Indices

In every tensor, the dummy indices are the contracted ones. It could happen sometimes

that some terms in an expression might cancel if the indices are labeled properly. In most

algorithms, the method of relabeling dummy indices can sometimes be quite complicated

to execute.

Since the indices in this algorithm are represented as edges in a graph and since the

name of the dummy indices is not important anymore, all labeling restrictions have been

eliminated. We simplified this problem by representing in the output each dummy index

with the character"%" followed by an integer.

This method make the algorithm more efficient, gives the user more flexibility and

eliminates most if not all restrictions for relabeling the dummy indices.

For example, let Expr = RabcdRabcd + RrnntkRlkmn be a tensor expression. The

Chapter 4: Formulation of Tensor Algebra 44

dummy indices a, b, c, d and k, l, m, n will be relabeled %1, %2, %3 and %4 respectively

d E R R %1%2%3%4 + R R%3%4%1%2 A 1 · th t · an xpr = %1%2%3%4 %1%2%3%4 . pp ymg e symme nes

will create identical terms and the answer is: 2R313 23 33 4R 31323334 .

4.3 Tensor Monomials as Multi-graphs

A tensor can be formulated and be associated to a graph by representing:

1. its name as a vertex in the graph,

2. the indices of the tensor, free or dummy, as edges in the graph,

3. the type of the indices, subscript or superscript, as direction of edges, and

4. the position of each indices will be shown on its corresponding edge.

In general, by multiplying two or more tensors, we can create a tensor monomial. The

representation of a monomial is similar to the representation of each tensor separately as

a graph followed by adding these graphs as mentioned later in Chapter 6.

4.4 Tensor Algebra and Algebra of graphs

After describing the relation between tensors and graphs, we now need to formulate the

relation between tensor algebra and algebra of graphs. Throughout the thesis, we reserve

the vertex V 0() to represent the free indices in a given tensor. Meanwhile, the numbers

on the edges represent the position of the indices in their corresponding tensors.

Since it is easier to add or to compare two graphs in graph theory rather than adding

or multiplying two tensors in tensor algebra, graph theory will be used to treat and to

simplify all tensor expressions.

Chapter 4: Formulation of Tensor Algebra 45

4.4.1 Addition

The problem of adding two tensors can be formulated as a question: whether two tensor

expressions are equal or not, taking into account the graph theory properties? Then, the

simplest and shortest canonical form problem for an expression arises as a central one.

The method consists of representing each tensor as a graph and compare them as

described in Section 3.14. The same method will be used to identify multiples of common

monomials. For instance, let Ua ab• Vi,, uccb and Ub ii be 4 symmetric tensors. Adding

them will create an expression that looks like: Vi, + 3Ua ab·

As another example, let us consider the two Riemann tensor expressions:

R ·Rmncd
abmn and

.. d
Rabij . R'Jc . (4.1)

It is not difficult to see that both monomials are equal. Indeed, the second term can

be transformed to the first one by renaming their dummy indices.

YzC R)
,1 ,1

Figure 4.1: Representation of Rabmn · Rmncd and Rabij · Rijcd respectively.

By representing each monomial as a graph and as shown in Figure 4.1, it is obvious

that both graphs are identical, as mentioned in Definition 3.14, since there is no difference

between the edges representing the dummy indices.

Chapter 4: Formulation of Tensor Algebra 46

4.4.2 Contraction

For a tensor of rank 2'. 2, we set a subscript index to be equal to a superscript index, then

we create a pair of dummy indices one of which is covariant with the other contravariant.

This process of forming a new tensor of rank smaller than the original one by summing

over the dummy index is called contraction. This method can be formulated as the

contraction of edges shown in Remark 3.10.

Meanwhile, the contraction can be created in the presence of either a tensor or a tensor

monomial and it can be done by modifying the edges of the graph.

In the presence of a tensor, the contraction can be formulated as a loop-edge going

from V 1 to itself and then eliminating both edges which represent both free indices. The

full description of this method can be found in Table 4.1 where m = n.

For instance, the index c in 3A abi cib is contracted with a which create a new tensor

looks like: 3A abi aib· The corresponding graph of that tensor is represented as the first

graph in Figure 4.4.

v.o-
0

- ,3

v0{b, d)

I 2

I
2 3

4

3

1
2

4

, I

Figure 4.2: Representation of 3Aabi aib and Rabmn • Rmnad respectively

Meanwhile, the only difference appears in the case of a tensor monomial is that the

edge of the new dummy index will be going from one vertex to another depending on the

position of the contracted indices. Table 4.1 summarize this situation where m =I n. For

Chapter 4: Formulation of Tensor Algebra 47

Table 4.1: Contracting i1 and i2 in a tensor T.

1. G(T) +-- G(T) - EF(i1) - EF(i2)

2. G(T) +-- ED(i1)

3. FL(T) +-- FL(T) - i1 - i2

4. return T

example, let Rabij · Rijcd be a tensor monomial from the previous section. By contracting

c and a, the new tensor is represented as the second graph in Figure 4.4.

4.4.3 Tensor Product

For the next three different product types, the tensors do not have to have the same name

or the same rank.

Scalar Product

If a tensor is obtained by the multiplication of a scalar A by a tensor S of rank s, then

the new tensor, which will be denoted by -XS, will have a rank equal to the rank of S.

v
0
(a,c)

' -

Figure 4.3: Representation of 2 * (-3A abi cib)

The method consists of representing the tensor as a graph and then multiplying the

Chapter 4: Formulation of Tensor Algebra 48

given scalar by the integer of the tensor shown on the bottom right of the graph.

For example, let 3Aabi cib be a tensor as shown in Figure 5.1. Then, by multiplying

that tensor by -2, the new tensor -6A abi cib will be shown as in Figure 4.3.

Outer Product

If a tensor monomial is obtained by the multiplication of any two given tensors, say S

and T of rank s and r respectively, then the new tensor, which is denoted by T · S, will

have a rank t such that t = s + r.

Thus, the components of a product of two tensors is the product of the components

of the separate tensors. It is obvious that the product will always be a tensor of certain

rank. The only restriction applies with this type of product is that the set of covariant

indices of both tensors and the set of contravariant indices of both tensors should always

be empty.

The product of two tensors can be formulated as the addition of their graphs mentioned

in Remark 3.8. In fact, the multiplication of two tensors creates a tensor monomial which

it can be represented as a new graph. The full method of outer product is described later

in Table 7.2.

Inner Product

As we mentioned in Section 2.4.3, the inner product is the combination of the outer

product and the contraction of indices. Meanwhile, the inner product of two given tensors

of rank s and r is a tensor of rank less than the sum of both ranks. The representation

of this type of product can be represented as shown in Section 4.4.3 followed by Section

4.4.2.

Chapter 4: Formulation of Tensor Algebra 49

-
V

0
(b,c,i) V

0
(a,b,c,d) V (a,d,i)

® Qj,'
~ 3

2 I

3 2/ 4 3 I 2
4 \t1 2~

V
1
(R)

_,-2
V

1
(U)

_,l
V(R) V(U)

~ - ~I 2 _,-2

For example, let T1 = Rabcd and T2 =Viad be two tensors of ranks 4 and 3 respectively.

Then, multiplying T1 by T2 will create a new tensor T3 which is equal to Rab cd Vi;!' of rank

3 as shown in Figure 4.4.

4.4.4 Raising and lowering indices

We can always create a new tensor from a given one by raising and/or lowering one or

more index as in Section 2.4.4. By raising and/or lowering one of the dummy indices, we

need to lower/raise the other dummy index.

Notice that raising and/or lowering the indices does not change the rank of the given

tensor. Similarly, we can surely create a graph G1 from a graph G by changing the

direction of one or more edges as in Section 3.11.

V0 (a,c)

1 2

,3

Figure 4.5: Representation of 3A ab ic/

Chapter 4: Formulation of Tensor Algebra 50

For example, by lowering and raising the indices band c in the tensor 3A abi cib• we create

a new tensor which looks like 3A"bic/. The difference appears by comparing Figure 5.1

to Figure 4.5.

4.4.5 Permutation of indices

In general, we can permute any given set of indices in a tensor. This permutation will

either lead us to a new tensor or to the same one. By counting the number of permu­

tations taken to order a given set of indices into a lexicographical order, the symbol of

permutation, denoted by E, can be either:

E=

-1 if number of permutation is odd,

0 if two or more indices are equal, and

+1 if number of permutation is even.

(4.2)

The permutation is simply changing the position of the indices in a tensor. Thus,

if each index is represented as an edge in a graph, this operation can be simulated by

changing the numbers on the representing edge. Since these numbers are not fixed, they

can be changed depending on the new position of each index.

- V (a,b,c,d) -

.@'
- VI(R) _,l V (R)

I ,1

Figure 4.6: Representation of Rdcba and Rabcd respectively.

Chapter 4: Formulation of Tensor Algebra 51

Table 4.2: Permuting the indices in a tensor T.

1. E t-0

2. L(I) +- S(L(I))

3. if L(I).i = L(I).j

goto 9

4. else

5. if #S(L(I)) = 2n then

6. E t-1

7. else

8. E +- -1

9. return E

Thus, the method of permuting the indices consists of creating a list of integers of the

indices, based on their lexicographical order, and order that list. Note that, this list will

be extracted later from the graph.

For example, let {k,j, i} be a set of indices from the tensor Akji. Based on their

lexicographical order, they shall be numbered as I= (3, 2, 1). Thus, ordering I will make

Eijk= -1 since it takes 3 rounds to make it look like: (1, 2, 3).

The importance of this operation appears when we define the symmetries for tensors.

For example, let Rdcba be a Riemann tensor. By permuting the four indices and by

following exactly the steps from Table 4.2, Rdcba will look like Rabcd as shown in Figure

4.6.

Chapter 4: Formulation of Tensor Algebra 52

4.4.6 Symmetries

Symmetries with respect to index permutations means that a tensor T obeys one or more

equations of the kind:

where 7r(i1 ... in) is some permutation of i1 ... in and

E=

-1 if Tis antisymmetric and #7r(i1 ... in) is odd,

0 if T is null,

+ 1 elsewhere.

(4.3)

(4.4)

Since symmetries are defined with respect to the permutations of indices, it can be

formulated in a similar way as in Section 4.4.5. That means, changing the integers on the

edges of the graph and the sign of the tensor if necessary.

Meanwhile, there exist 4 different types of symmetries for any given set of indices in

a tensor. They can be either: non-symmetric, symmetric, antisymmetric or mixed of any

of the previous ones. If any of the first three cases occurs, the problem can be solved

by copying the desired list of integers and permute them into a lexicographical order.

Depending on the number of permutation of indices, E can be either -1, 0 or 1.

If the indices of a tensor have more than one type of symmetries, then we separate the

indices into index type groups n. Thus, each index group will be added to a tensor name

and then multiply all of the new tensors using the inner product. This implies that the

problem can be categorized into smaller parts and solved based on one of the previous

cases. The full description of each type and this method can be found later in Chapter 8.

Chapter 4: Formulation of Tensor Algebra

V0 (a,b,c,d)

4 2 1

2 3
~(R)

1 2

3
2 V(R)

1 '

,1

Figure 4. 7: Representation of eiJR; dcRJba .

53

For example, let Rdcba be a Riemann tensor such that Rdcba is an antisymmetric tensor

with respect to the first or the last pair indices and symmetric with respect to both sets.

That means, Rdcba = -Rcdba> Rdcba = -Rdcab and Rdcba = Rbadc·

Since this tensor is a mixed one, the indices are separated into 3 groups: Ii =

{d,c}, h = {b,a} and la= {Ii,!2}. Thus, the Riemann tensor Rdcba will be equiva­

lent to eiJRi dcRJba such that eiJ is a symmetric tensor and the rest are antisymmetric

tensors as shown in Figure 4. 7.

Permuting the indices of each vertex separately will modify eiJRi dcRJba to look like:

eiJRabJRcdi' Converting back will give us: Rab/

Chapter 5

Canonical Labeling of Graphs

5.1 Introduction

Geometrically, we define a graph to be a set of non-empty points in space, called vertices

denoted by V interconnected by a set of lines of two-element subsets of V called edges

denoted by E. The structure of a graph, such as drawings, incidence tables, and concrete

descriptions of the abstract structure, is what characterizes a graph itself and makes it

independent of its representation. Meanwhile, the structure of both vertices and edges

can always be modified by adding or eliminating some of their components [Gib85].

The purpose of this chapter is to formulate the components of a tensor, the name, the

indices, their types and their positions, as parts of the components of the corresponding

graph by presenting:

1. an algorithm to label the vertices,

2. another algorithm to label the edges, and

3. applying the symmetries.

54

Chapter 5: Canonical Labeling of Graphs 55

Table 5.1: Algorithm of Vertex Labeling.

1. G(T) +-Vo()

2. V 0 () +- FL(T)

3. Vi()+- NM(T)

4. G(T) +- Vi(NM(T))

5. return G

5.2 Algorithm of Vertex Labeling

The first basic element of a graph is the vertices. Each vertex in the graph is represented

as a point such that distinct vertices are represented by distinct points. Note that the

set of vertices need always to be labeled. Since the name of a tensor and the name of the

free indices differentiate a tensor from another, they will both be reserved to be included

in the representation of different vertices.

Upon the creation of each graph, we first include a special vertex V 0 (). This vertex,

which is included in every graph, represent the set of free indices. Next, we create the

second vertex Vi() in the graph by including the name of the tensor in it. The implemen­

tation of each vertex consists of a single integer followed by list of strings. This algorithm

is described in Table 5.1 and the implementation is fully described later in Chapter 9.

For example, let Ti = 3Aab/ib be a tensor. The graph of Ti will first contain the

vertex V 0 (). Next, we include the list of free indices of Ti into Vo(). Then, we increase

the number of vertices in the graph by adding the vertex Vi() and glue to it the name

of the tensor A. Figure 5.1 shows both vertices V0 (a, c) and Vi(A) of the corresponding

graph of the tensor 3Aabi cib.

Chapter 5: Canonical Labeling of Graphs 56

5.3 Algorithm of Edge Labeling

The diagrammatic representation of a graph helps us to visualize many concepts relating

to graphs and to the systems of which they are models. Each edge is represented by a

simple arc joining two, not necessarily distinct, vertices. In a diagrammatic representation

of a graph, it is possible that two edges intersect at a point that is not necessarily a vertex

of the graph. This section takes into consideration the description of the algorithm to

create and to label the edges in a graph depending on the indices, their types and their

positions.

Each index is represented as an edge in the graph. The position is needed to separate

an index from another. If an index i is free, we state the position of i in the list of free

indices beside V 0 and the position of i in the tensor beside its vertex. The edge will be

directed depending on the type of the index. The priority is given to the subscript index

over the superscript one. This method helps us to separate similar tensors such as Aab

and Aba or Aa and Aa.

Each edge is represented as: e = [V, i, V', j] such that V and V' represent the head

and the tail of e respectively while i and j represent the position of the index in V and

V' respectively. The full description of this algorithm is mentioned in Table 5.2 and the

implementation of this method is described later in Section 9.2.2.

For example, let T2 = 3Aab/ib be a tensor. T2 has 6 indices such that 2 are free and

4 or 2 pairs are dummy indices. Thus, FL(T2) = {a,c} and DL(T2) = {d,i}. As shown

in Section 5.2, the graph will contain 2 different vertices, Vo(a, c) and V1(A).

The first index a, which is a subscript index, is part of FL(Tz). Thus, this index

will be represented as an edge going from V 1 (A) to Vo (a, c). The integers on that edge

are: the position of a in T2 = 1 and the position of a in FL(T2) = 1. Therefore, the

representation of the edge is: [V1(A), 1, V 0 (a, c), l].

Chapter 5: Canonical Labeling of Graphs

Table 5.2: Algorithm of Edge Labeling.

1. j+-0

2. for i in IL(T) do

begin

3. j +- j + 1

4. if SI(i) E FL(T) then

begin

5. if _i? then

6. addedge(V1 , j, V 0, Pos(i, FL(T)))

7. else

8. addedge(V0, Pos(i, FL(T)), V 1 , j)

end

9. else

begin

10. ifnot _i? then

begin

11. if _SI(i) E IL(T) then

12. addedge(V1 , j, V 1 , Pos(_SI(i), IL(T)))

13. else go to 16

14. else

15. if 1181(i) E IL(T) then

16. addedge(V1 , Pos(_SI(i), IL(T)), V 1 , j)

17. else go to 16

end

end

18. IL(T) +- IL(T) - IL(T).1

end

19. return G

57

Chapter 5: Canonical Labeling of Graphs 58

In contrast, the second index does not belong to FL(T2). Indeed, the superscript index

bis the first element of DL(T2) and since it is a dummy index, it will be represented as a

loop-edge going from V 1 (A) to itself. The position of both b's in T2 are 2 and 6. Thus,

the representation of the second edge is: [V1(A),2, V1 (A),6]. Meanwhile, the rest of the

indices in 3Aab/ib c and i are represented as edges in the graph shown in Figure 5 .1.

2 v
0
(a,c)

,3

Figure 5.1: Representation of 3Aabicib

One of the advantages of this structure is the simplicity of comparing any two similar

tensors or any two similar tensor monomials, as in (5.1), by checking only the edges of

the graphs. For example:

Ta ab and Taba>

T ab dTab
ab an ba '

vava and Va Va,

pabpab and paapbb,

pabiFab and paaiFb b.

(5.1)

The algorithm for edge labeling, which is fully described in Table 5.2, is implemented

to run in O(n)-time where n is the number of indices in a tensor. The complexity is

dominated by the for statement that appears in line 2.

Chapter 5: Canonical Labeling of Graphs 59

5.4 Symmetries

A tensor is said to be symmetric in any number of its indices, subscript and/or superscript,

if it remains unchanged by any permutation of indices. Thus, if Ar kl= Ar1k, then Ar kl

is symmetric in its subscript indices and Ar kl is symmetric in its superscript indices if

Ar kl= A{1 [JF97].

Symmetry, as explained in Section 2.4.6, is similar to the permutation of indices.

That means, changing the position of the indices in a tensor. Thus, symmetry represents

changing integers on the edges of a graph.

The importance of symmetries appears by simplifying a tensor expression after apply­

ing tensor algebra. It happens that tensors look sometimes different when in reality they

are completely similar. It is a similar case as graph isomorphism in Section 3.3.

After labeling the edges in a graph, we need to identify the type of symmetry of each

tensor. A set of indices is either:

1. non-symmetric,

2. totally symmetric or simply symmetric,

3. totally antisymmetric or simply antisymmetric, or

4. mixed of any of the above.

In the first case, the indices in a non-symmetric tensor can't be permuted at all. That

means, the tensor should remains unchanged and the graph remains unchanged.

For other cases, we first order the edges based on the integers beside V 0. Now, if all

the indices are symmetric, we create a desired list of integers, denoted by LSI, from all

Chapter 5: Canonical Labeling of Graphs 60

the edges beside V 1 . Thus, sorting LSI, relabeling the edges in the graph based on LSI,

and reordering the indices in the tensor will complete the job.

Similarly to the symmetric case, we proceed in the antisymmetric case. The only

difference occurs by counting the number of permutation to order LSI. If it is an odd

number, we change the coefficient of the tensor to be a negative one. Otherwise, we

proceed as similar to the symmetric case.

For example, let Ajik and Akij be a symmetric and antisymmetric tensors respectively.

From Figure 5.2, the list of integers for the first graph is LSI1 = (2, 1, 3) while the list

of integers for the second graph is LSI2 = (3, 1, 2). Note that, both lists represent the

same indices but in different order. Thus, by sorting LSii and LSh and modifying the

edges in both graphs, we create a new graph which represent the tensor Aijk as shown in

Figure 5.2.

V0 (iJ,kl Vo (iJ,k)

2

/;J J

J 2 3

VJ (A) VJ (A) VJ (A) ,1

Figure 5.2: Representation of Ajik, Akij and Aijk

Finally, in the case of mixed type of indices, we split them into different groups such

that each group contains only one specific type. Theri, we create new vertices in the

graph equal to the number of index groups. For each vertex, we create set of edges which

represent one group of indices. This does not elegantly handle the most general case of

arbitrary symmetries, but it is sufficient for tensors which appears in most applications.

Chapter 5: Canonical Labeling of Graphs 61

Since each set of indices represent one and only one type of symmetries, we can pro­

ceed similar to any of the previous method, non-symmetric, symmetric or antisymmetric,

to reorganize them. If non-symmetry appears, we keep LSI unchanged without any mod­

ification.

For example, let Rcb/ be a Riemann tensor such that I = { c, b, d, a}. This tensor

is antisymmetric with respect to 11 = { c, b} and h = { d, a} and symmetric with respect

to Ia= {11 , h}. Thus, by splitting both groups Ii and h:

R a_ ijR Ra
cbd -e cbi dj

such that Rcbi and Rd"j are antisymmetric tensors and eii is a symmetric tensor.

(5.2)

Next, the lists of integers are: LI(!)= (3,2,4,1), LI(Ii) = (3,2), and LI(h) = (4,1).

By sorting LI(Ii) and LI(h) , both lists will look like (2, 3) and (1, 4) respectively. Thus,

Rcbi = -Rbci and Rd"j = -R"dj· Since eij is a symmetric tensor and since the first integer

in LI(I1) = 1 is smaller to the first integer in LI(h) = 2, we can switch the places of the

tensors in equation (5.2). Thus, Rcb/ = eijRadjRbci = R"dbc'

The full description of each type, non-symmetry, symmetry, antisymmetry and mixed

symmetry, is described later in Chapter 8.

Chapter 6

Algebraic Simplification of Tensors

6.1 Introduction

Since each graph consists of vertices and edges, two graphs are equal if and only if their

vertices and their edges are equal. This equality is insufficient to compare two tensor

monomials since we may be able to relabel their graphs to make them equal. We therefore

need to be able to determine whether two graphs are isomorphic or not. Thus, a good

strategy is needed to compare and to simplify two different graphs. That means finding

a single unified general form for every graph.

The purpose of this chapter is to present a method to be used for relabeling the vertices

and the edges. Then, an equality test on the relabeled graph gives a test for isomorphism.

Thus, we need to:

I. relabel the identical vertices in a graph using the method of canonical relabeling,

2. reshuffie the free indices of a tensor into a lexicographical order using tensor canon­

icalization, and

3. relabel all the edges, EFs and EDs, in a graph.

62

Chapter 6: Simplification of Tensors 63

6.2 Canonical Relabeling of Vertices

Two different graph specifications are often alternative descriptions for structurally equiv­

alent graphs. Developing a universally applicable method for deciding the structural

equivalence is called the Graph Isomorphism Problem. Some strategies and tests work

well in many instances, but a practical method has not yet been developed to handle all

cases [GY94]. In contrast, the canonical relabeling can always be used to decide whether

two graphs G1 and G2 are isomorphic or not.

Beyond pictures and index tables, possible descriptions of graphs include various kinds

of different matrices. It is not surprising that some forms of matrix representations were

introduced for graphs.

The adjacency matrix, as defined in Definition 3.23, is the classical matrix repre­

sentation for graphs, which allows us to establish certain properties of the graph using

matrix-theoretic methods. It does serve us as a good start towards developing more

efficient data structures.

In canonical relabeling, the adjacency matrix can be used to find the best permutation

for identical vertices in a graph as mentioned in Definition 6.4. For each graph, we can

always define an adjacency matrix of size n x n where n is the number of vertices in a

graph. The cost of creating such a matrix is O(n2
). Note that the adjacency matrix

contains the number of edges going from a vertex to another.

Definition 6.1 Two vertices are identical if and only if they have the same degree, the

same number of EFs and the same name of the tensor.

Remark 6.1 By joining the identical vertices in separate lists, we can always create a

list of identical vertices denoted by LIV.

Chapter 6: Simplification of Tensors 64

Remark 6.2 Let Aa be the adjacency matrix of a graph G. Since every permutation

gives a new relabeled graph based on the original one, we can create an adjacency matrix

for each relabeled graph.

Remark 6.3 Let Aa be an adjacency matrix of a graph G of size n x n and let LSI be

a matrix of size 1 x n2 where n is the number of vertices. Aa can always be transferred

to a list of single integers LSI by copying the rows of Aa into LSI.

Definition 6.2 Let LSI be a list of single integers such that LSI= [ri, r2 , ••• , rn2] where

n is the number of vertices in a graph. Thus, we define the base of LSI c such that

c = (max r;) + 1, i = 1 ... n2
•

Definition 6.3 Let LSI be a list of single integers and let c be its base. We define

Measure as a single integer such that

n'
Measure= L I r; I xci (6.1)

i::::l

The cost of finding Measure is O(n2).

Definition 6.4 The best permutation of all vertices in a graph G, or the canonical rep­

resentative graph, can be chosen by taking into consideration the biggest integer calculated

from each Measure of all LSI. The complexity of determining the canonical representa­

tive graph in here is O(n2 k!) where k is the size of the largest vertex class.

Example 6.1 Let T = Aij k Aabk ynm be a tensor and let G be its corresponding graph

as shown in Figure 6.1. By checking the degree of each tensor, the number of free indices

in each tensor and the name of the tensors, the vertices can be separated into 2 lists:

Li and L2 such as Li = {Vi(A), V2 (A)}, where both elements have degree= 3, and

L2 = { V3 (V)} which has degree= 2.

Chapter 6: Simplification of Tensors

I 2

\[(A 3

v0(a,b,ij,m,n)
3

6

2

I 2
3

V,(A) ,1

Figure 6. 1: The representation of Aij k Aabk vnm

65

Since L2 has only one element and since the permutation of one element is the element

itself, we keep V3 (V) unchanged. Therefore, we eliminate L2 • Meanwhile, the number

of permutations of L1 is 2! = 2. That means, G can be either itself or a new one G1 in

which V1(A) is interchanged with V 2(A) and vice-versa. In both graphs G and G1, the

adjacency matrices are represented as in Figure 6.2 respectively.

Vo v1 Vz V3 Vo V1 Vz V3

Vo 0 0 0 2 Vo 0 0 0 2

v 2 0 0 0
I v1 2 0 0

v 2 I 0 0
2

v 2
2

0 0 0

v 0 0 0 0
3

v 0
3

0 0 0

Figure 6.2: The adjacency matrices for G and G1 respectively

For the graph G, the corresponding list LSI{G) = [O, 0, 0, 2, 2, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, OJ
16

where the base c = 2 + 1 = 3. By using formula 6.1, Measure(G) = L:ri * 3(l6-i) =
i=l

5103. Similarly, LSI{G1) = [O, 0, 0, 2, 2, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, O] where c = 3. Meanwhile,
16

Measure{G1) = L ri * 3(l5-i) = 21870. Since the Measure{G1) is bigger than the one
i=l

of G, we consider G1 to be the model graph.

Chapter 6: Simplification of Tensors 66

6.3 Relabeling the Edges

After relabeling canonically the vertices, we need a good strategy to relabel the edges in a

consistent way to make the isomorphic graphs comparable. The order of the indices, free

or dummy, will not be the same as the original order. Thus, relabeling the edges in the

graph and then reordering the indices in its corresponding tensor will complete the job.

Depending on the type of symmetries in a tensor, the indices will reshuffle into a

different position such that the free indices will have the priority over the dummy ones.

This kind of changement can be modified by relabeling the integers on the edges.

Definition 6.5 We define LIF to be the list of single integers from all EF's in the graph

beside Vi, i = 1, .. ., I V{G)I - 1, such that the priority is given to the integer which

represent the smallest in the lexicographical order.

Definition 6.6 We define LID to be the list of single integers from all ED's in the graph

beside Vi, i = 1, .. ., n V{G)I - 1). The priority is given to the edges going to Vi followed

by the edges coming from Vj, j = 1, .. ., I V(G)I - 1, respectively.

,1

F. 6 3· Th h f A l k A aty ndmc d A l k A at ymdn c rgure . . e grap s 0 ljd i t kabn c an ijl t d bka n c .

Definition 6. 7 We define LIG to be the list of single integers from LIF followed by

LID. That means, LIG = [LIF, LID).

Chapter 6: Simplification of Tensors 67

Remark 6.4 Repeating the same procedure for all vertices of a given graph, all the edges

will be relabeled in a consistant way and this will complete the job.

Example 6.2 Let Aljd
1
i ktAkabn at Ve ndmc be a tensor monomial such that every tensor is

a symmetric one and let G be its graph as shown in Figure 6. 3.

First, we begin relabeling the edges for Vi. The list of single integers for EFs is LIF

= (5, 2} since 5 represent the index i and 2 represent the index j and since i is smaller

than j in the lexicographical order. Meanwhile, the list of single integers for EDs is LID

= (1, 4, 7, 6, 3} since 1 and 4 belong to the edge going from Vi to itself, 7 belongs to

the edge going from Vi to V2, 6 belongs to the edge going from V2 to Vi, and finally 3

belongs to the edge going from V1 to V3 .

Thus, LIG = (5, 2, 1, 4, 7, 6, 3} since LIG is the combination of LIF followed by

LID. Ordering LIG will give us (1, 2, 3, 4, 5, 6, 7]. By continuing like that for all the

vertices and by modifying the edges in the graph G, the result is a new graph as shown in

Figure 6. 3 which represent Aijl 1t ~Abka at n ymdn c c.

6:4 Tensor Canonicalization

The canonical function is used to reshuffle the indices of a tensor into lexicographical

order. The lexicographical order of the indices plays an important role in the simplifica­

tion process. The simplest case for ordering the set of indices of a tensorial object into

a lexicographical order may be obtained by using the symmetric or the antisymmetric

properties of the tensor.

Since the indices in each tensor are either free or dummy, we will assign higher priority

to the free indices over the dummy ones and to the subscripts over the superscripts

depending on the type of the symmetry of the tensor. Therefore, the free indices will be

Chapter 6: Simplification of Tensors 68

shown at the beginning followed by the dummy ones. This can be obtained as a result of

relabeling the edges in a graph as mentioned in the previous section.

The following examples clarify various aspects of the canonicalization function in this

algorithm.

Example 6.3 Let Reabd and Rb dea be two Riemann tensors. By reshuffiing the indices of

both tensors, they will respectively look like:

The canonical function in the above examples goes through the symmetric and antisym­

metric index groups and sort them.

. 'l
Example 6.4 Let T = A'jik J be a symmetric tensor. By reshuffiing the indices of T,

it should look like: Aklmij ij since the priority is for free indices over the dummy ones and

for the subscription over the superscript.

Example 6.5 Let Rbdea be a Riemann tensor and let F" be a Maxwell tensor. From the

previous example, Rb d ca = - Raeb d and since Maxwell tensor is an antisymmetric tensor,

then F" = - re. The outer product of both tensors is Raeb d re such that a and c are

two contracted indices. This product will produce:

R dre-Rd re-Rd F%1%2
acb - b ac - b 31%2

as a final result.

Example 6.6 Finally, let R"bed;e be a Riemann tensor. By ordering to map the indices

a, b, d, e and the derivative c, where c is a non-symmetric index, into the lexicographical

order, the final result looks like: -R"bde·e· ,

Chapter 7

Basic Algebraic Operations on

Tensor Expressions

7.1 Introduction

Higher rank tensors can be constructed from lower rank ones by forming the outer product.

A tensor expression can be obtained from the summation of tensor monomials. Thus, two

tens?r expressions are equivalent if their terms are equivalent. Note that, the sum of any

two tensor monomials is commutative.

Most of the operations in tensor algebra, such as contraction, raising and/ or lowering

indices, and symmetries, modify only the edges in a graph. Meanwhile, the multiplication

modifies both the set of vertices and the set of edges in the graph. Since the addition

of two tensors is the same as comparing two graphs, it effects neither the vertices or the

edges of both of them.

One aspect of the structure in graph theory is the system of smaller graphs inside a

graph, called subgraphs. Subgraphs arise explicitly or implicitly in almost any discussion

of graphs. For instance, in the process of building a graph G from scratch, vertex by

69

Chapter 7: Basic Algebraic Operations 70

vertex and edge by edge, the entire sequence of graphs formed along the way is a nested

chain of subgraphs in G. This idea was the key to test and to proof the perfectness of the

sum of two graphs which is formulated as the product of two tensors.

The basic operations of adding a vertex or an edge into a graph, together with the

operations for deleting an edge or a vertex from a graph, provide a mechanism for trans­

forming a graph, step by step, into another one. Thus, the idea of representing a tensor

monomial as a graph consists to represent each tensor individually. This process will al­

lows us to apply whatever we need later from tensor algebra such as addition, subtraction

or multiplication. We prioritize the tensor operations of multiplication over addition or

subtraction.

For example, let Expr = 2(Tabcyecvb -Tacbyebvc) ·Rad be a tensor expression such

that each tensor is a symmetric tensor. The operators in this expression are multiplication

and substraction. The simplification is performed by applying the rules mentioned in

Section 6.3 and Section 4.2. This means that to simplify Expr, we need first to multiply

Rad to each monomial in Expr, to apply the symmetries and finally to rename the dummy

indices. This can be translate as:

Expr = 2Tabc yecVbRad - 2Tacb yebvcRad (multiplication)

= 2Tcba yecvbRda - 2Tbca yebvcRda (symmetries)

= 2T313233Ve31V32Rd33 - 2T313233Ve31V32Rd33 (renaming)

=0.

(7.1)

Figure 7.1 shows explicitly the representation of Expr as a tree and the steps needed

to proceed and to find the solution. The purpose of this chapter is to develop several

algebraic rules to manipulate tensors. The fundamental operations are addition and

multiplication.

Chapter 7: Basic Algebraic Operations 71

7.2 Graphical Pattern Matching Technique

As mentioned in Section 4.4.1, we can always add two tensors or tensor monomials by

comparing their graphs. If the graphs are equal, we add the coefficients of both tensors

and pass it to one of the graphs. Otherwise, we sort them, as mentioned in Remark 3.6,

in a list of graphs and return it as an expression.

The question rises when we try to add two or more, equal or not, tensor expressions.

One of the several techniques to proceed with this kind of addition is the simplification

through graphical pattern matching technique.

The technique of graphical pattern matching consists of comparing two lists of sorted

graphs such that each list is formulated of graphs representing the monomials of the

expression. The output is one sorted list of graphs as described in Table 7.1.

This technique has been implemented to run in O(m+n)-time where m and n are the

number of monomials in both expressions, and assuming the monomials are in canonical

form. Thus, this algorithm tends to be more efficient since the implementation, in the

worst case, can be run in 0(2n)-time where n is the max(m, n).

Meanwhile, the method used in most other algorithms consists of searching for similar

monomials, then compare them and finally relabeling the dummy indices if comparison

occurs.

For example, let A and B be two tensor expressions such that:

{

A= R"b Cd+ ucdav;, + uacbd>

B = -Ucdav;, + 3R"bcd·
(7.2)

Based on the graph of each monomial in expression A, the graphs should be sorted

Chapter 7: Basic Algebraic Operations 72

Table 7.1: Graphical Pattern Matching Technique for Li and L2.

1. L3 +- f/J

2. while Li f. f/J or L2 f. f/J do

begin

3. if Li.1 < L2.l then

begin

4. L3 f- Li.l + L3

5. Li f- Li - Li.l

end

6. else

begin

7. if Li.1 > L2.l then

begin

8. L3 f- L2.l + L3

9. L2 f- Lz - L2.l

end

10. else

begin

11. L3 f- Li.l + L2.l + L3

12. Li +-Li - Li.1

13. L2 +- L2 - L2.l

end

end

end

14. if Li= f/J then

15. L3 +- L2

16. else L3 +-Li

17. return T

Chapter 7: Basic Algebraic Operations 73

1. the graph of the first two monomials contains only one vertex, and since

2. E(G(R"b cd)) < E(G(U"cbd)) as fully described in Remark 3.5.

As similar to the first expression, the monomials in the expression B are sorted as:

LG2 = [3R"bcd, -Uc/Vi,]. By comparing LG1 to LG2 and by following the steps from

Table 7.1, the final result is represented as: LG = [4R"b cd, uacbd] which can be translated

back as: C =A+ B = 4R"bcd + uacbd·

7 .3 Addition

As mentioned in Section 2.4.1 and Section 4.4.1, the addition or the subtraction of n

tensors of rank k is again a tensor of the same rank. Note that, the summation of 2

tensors or 2 tensor expressions will proceed by comparing their graphs.

Proposition 7.1 Let TE1 = ai TM1 + ... +am TMm and TE2 = b1 TM1 + ... + bn TMn

be two tensor expressions. By sorting the graphs of both expressions into canonical forms,

we can add TE1 to TE2 in O((m+ n)c) where m and n are the number of monomials in

TE1 and in TE2 respectively and c is the cost of graph canonicalization.

Proposition 7.2 Let TE1 and TE2 be two tensor expressions as in Proposition 7.1.

Using the method of graph isomorphism, the cost of adding TE1 to TE2 is O(mnl) where

I is the cost of a graph isomorphism and m and n are the number of monomials in TE1

and in TE2 respectively.

Comparing Proposition 7.1 to Proposition 7.2, we can find out that it is more efficient

to use the technique of graphical pattern matching of sorted graphs, mentioned in Table

7.1, compared to the graph isomorphism technique, assuming that O(c) = O(I).

Chapter 7: Basic Algebraic Operations 74

While isomorphism tests or canonicalization could dominate this analysis, we note

that the number of vertices in the graph is usually limited, but the number of terms n

and m may be very large. Therefore, we assume that I and C are in practice of constant

cost, and we might to optimize the complexity in terms of n and m.

Example 7.1 Let Expr1 and Expr2 be two tensor expressions such that all tensors are

symmetric. Thus,

{

Expr1 = Tabc V"cVb +Ra/•,

Exprz =A• Ba - Tacb V"bVc - 2Rei ia·
(7.3)

By checking the conditions of summation and by representing each term as a graph,

we first apply the symmetries and then we rename the dummy indices in both expressions.

Thus, {7.3} will become:

{

E T ue31v32 +Re 31 xprl = a%132 y a %1 '

e %1 %2 e %1 Expr2 =A Ba - Ta3132 V" V - 2Ra 31

(7.4)

Using the technique of graphical pattern matching, we sort Expr1 and Expr2 as 2 lists

of graphs such that as:

{

L(Expr1) = [R:31
31

, Ta3132 V"31
V

32
],

L(Expr2) = [-2R:31
31 , A• Ba, -Ta313 2 V"31V32].

(7.5)

Thus, Adding Expr1 to Expr2 is the same as comparing the graphs of both lists one­

by-one. This comparison produces:

(7.6)

which can be translated back to:

(7.7)

Chapter 7: Basic Algebraic Operations 75

7.4 Product

As mentioned in Section 2.4.3, the multiplication of two tensors does not depend on their

rank and they should not always have to be equal. In fact, we can always construct a new

tensor from any two given tensors by taking their outer product while its rank will be the

sum of their ranks. Thus, the procedure for multiplying two or more tensor expressions

will be addressed as mentioned in Table 7.2.

Proposition 7.3 Let TE1 = a1 TM1 + ... +amTMm and TE2 = b1 TM1 + ... + bnTMn

be two tensor expressions. Sorting the graphs into canonical forms, the required time to

multiply TE1 to TE2 is O(mnC) where C is the cost of canonicalizing tensor monomials

and m and n are the number of monomials in TE1 and in TE2 respectively.

Proposition 7.4 Let TE1 and TE2 be two tensor expressions as in Proposition 7.3.

Using graph isomorphism, the cost of multiplying TE1 to TE2 is O((mn)2 I) in the clas­

sical method where I is the cost of graph isomorphism and m and n are the number of

monomials in TE1 and in TE2 respectively.

Similar to the addition and by comparing both propositions, we conclude that it is

more efficient to use the method in the first proposition compared to Proposition 7.4.

Remark 7.1 Let TE = a1 TM1 + ... + am TMm be a tensor expression and let A be a

scalar. Thus, .ATE= ai.ATM1 + ... + am.ATMm·

Remark 7.2 Let TE = a1 TM1 + ... +am TMm be a tensor expression. Thus, (TE)k

exists if and only if k is an even number.

Example 7.2 Let TE1 = T'b + rJ• be a tensor expression. Thus,

1. (TE1) 0 =1,

Chapter 7: Basic Algebraic Operations 76

4. (TE1) 3 = error,

and so on.

Example 7.3 Let Expr1 and Expr2 be two tensor expressions such that all tensors are

symmetric. Thus,

{

Expr1 = Tabc V"cVb + R./e + AeBa,

Expr2 =A" Bel·
(7.8)

By verifying the condition and by mapping each monomial to a graph, we first apply

the .symmetries and then we rename the dummy indices in both expressions to be like:

{

E T ue%1V%2 + R e%1 + AeB XPT1 = a%1%2 t' a%1 a,

Expr2 = Aa Bel·
(7.9)

Multiplying Expr1 to Expr2, which is the same as adding every graph in Expr1 to

every graph in Expr2 individually, the result should be:

(7.10)

Again, by applying the symmetries and renaming the dummmy indices, 7.10 will be:

E m T>%1%4v%2A%3B + R %1%3A%2B + A%1B A%2B (7 11) xpr3 = -' %1%233 v ·· 134 31%2 133 32 131· .

Chapter 7: Basic Algebraic Operations 77

Table 7.2: Multiplication of TE1 by TE2.

1. i +- 0

2. j +- 0

3. 11 +- 0
4. 12 +- 0

5. La+- 0

6. for #TM in TE1 do

begin

7. i+-i+l

8. 11.i +- G(TE1.i)

end

9. for #TM in TE2 do

begin

10. j+-j+l

11. 12.j +- G(TE2.j)

end

12. 11 +- S(L1)

13. 12 +- S(L2)

14. k+-ixj

14. fork do

15. 13.k +- 11.i + 12.j

16. TEa +-La

17. return TEa

Chapter 7: Basic Algebraic Operations

* free: a,e
dummy:

b,c

free: a,b,c

*
free: d,e
dummy:

a,b,c

free: e,c

free: b

+
free: d,e

dummy:
a,b,c

free: a,d

*
free: d,e
dummy:

a,b,c

-2T acb

free: a,b,c

* free: a, e
dummy:

b,c

free: e,b

free: c

Figure 7.1: The representation of 2(Tabcyecvb - Tacbyebvc) · R"d as a tree.

78

Chapter 8

Symmetries

8.1 Introduction

Some attempts have been made to describe algorithms for simplifying tensor expressions.

In general, the treatment of symmetries in tensor expressions and the presence of dummy

indices make simplification a complicated task.

The product of any two symmetric tenors is not usually a symmetric tensor monomial.

For example, if AiJ and Bkt are symmetric tensors of rank 2, then A;jBkt is not generally

a symmetric tensor of rank 4. Indeed, A;JBkt f. AikBJt· Similarly, if T is a mixed tensor

with n number of index groups, then the indices are not interchangeable within these

groups. For example, Rabcd f. Racbd·

The importance of symmetries appears in the process of comparing two tensors. Thus,

two tensors can have same indices while they can positioned differently. For example, let

AJik and AkJi be two symmetric tensors. By applying the symmetries, the difference of

both tensors is zero. Indeed, by interchanging both sets of indices into lexicographical

order, then AJik = AkJi = AiJk· Initially, the user needs to identify the type of symmetry

used in every tensor. Thus, a set of indices have one of these types:

79

Chapter 8: Symmetries 80

1. non-symmetry,

2. symmetry,

3. antisymmetry, or

4. mixed of any of the above or mixed symmetries.

The purpose of this chapter is to introduce all types of symmetries and the necessary

steps to treat each type. The implementation of symmetries is described in chapter 9.

8.2 Non-Symmetry

The user can always present a tensor T at which it can be neither a symmetric nor an

antisymmetric tensor. This situation occurs by dropping the symmetry requirements,

admitting that if Tij and Ti j are given tensors, then:

Tij # -TJi,

Tij # -Tij·

(8.1)

Meanwhile, if the indices in a tensor are not permutable, the tensor remains unchanged.

That means, we do not modify neither the edges nor the integers on the edges in the graph.

Thus, these tensors are not useless. Indeed, we can add or multiply a non-symmetric tensor

to a symmetric and/or an antisymmetric tensor.

For instance, the derivative in a given tensor is non-symmetric. Indeed, if the derivative

is a free index, it counts as a non-symmetric index regardless OF type of symmetry of the

tensor. Thus, if Rabcd;e is a Riemann tensor, then Rabcd;e =F Raecd;b =F Rabce;d·

Chapter 8: Symmetries 81

8.3 Symmetry

Meanwhile, if altering any covariant and/ or contravariant index in a tensor T does not

alter the sign of the tensor, we define T to be a symmetric tensor with respect to its indices.

Thus, symmetry change the position of the indices validating the process of comparing

two tensors. This can happen by taking into consideration that free indices have priority

over the dummy ones and subscript dummy indices are preferred to be positioned first

compare to their superscript indices.

Reshuffling the indices in a symmetric tensor will change their positions without chang­

ing the sign of the tensor. That means, the integers on their corresponding edges beside

the vertex need to be relabeled. This job can be accomplish by following the exact steps

occur in Section 6.3 for relabeling the EFs and EDs in a graph. The full method of

permuting the indices is addressed in Table 8.1.

Example 8.1 Let Aa/ja and Ajia ka be two symmetric tensors. By reshuffiing the indices

in both tensors, by following the steps in Table 8.1, they appear to be equal such that

Aai~a = Aaikja =Ai/a a.

Example 8.2 Let

T1 = Aa;b,

T2 -Bb - ,
(8.2)

T3 =Be,

T4 =Ac.a ' ,
be 4 different symmetric tensors. Thus, by applying the symmetry to each one, these

tensors will be: A\;, Bb, Be and Aaci respectively. Meanwhile, the difference between

T1 T2 and T4 T3 is zero since T1 T2 = A aibBb and T4 T3 = A ci a Be = A ai c Be

Note that, symmetry should be re-applied again whenever contraction occurs. In

Chapter 8: Symmetries 82

Table 8.1: Applying non-symmetry, antisymmetry or symmetry to T.

1. G +--- G(T)

2. if T is non-symmetric then

3. return T

4. CT +--- coef f icient(T)

5. LI(Vi) +---List of integers beside Vi, i = 1...(#V(G) -1)

6. LI(Vi) +--- S(LI(Vi))

7. n +--- #S(LI(Vi))

8. if T is antisymmetric & i = 2n + 1 then

9. CT +--- -CT

10. T +--- CT(T)

11. IL(T) +--- S(IL(T))

12. return T

example 8.2, the inner product of T 1 and T 2 create a dummy index which forces us to

re-apply the symmetries again.

8.4 Antisymmetry

The definition of an antisymmetric tensor T follows exactly from the definition of the

symmetric one except that transposing any adjacent pair of indices in a tensor T modifies

the sign of T.

To reshuffle the indices in an antisymmetric tensor into a lexicographical order, we

proceed in a similar way as mentioned in Section 8.3 by taking into consideration the

number of transpositions k to accomplish the job. If k is an odd number, then the symbol

Chapter 8: Symmetries 83

of permutation E= -1. Otherwise, the sign of the tensor remains unchanged. The full

description of this method is addressed in Table 8.1.

Example 8.3 Let T = AaJi ak be an antisymmetric tensor. Thus, the list of integers LI

from the edges beside V1 of its graph is equal to (3, 2, 5, 1, 4) and it takes 5 steps to order

LI. Thus, by proceeding in reshuffl,ing the indices, T = -AiJka" where E= -1.

8.5 Mixed Symmetries

In the previous sections, we introduced a method to reshuffle the indices having one type

of symmetries. Since the user can always produce a tensor with more than one type of

symmetries, we need to provide a method to be applied in this case too. The obvious

example for a similar case is the Riemann tensor.

Let T be a mixed symmetric tensor. By dividing this problem into 4 separate parts,

we can summarized as:

1. At the beginning, the indices will be split into n separate groups such that each

group contains one and only one type of symmetries. This kind of splitting will be

given by the user.

2. In the graph, we eliminate the vertex which represent the tensor T and create

instead of that n new vertices where n is the number of separate index groups.

3. Each vertex will contain and will represent one index group. Thus, the edges will

be relabeled as similar to Section 8.2, Section 8.3 and Section 8.4.

4. Finally, we join back all the edges of the new vertices within the original vertex and

then reshuffle the indices in T based on its graph.

The full method of permuting the indices in a tensor with mixed type of symmetries

is addressed in Table 8.2.

Chapter 8: Symmetries 84

Table 8.2: Applying mixed symmetry to T.

1. G +- G(T)

2. i +- 0

3. LGI +- list of index groups

4. CT+- coef ficient(T)

5. for n E #LGI do

begin

6. Gn +- V(NM(T))

7. Gn +- E(LGI.n)

8. E(Gn) +- relabel(E(Gn)) 1

9. i +- #S(E(Gn))

10. if T is antisymmetric then

begin

11. if i = 2n + 1 then

12. CT+- -CT

end

end

13. E(G) +- relabel(E(G)) 2

14. IL(T) +- S(IL(T))

15. return T

l.As mentioned in Section 6.3.

2.B ased on all Gn.

Chapter 8: Symmetries 85

Example 8.4 Let Rcbd a be a Riemann tensor. This tensor is antisymmetric with respect

to 11 = { c, b} and to h = { d, a} and it is symmetric with respect to 1 = 11 , h. Thus, by

proceeding as similar to the example in Section 5.4, Rcb/ = Radbc·

Example 8.5 Let T = A 1i ki;n be a tensor such that that T is antisymmetric with respect

to 11 = {1,j} and to h = {k,i}, symmetric with respect to 13 = {Ii,h} and non­

symmetric with respect to 14 = { n}. Therefore, T has 4 different index groups 11, h, h ,f4.

By following the method addressed in Table 8.2, T will be:

A ki abA Aki A Aik
lj ;n = e lja b ;n = jl;n (8.3)

Chapter 8: Symmetries

Table 8.3: The algorithm for simplifying a monomial TM.

Stepl:

Step2:

Step3:

Step4:

i.

ii.

iii.

Step5:

i.

11.

Step6:

1. By referring to Chapter 5.

apply tensor algebra

G f-TM 1

apply symmetries2

canonical labeling of V(G)3 based on:

EFs of each V E V(G),

degree of each VE V(G), and

name of each T E TM

canonical relabeling of edges:

renumber EFs according to symmetries4

renumber EDs according to destinations4•5

TMf-G

2. Following the steps in Table 8.1 or Table 8.2.

3. As mentioned in Section 6.2.

4. Based on Section 6.3.

5. Lower dummy index has priority over upper dummy one.

86

Chapter 9

Aldor Implementation

9.1 Introduction to Aldor

The first question which comes into mind is: what is Aldar and why Aldar? We can say

that the original motivation for Aldar came from the field of computer algebra: to pro­

vide an improved extended language for computer algebra system AXIOM. The following

development in this section is fully summarized from [SMW94].

In general, Aldar is a programming language that attempts to achieve power through

uniformity. Rather than building a language by adding features, they tried instead to

build a language by removing restrictions.

While the design of Aldar emphasizes generality and composibility, it also emphasizes

efficiency. Usually these objectives seem to pull in different directions. An achievement

of Aldor's implementation is its ability to attain both simultaneously.

The desire to model the extremely rich relationships among mathematical structures

has driven the design of Aldar into a somewhat different direction than that of other

contemporary programming languages. Aldar places more emphasis on uniform handling

of functions and types, and less emphasis on a particular object model. This provides the

87

Chapter 9: Aldar Implementation 88

flexibility necessary to solve the original problem, and has already proved of significant

use outside of this initial context.

Aldar is unusual among compiled programming languages, in that types and functions

are first class: that is, both types and functions may be constructed dynamically and

manipulated in the same way as any other value. This provides a natural foundation for

both object-oriented and functional programming styles, and leads to programs in which

independently developed components may be combined in quite powerful ways.

9.2 Implementation of graphs

Since tensors need to be represented as graphs which consist of two basic elements vertices

and edges, it is important to show and to present the method of implementation of each

of them. Thus, the representation of each graph will be shown formally and not as points

and segments. For example, the tensor -6A abi cib represented as:

G[[V0 (a, c), 1, V 1(A), 1], [V1(A), 4, V0(a, c), 2], [V1(A), 2, V1(A), 6], [V1(A), 3, V1 (A), 5]]

which is similar to Figure 4.3 where V 0 (a, c) and V 1(A) are vertices and each factor of

G is an edge.

9.2.1 Vertices

In every graph, each vertex is represented as a single integer followed by a list of strings.

1. The use of the single integer is important in relabeling the vertices. That means

in separating and in identifying a vertex from another. Meanwhile, each vertex is

mapped to its subscript integer. For instance, the initial vertex V 0 is equivalent

to the integer zero, the vertex V 1 is equivalent to the integer 1, and in general the

vertex V n is equivalent to the integer n.

Chapter 9: Aldar Implementation 89

2. Since the name of a given tensor and its list of free indices differentiate a tensor

from another, the list of strings is implemented in two separate cases:

(a) the list of free indices in a tensor is added to the initial vertex V 0 to make it

look like V 0 (), and

(b) the next vertex, V 0, is modified by adding_ the name of the given tensor.

The structure of the vertices in this method helps us to separate and to label each

vertex in a graph as mentioned in Definition 3.2. Thus, it helps us to proof the uniqueness

of each vertex in a graph.

9.2.2 Edges

Since the edges play an important role to differentiate two graphs having the same number

of vertices, we will choose the most readable method to represent the edges and show their

uniqueness. Thus, each edge represented as:

e = [vertex, integer, vertex, integer]

where they can be created by checking each index in IL(T). We denote i and j to be the

position of a given index in a tensor T and in FL(T) respectively. Remember that the

indices in any T are either free or dummy.

1. If the index is free, we check its type(subscript vs. superscript).

(a) If it is a subscript index, the representing edge will be directed from V 1 to V 0 .

Thus, e1 = [Vi,i,Vo,j].

(b) Similarly, if the index is a superscript index, the EF of the index is represented

as an edge directed from V0 to V1. Thus, e2 = [Vo,j, Vi, i].

Chapter 9: Aldar Implementation 90

2. Meanwhile, if the index is a dummy one, it will be represented as a loop-edge

going from the vertex to itself. We always choose the edge to be directed from the

subscript dummy index to the superscript one. Thus, e3 = [V 1 , i, V 1 , i'] where i' is

the position of the subscript dummy index.

Note that, in the case of a monomial, the ED will be directed from one vertex, say

V, to another one, V', depending on the position of the subscript dummy index. Thus,

e4 = [V, i, V', i'].

9.3 Irnplernentation of Tensors

In designing this package, emphasis has been placed on the interface, allowing simple

user input of calculations and tensor definitions, as well as presenting readable output.

Calculations are specified in an intuitive manner using a minimal number of commands.

Since each tensor is formulated and mapped to a graph, the user needs to provide the

necessary elements of a tensor. Thus, each tensor should be represented as TM followed

by the 4 different components of a tensor separated by a comma. The components should

be stated between brackets().

At the beginning, we need to specify the coefficient of a tensor. The user could present

any real number, of course not infinity. it could be a negative or a positive number. Note

that, this number needs to be given if it is one. If the coefficient is zero, then the tensor

is a zero tensor.

9.3.l Name of Tensor

The name of the tensor can be represented as an uppercase or a lowercase, Latin or Greek

letter. It should be placed after the coefficient and between" ". For instance, "R" is the

Chapter 9: Aldar Implementation 91

name of the Riemann tensor T = 2R[_a, 11 b, _c, 11 d]. Note that, we don't reserved any

word for any special tensor.

9.3.2 Indices and Types

After the coefficient and the tensor name, the user will present the indices. They could

be presented as an upper or lower case, Greek or Roman, subscript or superscripts,

except for % which is a reserved character to treat the dummy indices.

We defined the indices associated with the tensor by specifying the type of each index,

such as cov for covariant or cont for contravariant, followed by the name of the index

stated between quotes " ". These indices should be collected in brackets [] and in a given

order where the position of each index in the tensor is similar to the one in the list.

Example 9.1 Let T = 2R[_a, 11 b, _c, 11 d] be a Riemann tensor. Thus, the list of indices

is represented as: fcov"a'', cont"b", cov"c", cont"d"j.

9.3.3 Symmetries

In the last bracket, the user should define the symmetric type of the tensor. The symmetric

type is represented as the name of the type followed by a set of integers between brackets

where they represent the position of these indices. The name of the types is defined as

the follow:

• nsym: which represent a non-symmetric set of indices,

• sym: which represent a symmetric set of indices, and

• asym: which represent an antisymmetric set of indices.

Meanwhile, a mixed symmetric tensor can be defined as a combination of any type

mentioned above. Since the tensor can have more than one type of symmetries, the

Chapter 9: Aldar hnplementation 92

mixed symmetry should be represented in brackets. For instance, the type of the tensor

T = 2Rab cd mentioned in example 9.1 should be represented as: [asym[l, 2], asym[3, 4],

sym[[l, 2], [3, 4]]].

Example 9.2 The tensor T = 2R\ cd is a Riemann tensor which have four free indices,

namely a and c as contravariant indices and b and d as covariant indices. It will be

represented as:

TM(2, "R", [cov" a", cont" b", cov" c", cont" d"], [asym[l, 2], asym[3, 4], sym[[l, 2], [3, 4]]).

9.4 Output

The output in Aldar will be given as the coefficient of the tensor and the name of the

tensor followed by the set of the tensor's indices. A subscript free index will be represented

as _followed by the name of the index while a superscript free index will be represented

as /\ followed by the name of the index. Similarly, a dummy index will be represented as

the type followed by %i where i is an integer. The indices will shown in a bracket [] and

in order as it should be. Thus, the tensor 2Rab cd will be shown as:

2R[_a/ b, _c/ d]. (9.1)

9.4.1 Dummy Indices

In Math Tensor and Macsyma !tensor package, there exists a restriction of using certain

letters for the indices in tensors. For instance, in MathTensor, we can only use the letters

a, b, ... , o as index names and p, q, ... , z as dummy index names.

It is inconvenient for the user, in particular, to define a rule which contains some

dummy indices and has to type additional commands to indicate the type of the index

used in that rule.

Chapter 9: Aldar Implementation 93

In this approach, it has been an objective to treat the dummy indices from the user's

viewpoint. The dummy indices are generated internally and then they are converted to

some appropriate index symbols in the output. Leaving all the choices to the user and

without any restriction, the output for every dummy index will be shown as the symbol

"3" followed by a single integer.

For example, the expression V"b c Vddb will be shown as u•c31 V 32
3132 where band d

are replaced by 31 and 32 respectively. Thus, the user can use any dummy index name,

Greek or Latin letters, symbols or numbers, without worry if it has been previously

defined.

9.5 Code to Show

It is useful to present a part of the implementation in Aldar. This is the tensor monomial

category of how to add or to multiply 2 of them.

define TensorMonomialCategory(K: Ring, aST: string, V: VertexCategory,

E: EdgeCategory(V)): Category== BasicType with {

coerce Integer

coerce Integer

coeff %

symbollist %

freeindices %

dummyindices %

CanonicalGrf %

-> ., .
'"

-> ., .
'"

-> K;

->List TK(aST);

-> List String;

-> List String;

-> Multigraph(V, E);

Chapter 9: Aldar Implementation

normalize . .,
• Jo -> OJ. ,.,

(K, TK(aST)) -> %;

94

applyTM

TM (K, string, List Tensorindex, List TensorSymmetries) -> %;

+

*
*

%

(%, %)

(K, %)

(%' %)

-> OJ. ,.,
-> %· ..
-> OJ.

'"
-> %;

contrat (%, List Tensorindex) -> %;

< (% ''o) " lo -> Boolean;

}

9.6 Experimental Implementation

Finally, we will present some examples to show how this package works. We will define

three tensors Ti, Tz and Ta such that: Ti= Rbadc, Tz = U"ic> and Ta= Vc"1. Then, we

will multiply Ti by T2 and Ti by Ta and finally add the result.

> Tl ·= TM(l "R" [cov"b" cov" a" cont" d" cont" c"] [asym[l 2] asym[3 4] . ' ' ' ' ' ' ' ' ' '
sym[[l, 2], [3, 4]]);

Tl = R[_a, _b,1' c,1' d]

> T2 ·= TM(l "U" [cont" a" cov" i" cov" c"] [sym[l 2 3]) · . ' ' ' ' ' ' ' '

Chapter 9: Aldar Implementation

> T3 := TM(l, "V", [cov"c", cont" a", cont"j"], [sym[l, 2, 3]);

> T4 :=Tl · T2;

T4 = R[-b, _%1,/\ d,/\ %2]U[_i, _%2/ %1]

> T5 := Tl · T3;

T5 = R[..b, _%1,/\ d,/\ %2JV[/\j, _%2,/\ %1]

> T6 := T4 + T5;

error, can't add these monomials.

95

Chapter 10

Conclusion

This thesis reflects an approach for the implementation of tensor expressions on a com­

puter algebra system. We are going to summarize the advantages of this approach com­

pared to other packages.

• Canonical labeling reduces the number of monomial isomorphism tests compared

to other implementation.

• First algorithm based on graph theory and not based on any other algebraic

solution.

• Uniqueness of representation. The introduction of this representation in any

computer algebra system is unique. It resembles to the way scientists usually write

tensors. For example, the symmetric tensor l U; cb i is represented as:

TE(~ "U" [cov"i" cont"c" cov"b" cont"i"] [sym[l 2 3 4]]) 3' ' ' ' ' ' ' ' ' . (10.1)

• Aldor made programming easier. As it has been explained in the previous

chapter, both types and functions may be constructed dynamically and manipulated

in the same way as any other value.

96

Chapter 10: Coclusion 97

• Easier to create a new tensor or to use special tensors introduced in Chapter

2. For instance, it is easy to create a new symmetric tensor U ab cd / or to introduce

the Riemann tensor Rab cd as shown in Section 9.3.

• Dynamic assignment of monomials contain tensorial quantities. in this

approach, a monomial containing tensorial quantities is treated as the same way

as a tensor. For example, T Ml := ~ V;"b iRab cd is treated as a tensor of rank 2.

In addition to that, T Ml associates, using the symmetric properties of Riemann

tensor, with the property that it is antisymmetric in its indices.

• Space efficient. We do not need to introduce the concept of database, as the

same as any other packages, which contain many substitutions rules and identities

for tensors and classify the various rules inside that database. This classification

needs a large database to store the identities and substitutions formulae for various

quantities. As an example, the tensor

will be treated in an easier way than looking in a large database and comparing to

each elements in the database.

• Implementation has a simple interface. For example, the output of the tensor

(10.1) will be shown as:

~V[_b," c, _%1," %1].

• Not restricted to symmetries. The definition of tensors in this approach, as

opposed to some package, is not restricted to the definition of the symmetric and

98

antisymmetric properties of a tensor. One is able to define all the attributes asso­

ciated with a tensor. These attributes can be defined and stored for later access.

For example, the user can create a tensor which can be symmetric, antisymmetric

or whatever he choose.

• Same algorithm treats Spinors as similar to the method of treating tensors.

• Same algorithm treats partial derivative and covariant derivative.

• No restriction of using any index name. There is no restriction on using any

names for indices in a tensor. For instance, we can use aO, uwo, CS and ud at the

same time as indices in the Riemann tensor R.0uw03ud.

• No restriction for dummy indices. In this approach, the restriction of using a

set of names to represent the dummy indices has been removed. For example both

a and z can be represented as dummy indices in u;•zi·

• Having this new representation, we are able to apply several operations at the same

time. For example,

2A"b;c + 3B\c (10.2)

represents the sum of two tensors having c as covariant derivative.

Bibliography

[Aki72]

[Bab80]

[CP90]

[Dan97]

[ea93]

[FB89]

M. A. Akivis. An Introduction to Linear Algebra and Tensors. Dover Publi­

cations, Inc, 1th edition, 1972.

Laszlo Babai. On the Complexity of Canonical Labeling of Strongly Regu­

lar Graphs. Society for Industrial and Applied Mathematics, 9(1):212-216,

February 1980.

S. Christensen and L. Parker. MathTensor: A system for performing tensor

analysis by computer. Mathematica Journal, 1(1):51-61, Summer 1990.

D. A. Danielson. Vectors and Tensors for Engineering and Physics. ADDI­

SON, WESLEY, 2nd edition, 1997.

J .E.F. Skea et al. SHEEP, a Computer Algebra System for General Relativity.

Proc First Brazilian School on Comp Alg, Oxford U Press, 1993.

Frank Harary Fred Buckly. Distance in Graphs. Addison-Wesley Publishing

Company, New York, 1th edition, 1989.

[FKWC92] S.A. Fulling, R.C King, B.G. Wybourne, and C.J. Cummins. Normal forms

for tensor polynomials: 1. the Riemann tensor. Class. Quantum Grav., pages

1151-1197, 1992.

[Gib85] Alan Gibbons. Algorithmic graph theory. Cambridge University press, Lon­

don, 1th edition, 1985.

99

[GoL74]

[Gra94]

[grt94]

[GY94]

[Hla99]

[Hi:ir79]

[H6r85]

[IK96]

[Int95]

[JF97]

[Kav94]

100

StanisLaw GoLab. Tensor Calculus. Elsevier Scientific Publishing Company,

1974.

Ralph P. Gramaldi. Discerte and Combinatorial Mathematics An Applied

Introduction. Addison and Wesley, New York, 3th edition, 1994.

1994. http://grtensor.phy.queensu.ca/.

Jonathan Gross and Jay Yellen. Graph Theory and its Applications. CRC

Press, New York, 1th edition, 1994.

Jean Hladik. Spinors in Physics. Springer, New York, 1th edition, 1999.

L. Hornfeldt. A system for automatic generation of tensor algorithms and

indicial tensor calculus. In Edward W. Ng, editor, Proceedings of the Interna­

tional Symposium on Symbolic and Algebraic Manipulation (EUROSAM 'Jg},

volume 72 of LNCS, pages 279-290, Marseilles, France, June 1979. Springer.

L. Hornfeldt. STENSOR. In Bob F. Caviness, editor, Proceedings of the Euro­

pean Conference on Computer Algebra (EUROCAL '85): volume 2: research

contributions, volume 204 of LNCS, pages 165-165, Linz, Austria, April 1985.

Springer.

V.A. Ilyin and A.P. Kryukov. ATENSOR - REDUCE program for tensor

simplification. Computer Physics Communications, 96:36-52, 1996.

1995.http://nightflight.com/cgi-bin/foldoc.cgi?symbolic+mathematics.

Christoph Schweigert Jiirgen Fuchs. Symmetries, Lie Algebras and Represen­

tations. Cambridge University press, London, 1th edition, 1997.

Masoud Kavian. Tensor Computation on Computer Algebra Systems. UofW,

1994.

101

[kMG97] M. kavian, R. G. McLenaghan, and K. 0. Geddes. Application of genetic

algorithms to the algebraic simplification of tensor polynomials. In Wolf­

gang W. Kiichlin, editor, ISSAC '97. Proceedings of the 1997 International

Symposium on Symbolic and Algebraic Computation, July 21-23, 1997, Maui,

Hawaii, pages 93-100, New York, NY 10036, USA, 1997. ACM Press.

[McC57] A. J. McConnell. Applications Of Tensor Analysis. Dover Publications, Inc,

New York, 1th edition, 1957.

[Pap99]

[PC94]

[Por98]

[Por99]

[Ray70]

[RB99]

[RC71]

John Papastavridis. Tensor Calculus and Analytical Dynamics. CRC Press,

1th edition, 1999.

Leonard Parker and Steven M. Christensen. Math Tensor: A System for

Doing Tensor Analysis by Computer. Addison-Wesley, Reading, MA, USA,

1994.

R. Portugal. An algorithm to simplify tensor expressions. Computer Physics

Communications, 115:215-230, 1998.

R. Portugal. Algorithmic simplification of tensor expressions. Journal of

Physics, 32(44):7779-7789, 1999.

D'Inverno Ray. ALAM Programmer's Manual, 1970.

K. Ranganathan R. Balakrishnan. A tex:tbook of Graph Theory. Springer,

New York, 1th edition, 1999.

D'Inverno Ray and Russell Clark. CLAM Programmer's Manual. King's

College, London, 1971.

[SMW94] Samuel S. Dooley Stephen M. Watt, Peter A. Broadbery. Aldar, Compiler

User Guide. The Numerical Algorithms Group Limited, New York, 2nd print­

ing edition, September 1994.

[Sok64]

[Spa65]

[The83]

[WM92]

102

I. S. Sokolnikoff. Tensor Analysis, Theory and Applications to Geometry and

Mechanics of Continua. John Wiley, New York, 2nd edition, 1964.

Barry Spain. Tensor Calculus. Oliver and Boyd LTD, Great Britain, 3th

edition, 1965.

M. I. T. The Mathlab Group, Lab. for Computer Science. MACSYMA Ref­

erence Manual, Version 9, Volume I. Symbolics, Inc., Burlington, MA, 2nd

printing edition, December 1983.

B.G. Wybourne and J. Meller. Enumeration of the order-14 invariants from

the Riemann tensor. Journal of Physics, A 25:5999-6003, 1992.

Name

Place of Birth

Year of Birth

Post-secondary

Education

and Degrees

Honors and Awards

Related work

experience

Vita
Nabil Obeid.

Tripoli, Lebanon.

1967.

Universite de Moncton,

Moncton, N.B., 1992-1995 B.A.

Concordia University,

Montreal, Quebec, 1995-1998 M.Sc.

The University of Western Ontario,

London, Ontario, 1998-2001 M.Sc.

President's Scholarship for Graduate Student,

The University of Western Ontario, 1998-1999.

Nominated for Graduate Student Teaching Award,

The University of Western Ontario, 2000.

Teaching Assistant,

The University of Western Ontario, 1998-1999.

Research Assistant,

The University of Western Ontario, 1998-2000.

103

104

Publications

1. Nabil Obeid, Absolutely Continuous Invariant Measures for Meromorphic Functions.

Master Thesis, Math, 1998.

2. Nabil Obeid, How to use Derive, Derive User Software Manual, Universite de Monc­

ton, 1994.

