
A Comparison of Two Families of Algorithms for
Symbolic Polynomials

(Spline Title: A Comparison of Algorithms for Symbolic Polynomials)
(Thesis Format: Monograph)

by

Matt Malenfant

Graduate Program in Computer Science

Submitted in partial fulfillment
of the requirements for the degree of

Master of Science

Faculty of Graduate Studies
The University of Western Ontario

London, Ontario, Canada
December, 2007

c© Matt Malenfant 2007

THE UNIVERSITY OF WESTERN ONTARIO

FACULTY OF GRADUATE STUDIES

CERTIFICATE OF EXAMINATION

Chief Adviser: Examining Board:

Dr. Stephen Watt Dr. Dan Christensen

Advisory Committee: Dr. Marc Moreno Maza

Dr. Eric Schost

The thesis by

Matt Malenfant

entitled:

A Comparison of Two Families of Algorithms for Symbolic Polynomials

is accepted in partial fulfillment of the

requirements for the degree of

Master of Science

Date:
Chair of Examining Board
Dr. Charles Ling

ii

Abstract

Symbolic polynomials, whose exponents themselves are integer-valued multivariate

polynomials, arise often in algorithm analysis. Unfortunately, modern computer al-

gebra systems do not provide ample support for their algebraic structures. Basic

operations involving symbolic polynomials are indeed trivial (addition, multiplica-

tion, derivatives); however, other crucial operations remain much more difficult, such

as factorization and GCD.

Watt has given two separate methods to solve these challenging problems. The

first uses a change of variables, e.g. xn to X, xnm to Y . Doing so increases the

number of variables potentially exponentially. Evaluation/Interpolation is used in

the second algorithm. Projection methods introduce fewer variables but have larger

degrees. We propose several adaptations to this idea to attempt to reduce the degree

and number of required images. These include: sparse interpolation, evaluation point

optimization and evaluating at primitive roots of unity.

We give an in depth comparison of these algorithms, both empirically and theo-

retically.

iii

Acknowledgments

Completing my degree would not have been possible without the financial aid pro-

vided by NSERC, Stephen Watt and the UWO Departments of Graduate Studies

and Computer Science. I would also like to thank my parents and family in Ontario

for their hospitality and support. Finally, I would again like to thank my advisor

Stephen Watt for his continued brilliance, patience and kindness these past years.

iv

Contents

Certificate of Examination . ii

Abstract . iii

Acknowledgments . iv

Table of Contents . iv

List of Tables . vii

List of Figures . viii

1 Introduction 1

1.1 Computer Algebra vs. Symbolic Computation 1

1.2 Motivation and Related Work . 2

1.3 Outline . 3

2 Preliminaries 5

2.1 Interesting Domains . 5

2.2 Polynomial Terminology . 7

2.3 Integer-Valued Polynomials . 8

2.4 Interpolation . 9

2.5 Algebraic Independence . 18

2.6 Gradient Descent . 20

2.7 Roots of Unity . 20

v

3 Symbolic Polynomials 24

3.1 Introduction and Problem Statement 24

3.2 A Ring Structure for Symbolic Polynomials 26

3.3 Symbolic Polynomial Rings are UFDs 27

4 Change of Basis Algorithms 30

4.1 Motivation . 30

4.2 Extension Algorithms . 32

4.3 The Necessity for Binomial Basis . 34

4.4 GCD and Factorization Examples . 36

4.5 Remarks . 38

5 Evaluation/Interpolation Algorithms 40

5.1 Projection Methods . 40

5.2 Dense Projection Examples . 43

5.3 Sparse Interpolation . 45

5.4 Sparse Projection Examples . 47

5.5 Bad Evaluation Points and Term Selection 51

5.5.1 Brute Force . 53

5.5.2 Ordering at Extreme Values 55

5.5.3 Interpolation of Symmetric Functions 55

5.6 Remarks . 58

6 Better Evaluation Points 59

6.1 Optimizing Point Selection . 59

6.1.1 Problem Statement . 60

6.1.2 A Symbolic Solution . 61

vi

6.1.3 A Numerical Solution . 63

6.2 Evaluating at Primitive Roots of Unity 65

7 Empirical Comparison 71

7.1 Criteria . 71

7.2 Experimental Results . 73

7.3 Analysis of Results . 86

8 Algorithmic Complexity 90

8.1 Extension Algorithm . 91

8.2 Sparse Interpolation . 93

8.3 Optimal Evaluations . 93

8.4 Roots of Unity Projection . 94

8.5 Summary of Results . 96

9 Conclusion 98

9.1 Summary . 98

9.2 Future Work . 99

References 100

Vita 104

vii

List of Tables

2.1 Evaluation Points for Example 2.4.1 11

2.2 Evaluation Points for Example 2.4.2. 12

2.3 Evaluation Points for Example 2.4.3. 16

2.4 Powers of the Fifth Roots of Unity 23

5.1 Evaluation Points for Example 5.2.1. 44

5.2 Evaluation Points for Example 5.2.2. 44

5.3 Evaluation Points for Example 5.4.1. 49

5.4 Correspondences for Term Identification. 54

5.5 Correspondences for Term Identification. 57

8.1 Asymptotic Complexity Estimates for Symbolic Polynomial GCDs . . 96

viii

List of Figures

2.1 Relationships Between Domains . 7

2.2 Zippel Sparse Interpolation Algorithm 15

2.3 Minimization by Steepest Descent [Fau03] 21

2.4 Fifth Roots of Unity in the Complex Plane 22

4.1 Change of Basis Extension Algorithm for GCDs of Symbolic Polynomials 33

4.2 Change of Basis Extension Algorithm for Factorization of Symbolic

Polynomials . 34

5.1 Dense Projection Algorithm for GCDs of Symbolic Polynomials . . . 41

5.2 Dense Projection Algorithm for Factorization of Symbolic Polynomials 42

5.3 Sparse Projection Algorithm for GCDs of Symbolic Polynomials . . . 46

5.4 Sparse Projection Algorithm for Factorization of Symbolic Polynomials 48

6.1 Evaluation Point Selection for one Exponent Polynomial (Left) 61

6.2 Several Exponent Polynomials (Right) 61

6.3 Piecewise Max and Min Polynomials for Example 6.1.1 (Left) 62

6.4 The Optimal Integer Points of PM − Pm (Right) 62

6.5 Several Multivariate Exponent Polynomials 63

6.6 Numerical Steepest Descent Algorithm for Evaluation Point Selection

for Symbolic Polynomials . 64

ix

6.7 Projection Algorithm for the GCD of Symbolic Polynomials Evaluating

at Roots of Unity . 69

6.8 Projection Algorithm for the Factorization of Symbolic Polynomials

Evaluating at Roots of Unity . 70

7.1 Experimental Results by Varying Number of Exponent Variables and

Degree . 75

7.2 Experimental Results by Varying Number of Exponent Variables and

Degree . 76

7.3 Experimental Results by Varying Number of Base Variables and Degree 78

7.4 Experimental Results by Varying Number of Base Variables and Degree 79

7.5 Experimental Results by Varying Exponent Coefficients and Degree . 81

7.6 Experimental Results by Varying Number of Base Terms and Degree 82

7.7 More Experimental Results by Varying Number of Exponent Variables

and Degree . 84

7.8 More Experimental Results by Varying Number of Exponent Variables

and Degree . 85

7.9 Experimental Results for Trivial GCDs 87

7.10 Experimental Results for Trivial GCDs 88

7.11 Experimental Results for Trivial GCDs 89

x

Chapter 1

Introduction

1.1 Computer Algebra vs. Symbolic Computation

The two terms “computer algebra” and “symbolic computation” are often used inter-

changeably by applied mathematicians, however, it is important to note the difference

between them. Symbolic computation involves the manipulation of expressions, often

containing indeterminates which represent mathematical objects. Typical calcula-

tions involve equivalence, expansion of products, changing to a canonical form and

simplification. Computer algebra involves computation using values from defined

mathematical sets, such as polynomial rings, quotients, matrices. Typical calcula-

tions involve factorization, integrals and solving systems of equations [Wat06].

For instance, computer algebra regards the expressions (x− 1)(x+ 1) and x2 − 1

as identical. Symbolic computation views the expanded and factorized polynomials

as distinct. Collecting like terms is symbolic computation; a GCD computation is

computer algebra [Wat07b].

Although the initial interest of researchers in this field was symbolic computation

(the first features of elementary computer algebra systems was term manipulation),

1

CHAPTER 1. INTRODUCTION 2

the primary focus is now on efficient implementations of algorithms on specific al-

gebraic domains. The gap between symbolic computation and computer algebra in

modern computer algebra systems is increasing, and this can hinder their usability.

Computer algebra often has difficulties dealing with objects of unknown size, like

a system of equations of unknown size, or a polynomial of unknown variables and

degree with coefficients from an unknown ring. These generalizations come naturally

to us working by hand. We need a way to bridge the gap between the two concepts

in mathematical computer systems. It is possible to make computer algebra more

symbolic by the use of algorithms with more varied input and output domains. Con-

versely, symbolic computation can become more algebraic by restricting classes of

allowed expressions, for example by using typed terms [Wat07b].

One such example of where computer algebraic systems are not “symbolic enough”

is polynomials with unknown degree. For example, x2 − yn2−n can be factorized by

hand using difference of squares, as n2 − n is always even for all integer values of n.

Mathematical objects such as this, known as symbolic polynomials, are not supported

in computer algebra systems. The purpose of this thesis is to compare several methods

to find the most suitable means of providing computer algebra algorithms to symbolic

polynomials.

1.2 Motivation and Related Work

Polynomials with parametric exponents arise, for example, in the study of algorith-

mic complexity. For instance, the number of operations for the classical traveling

salesmen problem is O(n22n) [DFJ54]. Moreover, there exists a type of approxima-

tion algorithm for optimizations known as polynomial-time approximation schemes

(PTAS). All PTAS, much like quasilinear complexities, can be written as symbolic

CHAPTER 1. INTRODUCTION 3

polynomials. We see a nested symbolic polynomial in Chen’s solution to the general

multiprocessor job scheduling problem: O(n(3mm!)
m
ε +1

) [CM99].

Yokoyama and Pan have shown how to solve systems of algebraic equations and

compute Gröbner bases for polynomials with parametric exponents [Yok04, PW06].

There have also been investigations into the properties of exponential polynomials

[HRS89]. Watt [Wat06, Wat07a] shows that when restricting the exponent polynomi-

als to be integer-valued, symbolic polynomials form a UFD. He proposes two different

families of algorithms for calculating factorizations, GCDs, etc. It is these two vari-

eties of algorithms, namely change of basis and evaluation/interpolation, that we will

study, extend and compare.

1.3 Outline

In this chapter, through the example of symbolic polynomials, we have shown the ne-

cessity for computer algebra systems to be “more symbolic”. Symbolic polynomials

arise often in practice. Modern software should be able to accommodate manipula-

tions and computations of this type.

This rich mathematical structure and the proposed algorithms make use of a

broad array of mathematical jargon and techniques. All of the relevant background

information required to grasp the fundamental algorithms and analyses of this topic

is found in Chapter 2. We present an introduction to algebraic domains along with

many classical computer algebra strategies: interpolation, algebraic independence,

gradient descent and roots of unity.

Chapter 3 provides a formal introduction to symbolic polynomials. Their ring

structure is defined and is shown to form a unique factorization domain for proper

coefficient rings. This is achieved by changing the exponent polynomials to the bino-

CHAPTER 1. INTRODUCTION 4

mial basis. Through algebraic independence, this is equivalent to Laurent polynomi-

als, which are known to form a UFD.

Chapter 4 presents a means of dealing with symbolic polynomials by making use

of the extension described in the previous chapter. Procedures and examples for

GCDs and factorization are provided and examined. A discussion of the strengths

and weaknesses of this method, in particular its inability to efficiently handle sparse

input, is offered as reason for alternative methods.

Through the evaluation of exponent variables, projected images are mapped to

polynomials that can be manipulated as needed and then interpolated back to the

original form. Chapter 5 describes such algorithms for both dense and sparse interpo-

lation. Projection schemes introduce a number of complications, which are described

and solved. Once again, examples are provided for both GCD and factorization. Pre-

liminary analysis details the sizable degree that may be attained when evaluated at

randomly selected values, and notes the necessity for “smarter” evaluation points.

Chapter 6 illustrates two strategies to reduce the degree of evaluated images. The

first performs an optimization to find the set of values that minimize the evaluations

of certain polynomials. The second idea is to evaluate the exponent variables at

primitive roots of unity and use the extension method to calculate each image.

Chapter 7 features empirical results for timing, degree, number of evaluations and

number of variables, given for examples of the change of basis, sparse interpolation,

point selection optimization and roots of unity projection algorithms.

Chapter 8 gives asymptotic complexity estimates for the algorithms in the previous

chapter.

Chapter 9 concludes the thesis with a review of significant findings and possible

future research prospects in this area.

Chapter 2

Preliminaries

We begin by introducing terminology needed to understand the polynomial algorithms

presented in later chapters.

2.1 Interesting Domains

We say an integral domain is a nontrivial commutative ring R for which there are no

zero divisors. In this sense, nontrivial means the multiplicative and additive identities

(1 and 0 respectively) are distinct. A zero divisor is an element a ∈ R such that for

some other nonzero element b ∈ R, ab = 0. The integers form an integral domain, as

does Z/pZ, where p is a prime. The polynomial ring R[X] is also an integral domain

if and only if the coefficient ring R is an integral domain.

An integral domain R for which there exists a Euclidean evaluation function

d : R→ N∪{−∞} such that for any a, b ∈ R if b 6= 0 then ∃ q, r ∈ R with a = qb+ r

and d(r) < d(b) is called a Euclidean domain. Euclidean domains allow for greatest

common divisor computations, and applications of the Chinese remainder theorem

[vzGG03].

5

CHAPTER 2. PRELIMINARIES 6

Let R be a ring and a ∈ R. We define the principal (left or right) ideal of a as

the smallest (left or right) ideal of R that has element a in it; it is denoted (a). A

principal ideal domain (PID) is an integral domain in which all ideals are principal

ideals. Some important PIDs include the rings of integers and univariate polynomials

with coefficients in a field F. Every Euclidean domain is a PID, but not conversely

[MB79].

In a commutative ring R, a unit u ∈ R is an element with a multiplicative inverse.

There are no nonzero, nontrivial units in Z; in Z/pZ, every nonzero element has an

inverse. We say any nonzero, nonunit p ∈ R is reducible if there exists elements

a, b ∈ R such that p = ab. If p is not reducible, then it is said to be irreducible. A

Unique Factorization Domain (UFD) is an integral domain R in which every nonzero,

nonunit element in R can be factored into a finite product of irreducibles that is

unique (up to the reordering of terms, and multiplication of units). This notion of

unique factorization is borrowed from the Fundamental Theorem of Arithmetic and

generalized further. Gauss proved that if R is a UFD, then R[X] is as well. Every PID,

and thus every Euclidean domain, is a UFD, but not conversely [vzGG03, MB79].

Let R be a ring with a, b, c ∈ R. The element c is the greatest common divisor

(GCD) of a and b if c divides both a and b, and for all d ∈ R if d divides a and b then

d also divides c.

A Bézout domain is defined as an integral domain R that has a GCD for every

pair, a, b ∈ R, say gcd(a, b). Moreover, ∃ r, s ∈ R such that

gcd(a, b) = ra+ sb.

This equation is known as the Bézout identity, and the two elements r and s are the

classic Bézout coefficients, found by the extended Euclidean algorithm. Every PID is

CHAPTER 2. PRELIMINARIES 7

a Bézout domain, but not conversely.

An integral domain D, in which every nonzero pair a, b ∈ D has a GCD, is known

as a GCD domain. Clearly, both UFDs and Bézout domains are GCD domains.

[MB79]

Figure 2.1 illustrates the relationship between said domains.

Euclidean Domain Principal Ideal
Domain

Unique
Factorization

Domain

Bézout Domain GCD Domain

Figure 2.1: Relationships Between Domains

2.2 Polynomial Terminology

The content of a polynomial f ∈ R[X], cont(f), provided R is a GCD domain, is de-

fined as the GCD of the set of coefficients, fi; that is,

cont(f) = gcd(f0, f1, . . . , fn) ∈ R. The primitive part of f , or pp(f), is the re-

maining factor if cont(f) is factored out. So, f = cont(f) · pp(f). Since R forms a

UFD, the GCD computation for the content is unique up to units [vzGG03].

Example 2.2.1 Consider the following polynomial f ∈ Z[x].

f = 24x3 − 28x2 − 12x+ 4

cont(f) = gcd(24,−28,−12, 4) = 4

pp(f) =
1

4
f = 6x3 − 7x2 − 3x+ 1

CHAPTER 2. PRELIMINARIES 8

Notice that the coefficients of the primitive part are relatively prime and that

pp(f) · cont(f) = f .

For f ∈ Z[X], we define the fixed divisor d(f) as the maximal positive integer

that divides f(X) for all possible integer values of X [Tur86].

2.3 Integer-Valued Polynomials

Let D be an integral domain, with quotient field K and E ⊆ D. We define

Int(E,D)[X] = {f(X) ∈ K[X] | f(a) ∈ D, ∀a ∈ E} (2.1)

as the ring of integer-valued polynomials. For notation simplification, we say

Int(D,D)[X] = Int(D)[X]. The first investigations into Int(D), with D being the

ring of integers in a number field, was by Polya and Ostrowski in the early twenti-

eth century [Wat06]. In the past twenty years there has been much more interest in

Int(E,D). These recent works have focused on Dedekind domains, Krull Rings and

Prüfer domains [GHLS90, Fri96, Cha93, CCS98].

For our purposes we are only interested in Int(Z)[X]. This is the ring of poly-

nomials whose evaluation must give an integer at all integers. For instance, every

polynomial with integer coefficients, Z[X], is also in Int(Z)[X].

Example 2.3.1 Consider p(n) = 1
2
n2 + 1

2
n. As n2 + n is always even, p(n) must

always evaluate to an integer and is thus in the ring of integer-valued polynomials.

It is well known that the binomial polynomials,
(
x
n

)
= x(x−1)...(x−n+1)

n!
form a basis

for Int(Z) [GHLS90]. Here are the first five binomial polynomials and their monomial

representation:

CHAPTER 2. PRELIMINARIES 9

(
x

0

)
= 1 (2.2)(

x

1

)
= x (2.3)(

x

2

)
=

1

2
x2 − 1

2
x (2.4)(

x

3

)
=

1

6
x3 − 1

2
x2 +

1

3
x (2.5)(

x

4

)
=

1

24
x4 − 1

4
x3 +

11

24
x2 − 1

4
x (2.6)(

x

5

)
=

1

120
x5 − 1

12
x4 +

7

24
x3 − 5

12
x2 +

1

5
x (2.7)

A very useful property of using the binomial basis to represent an integer-valued

polynomial is that it is easy to calculate its fixed divisor. The fixed divisor is actually

the GCD of the basis coefficients. We give a simple example to illustrate this notion.

Example 2.3.2 Consider f(x) = x2 + x, with f ∈ Int(Z). Rewritting f in the

binomial basis we have fb(x) = 2
(
x
2

)
+ 2
(
x
1

)
. The coefficients of both terms of the

binomial are 2, thus d(f) = 2. This is the expected answer, as f always evaluates to

an even number.

2.4 Interpolation

Given a set of data points, we can use interpolation to find a polynomial that passes

through all those points. It is a very useful tool in both numerical analysis and

computer algebra, but the way it is used is quite different in the two fields. Many

computer algebra algorithms make use of evaluation and interpolation to work with a

more computationally efficient structure (moving from polynomials to the integers or

CHAPTER 2. PRELIMINARIES 10

rationals for instance). The desired result can be reconstructed using interpolation.

Suppose we wish to interpolate to reconstruct a univariate polynomial, f = anx
n+

an−1x
n−1+. . .+a1x+a0 of degree n. To do this, we need values for the n+1 coefficients,

a0, . . . , an. We require n + 1 points, u0, u1, . . . , un and evaluations f(ui) = yi for i

from 0 to n. From these points we can create what is referred to as a Vandermonde

Matrix [vzGG03]

V DM(u0, u1, . . . , un) =

1 u0 u2
0 . . . un+1

0

1 u1 u2
1 . . . un+1

1

...
...

...
. . .

...

1 un u2
n . . . unn

(2.8)

Note that there is one column for every possible term of the interpolated polyno-

mial. It is possible that the points used for evaluation can create linear dependencies,

however, when nonsingular, we can use the Vandermonde matrix to set up a system

of linear equations, which can be solved to give the coefficients of the goal polynomial,

V DM(u0, u1, . . . , un) ·

an

an−1

...

a0

=

y0

y1

...

yn

. (2.9)

Example 2.4.1 Given the following points, interpolate for a polynomial f(x) of

degree 2.

CHAPTER 2. PRELIMINARIES 11

x f(x)
1 7
2 12
3 19

Table 2.1: Evaluation Points for Example 2.4.1

We can construct the Vandermonde system of linear equations.

1 1 1

4 2 1

9 3 1

 ·

a2

a1

a0

 =

7

12

19

 (2.10)

This gives us a2 = 1, a1 = 2, a0 = 4, and the polynomial f(x) = x2 + 2x+ 4.

Using Gaussian elimination, this requires O(n3) operations. There are also other

classical interpolation methods, such as Newton and Lagrange which can reduce this

to O(n2). Fast arithmetic via the Fast Fourier Transform (FFT) can compute inter-

polations in O(n log2(n) log log n)[vzGG03].

The Vandermonde system can be used in the generalization to the multivariate

case. In doing so, there must be entries in the matrix for every possible term in the

resulting polynomial.

Example 2.4.2 Say we are looking for a bivariate polynomial, with each separate

variable having a degree of no more than 2. This implies that the resulting polynomial

is of the form

f(x, y) = a8x
2y2 + a7x

2y + a6x
2 + a5xy

2 + a4xy + a3x+ a2y
2 + a1y + a0.

We need 9 independent evaluations to solve the system. After selecting the following

evaluations, we can set up the extended Vandermonde system.

CHAPTER 2. PRELIMINARIES 12

x y f(x, y)
-9 1 244
-9 -6 11319
10 10 39776

-10 -2 1556
10 -10 39376
4 10 6014

-10 5 9711
-4 6 2054
4 -1 85

Table 2.2: Evaluation Points for Example 2.4.2.

81 81 81 −9 −9 −9 1 1 1

2916 −486 81 −324 54 −9 36 −6 1

10000 1000 100 1000 100 10 100 10 1

400 −200 100 −40 20 −10 4 −2 1

10000 −1000 100 1000 −100 10 100 −10 1

1600 160 16 400 40 4 100 10 1

2500 500 100 −250 −50 −10 −25 5 1

576 96 16 −144 −24 −4 36 6 1

16 −16 16 4 −4 4 1 −1 1

·

a8

a7

a6

a5

a4

a3

a2

a1

a0

=

244

11319

39776

1556

39376

6014

9711

2054

85

(2.11)

CHAPTER 2. PRELIMINARIES 13

This gives us

a8

a7

a6

a5

a4

a3

a2

a1

a0

=

4

0

0

0

2

7

−5

0

6

(2.12)

and the polynomial f(x, y) = 4x2y2 + 2xy + 7x− 5y2 + 6.

This simple extension for multivariate polynomials comes at a cost. For a poly-

nomial of v variables and degree d, this requires O((d+ 1)v) evaluation points. This

exponential factor does not scale well for polynomials of many variables and larger

degrees. It is particularly wasteful when dealing with sparse polynomials. The inter-

polation of x99y99 + 1 would require on the order of 10000 evaluations, even though

the polynomial only has a pair of terms! In practice, the polynomials that we are

interested in are sparse. We will exploit this by using a more intelligent sparse inter-

polation method.

In 1979, Zippel proposed a probabilistic sparse black-box interpolation as part of

his PhD thesis. For a t-sparse polynomial (has t terms and t � (d + 1)v), this can

reduce the number of evaluations to O(vdt). Our goal polynomial is P (x1, x2, . . . , xv),

with an initial evaluation at (e1,1, e2,1, . . . , ev,1). The algorithm proceeds by interpo-

CHAPTER 2. PRELIMINARIES 14

lating for one variable at each step. This produces the following polynomials

P1 = P (x1, e2,1, . . . , ev,1) (2.13)

P2 = P (x1, x2, e3,1, . . . , ev,1) (2.14)

...
... (2.15)

Pv = P (x1, x2, . . . , xv) (2.16)

At the end of the first step, P1 is a univariate polynomial with the indetermi-

nate x1. Every coefficient of P1 is a polynomial with the following indeterminates:

x2, . . . , xv. We denote the kth coefficient by fk(x2, . . . , xv). The probabilistic assump-

tion, and key to the algorithm, is that if a coefficient interpolates to zero, it is zero

everywhere. There are two possible reasons why a term, say the kth term, may not

be present in P1. Either fk is identically zero or fk(e2,1, . . . , ev,1) = 0. We can control

the values ei,j – if they come from a large random set of integers the probability that

fk(e2,1, . . . , ev,1) is zero, for fk 6= 0, is very small. By implication, there is a very high

probability that fk must be zero, and that the kth term does not appear in our final

goal polynomial, P [Zip79].

Once it is discovered that certain terms are zero, those columns can be removed

from the linear system, allowing it to be solved with fewer evaluation points. The

algorithm is presented in Figure 2.2.

As input, this algorithm accepts:

• p, a v-variable black-box function.

• d, the maximum degree of x1, x2, . . . , xv.

The algorithm begins by performing an initial d + 1 evaluations. Only the value

of the first variable is changed in these calculations. We can then interpolate for

CHAPTER 2. PRELIMINARIES 15

zippel interp:
Input: p : x1, x2, . . . , xv 7→ R, d ∈ Z
Output: r ∈ R[x1, . . . , xv] such that r is an interpolating polynomial over
evaluations of p

1. Let ei,j be the ith evaluation for xj

2. r1 ← p(e1,1, . . . , e1,v)

3. t← 1

4. For i from 1 to v do

(a) For j from 2 to d+ 1 do

i. For k from 1 to t do

A. sk ← e1,k, . . . , ei−1,k, ei,j, ei+1,1, . . . , ev,1

B. p′k ← p(sk)

ii. Using p′k and sk, let rj be the polynomial with the form
of r1 whose coefficients are the solution of the system of t
linear equations

(b) Let r1 ∈ R[x1, . . . , xi] be the interpolating polynomial over the
points (ei,1, r1), (ei,2, r2), . . . , (ei,d+1, rd+1)

(c) Let t be the number of terms in r1

5. Return r1

Figure 2.2: Zippel Sparse Interpolation Algorithm

that variable. From this interpolated polynomial, P1, we must create a skeleton, or

anchor. This is done by replacing the coefficients with indeterminates. For instance,

assuming integer coefficients, if P1 = 4X5
1−X2

1 +7, then we can be most positive that

the goal polynomial is of the form AX5
1 +BX2

1 + C, where A,B,C ∈ Z[X2, . . . , Xv].

We need another d polynomials of the same form as this anchor to interpolate for the

next variable. Fortunately, now we only need t points to solve for these polynomials,

rather than d+1. That is what is being done in the inner-most loop of the algorithm.

The algorithm is complete when this is repeated v times.

CHAPTER 2. PRELIMINARIES 16

Example 2.4.3 Perform Zippel interpolation to find the bivariate polynomial with

individual variable degree no higher than 5. We will use the evaluations (but not

necessarily all of them) found in Table 2.3.

x y P (x, y) x y P (x, y)
1 1 -6 4 1 6147
1 2 -24 4 2 49095
1 3 -170 4 3 165571
1 4 -648 4 4 392199
1 5 -1758 4 5 765507
1 6 -3896 4 6 1321927
2 1 183 5 1 18762
2 2 1467 5 2 149952
2 3 4855 5 3 505942
2 4 11259 5 4 1198992
2 5 21495 5 5 2341266
2 6 36283 5 6 4044832
3 1 1454 6 1 46679
3 2 11600 6 2 373211
3 3 39042 6 3 1259415
3 4 92288 6 4 2984987
3 5 179750 6 5 5829527
3 6 309744 6 6 10072539

Table 2.3: Evaluation Points for Example 2.4.3.

The first step is to do an initial evaluation/interpolation for one variable to find

its structure. We will interpolate for x by keeping the y value constant at y = 1.

This gives us the following (x, P (x, 1)) pairs to interpolate: (1,-6), (2,183), (3, 1454),

(4,6147), (5,18762), (6,46679). In doing so, we obtain the polynomial

(y = 1) P1 = 6x5 + x2 − 13. (2.17)

Thus, our anchor is Ax5 + Bx2 + C, with only three terms. To interpolate for y,

we will need five more polynomials like P1. Due to the (in this case) sound assump-

tion of reappearing zero coefficients, we only need three evaluations to produce such

CHAPTER 2. PRELIMINARIES 17

polynomials.

Setting y = 2, we have the following (x, P (x, 2)) pairs: (1,−24), (2, 1467),

(3, 11600). Any three random x values would suffice, the first three were chosen

for consistency. We can substitute these x values into the anchor to obtain a system

of linear equations

A+B + C = −24 (2.18)

32A+ 4B + C = 1467 (2.19)

243A+ 9B + C = 11600 (2.20)

which can be easily solved to return {A = 48, B = 1, C = −73} and substituted back

into the anchor to get

(y = 2) 48x5 + x2 − 73 (2.21)

as our second polynomial needed to interpolate for y. This same process of substi-

tuting three random x values and solving the system of equations can be done for

y = 3, 4, 5, 6 to obtain

(y = 3) 162x5 + x2 − 333 (2.22)

(y = 4) 384x5 + x2 − 1033 (2.23)

(y = 5) 750x5 + x2 − 2509 (2.24)

(y = 6) 1296x5 + x2 − 5193 (2.25)

Along with equations 2.17 and 2.21 we can now interpolate for y. Interpolation

of each coefficient is independent of the others. To interpolate the x5 coefficient we

CHAPTER 2. PRELIMINARIES 18

have the following pairs of points:

(1, 6), (2, 48), (3, 162), (4, 384), (5, 750), (6, 1296),

which the polynomial 6y3 passes through. The coefficient of the x2 term is trivially

1. For the constant term, the following pairs of points

(1,−13), (2,−13), (3,−333), (4,−1033), (5,−2509), (6,−5193)

gives us the polynomial −4y4 − 9. Setting these values to A,B,C of the anchor

respectively produces our final answer

6x5y3 + x2 − 4y4 − 9 (2.26)

Zippel’s sparse interpolation required only 21 evaluations, while the naive multi-

variate Vandermonde method would require 36.

2.5 Algebraic Independence

Let L be a field and K a field extension of L. A sequence of distinct elements

α1, α2, . . . , αn ∈ L are said to be algebraically independent over K if every non-trivial

polynomial P (x1, x2, . . . , xn) in K[x1, x2, . . . , xn] satisfies

P (α1, α2, . . . , αn) 6= 0. [MB79]

This definition extends from fields to where K is a ring. A key notion of our math-

ematical description of symbolic polynomials requires the algebraic independence of

CHAPTER 2. PRELIMINARIES 19

xn, xn
2
, xn

3
, . . ., which we will now prove.

Theorem 2.5.1 [Wat06] The symbolic monomials xn, xn
2
, . . . are algebraically inde-

pendent over the base coefficient ring R.

Proof: We will prove this by showing the algebraic independence of any two of these

monomials, xn
a

and xn
b

with a 6= b, which then can be generalized further. For this

pair to be algebraically independent there can not exist a polynomial P of any fixed

degree d, with coefficients in R such that

P (xn
a

, xn
b

) = 0

Substituting the symbolic monomials into such a polynomial would produce

P (xn
a

, xn
b

) =
d∑

i,j=0

Ci,j(x
na)i(xn

b

)j

=
d∑

i,j=0

Ci,jx
inaxjn

b

=
d∑

i,j=0

Ci,jx
ina+jnb

This is a polynomial with (d + 1)2 possible terms. For P to evaluate to zero, either

every term is identically zero, that is, each Ci,j = 0, or there is a combining of like

terms and a simplification. The first case is trivial and disregarded. The second case

is also not possible as there can not be any like terms to combine. Ci,jx
ina+jnb can

only combine additively with Ck,mx
kna+mnb if (i, j) = (k,m).

CHAPTER 2. PRELIMINARIES 20

2.6 Gradient Descent

Gradient Descent, or Steepest Descent is a classical method used in finding the local

minima of nonlinear functions. The gradient of f ,
−→
∇f , is a vector field, whose

components are the partial derivatives of f .

−→
∇f(x1, . . . , xn) =

(
∂f

∂x1

, . . . ,
∂f

∂xn

)
(2.27)

The gradient,
−→
∇f , is a vector in the direction of most rapid increase; therefore,

−
−→
∇f is a vector in the direction of most rapid decrease. Figure 2.3 uses this technique

to locate a local minimum of a function. It takes an initial guess, and finds the vector

of most rapid decrease. A fixed step is taken in that direction. If f evaluates to a

smaller value, then it is accepted as the next approximate solution. If f evaluates to a

larger value, it has stepped over the local minimum, and a smaller step must be taken.

The algorithm continues for a set number of iterations, or until it has converged to

the minimum point. Convergence occurs when the difference between the last two

neighboring approximate solutions are within a certain very small tolerance [Fau03].

2.7 Roots of Unity

An nth root of unity is a solution of

ωn = 1 for n ∈ Z+, ω ∈ C

CHAPTER 2. PRELIMINARIES 21

steepest descent:
Input: f ∈ R[x1, . . . , xn], p0 ∈ Qn

Output: p ∈ Qns.t.f(p) is a minumum

1. Let m be the maximum number of iterations

2. Let ε be the tolerance of covergence

3. For i from 1 to m do

(a) pi ← pi−1

(b) dx← −
−→
∇f(pi)

(c) z0 ← f(pi)

(d) z1 ← f(pi + dx)

(e) while z1 − z0 ≥ 0 do

i. dx← dx/2

ii. z1 ← f(p1 + dx)

(f) if |z1 − z0| < ε then break

4. return pi

Figure 2.3: Minimization by Steepest Descent [Fau03]

In general ω can be an element of a ring R, but for our purposes a complex ω is

sufficient. An nth root of unity is called primitive if

ωk 6= 1 for k = 1, . . . , n− 1

One primitive nth root of unity can be calculated as follows

ωn = e2πi/n = cos(2π/n) + i sin(2π/n) (2.28)

There are n nth roots of unity in C. For instance, the two square roots of unity are

1 and −1. Figure 2.4 contains the fifth roots of unity in the complex plane. Given

CHAPTER 2. PRELIMINARIES 22

w5
3

=Kcos
1
5

 p K I sin
1
5

 p

w
5

= cos
2
5

 p C I sin
2
5

 p

w5
2

=Kcos
1
5

 p C I sin
1
5

 p

w5
4

= cos
2
5

 p K I sin
2
5

 p

w5
5

= 1

Re
K1.0 K0.5 0 0.5 1.0

Im

K0.8

K0.6

K0.4

K0.2

0.2

0.4

0.6

0.8

Figure 2.4: Fifth Roots of Unity in the Complex Plane

a primitive root of unity, ωn from Equation 2.28, the remaining roots are its powers.

That is to say, the nth roots of unity are

ωkn = e2kπi/n = cos(2kπ/n) + i sin(2kπ/n) for k = 0, . . . , n− 1

The sequence of powers ωkn is periodic, repeating every n elements. The cyclical

nature of roots of unity is best illustrated in Figure 2.4. The next power of ω5 is

obtained by following the unit circle counter clockwise until it meets the next root.

CHAPTER 2. PRELIMINARIES 23

In other words,

ωin = ωi+knn for i < n, k ∈ Z

When n is a prime number, the nth roots of unity have some interesting properties.

Besides the trivial root ω0
n, every root is a primitive root of unity. Table 2.4 contains

the powers of the fifth roots of unity. The table is symmetric, and each primitive root

generates the values in a unique order.

ω1
5 (ω1

5)1 = ω1
5 (ω1

5)2 = ω2
5 (ω1

5)3 = ω3
5 (ω1

5)4 = ω4
5

ω2
5 (ω2

5)1 = ω2
5 (ω2

5)2 = ω4
5 (ω2

5)3 = ω1
5 (ω2

5)4 = ω3
5

ω3
5 (ω3

5)1 = ω3
5 (ω3

5)2 = ω1
5 (ω3

5)3 = ω4
5 (ω3

5)4 = ω2
5

ω4
5 (ω4

5)1 = ω4
5 (ω4

5)2 = ω3
5 (ω4

5)3 = ω2
5 (ω4

5)4 = ω1
5

Table 2.4: Powers of the Fifth Roots of Unity

Chapter 3

Symbolic Polynomials

This chapter will introduce the reader to symbolic polynomials, provide a ring struc-

ture and prove that this ring is a UFD.

3.1 Introduction and Problem Statement

Symbolic polynomials, whose exponents are not known in advance, are a rich and

interesting mathematical structure. For our purposes, these unknown powers are

represented as polynomials themselves [Wat06]. Every exponent, rather than being a

nonnegative integer, is a polynomial. The exponent polynomials may or may not be

independent of the base. The following are some examples of symbolic polynomials.

5x2n2+6mn−7n+1 − 8x5n2

x7n−1yn
2−9 + 16xn

2

y8n+4

12nx7n−1yn
2−9 + 16xn

2

y8n+4

The first two polynomials have base variables x, y and exponential variables m,n.

24

CHAPTER 3. SYMBOLIC POLYNOMIALS 25

The final example has n in both the base and exponent. This is still a valid symbolic

polynomial; however, this sharing of variables is a more complicated notion and causes

problems with one of our algorithms.

Naturally, we are interested in performing mathematical operations with these

objects. Some elementary operations are trivial. Addition, multiplication and deriva-

tives are performed as one would expect.

Example 3.1.1 Simplify the following symbolic polynomial through addition by

combining like terms.

P = 2xn
3

+ 4xn
2 − 2x2n2

+ xn
3

= 3xn
3

+ 4xn
2 − 2x2n2

Terms only combine additively if the exponent polynomials are exactly the same.

Example 3.1.2 Simplify the following symbolic polynomial through multiplication.

P = (2xn
3

+ 4xn
2

) · (2x2n2 − xn3

)

= 2xn
3

2x2n2 − 2xn
3

xn
3

+ 4xn
2

2x2n2 − 4xn
2

xn
3

= 4xn
3+2n2 − 2x2n3

+ 8x3n2 − 4xn
3+n2

After expanding the polynomial, the powers of the same base for every term are

added together.

There are other crucial operations that are not so easily executed. The next two

chapters give a pair of algorithms which can be used for these more computationally

difficult operations, such as GCD and factorization.

CHAPTER 3. SYMBOLIC POLYNOMIALS 26

3.2 A Ring Structure for Symbolic Polynomials

In searching for a meaningful representation of this structure, several notions come

to mind. If the polynomial P has only a single exponent variable, n, then we could

say P is the set of polynomials for all values of n. However, this is not very intuitive.

Another idea is to say that a set S under a mapping, φ, that produces a polynomial

R[x1, x2, . . . , xn] completely describes symbolic polynomials. This definition is far too

general. A ring structure is needed.

Watt [Wat06] defines the ring of symbolic polynomials with base variables

x1, x2, . . . , xv over the coefficient ring R and symbolic exponents in n1, n2, . . . , np

as the ring of finite sums of the following form

∑
i

cix
ei1
1 xei22 · · ·xeivv

where ci ∈ R and eij ∈ Int(Z)[n1, n2, . . . , np], an integer-valued polynomial. Multipli-

cation is defined, as expected and demonstrated from Example 3.1.2,

c1x
e11
1 xe122 · · ·xe1nn × c2x

e21
1 xe222 · · ·xe2nn = c1c2x

e11+e21
1 xe12+e22

2 · · ·xe1n+e2n
n

The ring of symbolic polynomials is denoted R[n1, n2, . . . , np;x1, x2, . . . , xv].

If we evaluate the symbolic exponent variables at integers, we have

φ : R[n1, n2, . . . , np;x1, x2, . . . , xv]→ R[x1, x2, . . . , xv, x
−1
1 , x−1

2 , . . . , x−1
v].

That is, evaluating the exponents at integers gives us Laurent polynomials. A Laurent

polynomial allows for negative exponents. This mapping is valid due to our restriction

of the symbolic exponents to integer-valued polynomials [Wat06, Wat07a].

CHAPTER 3. SYMBOLIC POLYNOMIALS 27

Example 3.2.1 Consider the polynomial p(n;x) = 2xn + 3xn
2
. Let us evaluate n at

two points.

p(2;x) = 2x2 + 3x4

p(−2;x) = 2x−2 + 3x4

Evaluating the symbolic polynomial at n = −2 gives a negative exponent. We could

put a restriction on the symbolic exponents to only evaluate to positive integers, but

we find this to be more unwieldy than working with Laurent polynomials.

3.3 Symbolic Polynomial Rings are UFDs

Two of the most important operations we wish to perform on symbolic polynomials

are GCDs and factorizations. We must show that R[n1, n2, . . . , np;x1, x2, . . . , xv] is

a UFD, and thus a GCD domain. This will be done by proving that they can be

transformed to Laurent polynomials, which form a UFD. For simplicity, we take

R = Q.

Theorem 3.3.1 [Wat06] Q[n1, n2, . . . , np;x1, x2, . . . , xv] is a UFD, and monomials

are units.

Proof: We begin by restricting our exponents to come from Z[n1, . . . , np]. We will

show that our symbolic polynomials are isomorphic to a form that we are familiar

with and that has a UFD structure. Consider the following manipulation on the

CHAPTER 3. SYMBOLIC POLYNOMIALS 28

monomial x
eij
k .

x
eij
k = x

P
j hijn

j
1

k for hij ∈ Z[n2, . . . , np]

=
∏
j

(x
nj1
k)hij

By changing the monomial to a product, we have isolated n1 from the remaining

exponent variables. As xn1
k , x

n2
1
k , . . . are algebraically independent, we may replace

each x
nj1
k with an independent variable. Using the change of variables, x

nj1
k → xk1j, we

produce the following isomorphism

Q[n1, n2, . . . , np;x1, x2, . . . , xv] ∼=

Q[n2, n3, . . . , np;x
±1
110, x

±1
111, . . . , x

±1
210, x

±1
211, . . . , x

±1
v10, x

±1
v11, . . .]

The variable n1 is no longer an exponent variable, and in its place are additional

base variables. We can inductively follow this procedure an additional p− 1 times to

eliminate every exponent indeterminate, thus producing

Q[n1, n2, . . . , np;x1, x2, . . . , xv] ∼=

Q[;x±1
110, . . . , x

±1
v1..., x

±1
120, . . . , x

±1
v2..., . . . , x

±1
1p0, . . . , x

±1
vp...]

This is a Laurent polynomial ring, which is a UFD and has monomials as units.

If we were to remove our above assumption and allow for integer-valued polynomials,

we would have a similar construction; however, fixed divisors must be dealt with.

As we have shown in the previous chapter, the fixed divisor is the GCD of the set

of coefficients when the polynomial is rewritten in the binomial basis. As such, the

change of variables will become x
(n1
i1

)...(npip)
k → xk,i1...ip .

CHAPTER 3. SYMBOLIC POLYNOMIALS 29

The following chapter on the change of basis extension algorithm will give some

examples that illustrate the necessity for the change to the binomial basis.

Chapter 4

Change of Basis Algorithms

This chapter introduces the first algorithm allowing UFD operations on symbolic

polynomials.

4.1 Motivation

Watt’s change of basis extension algorithm uses the ideas from Theorem 3.3.1 to

change the symbolic exponents to the binomial basis. After a change of variables, the

resulting Laurent polynomial can be manipulated as one sees fit, and then mapped

back to its original form [Wat06]. The following two examples will help illustrate the

binomial mapping γ : x
(n1
i1

)···(npip)
k 7→ xk,i1...,ip .

Example 4.1.1 Change to the binomial basis, and apply the above mapping to

f(n;x) = 4xn
2+n − xn2+3. Using Equations 2.2 – 2.4 we can solve for x2 (1 and x are

30

CHAPTER 4. CHANGE OF BASIS ALGORITHMS 31

trivial). We list the first three powers of x in binomial basis.

1 =

(
n

0

)
(4.1)

n =

(
n

1

)
(4.2)

n2 = 2

(
n

2

)
+

(
n

1

)
(4.3)

After performing the above substitution to f ,

f(n;x) = 4x2(n2)+2(n1) − x2(n2)+(n1)+3(n0)

= 4x2(n2)x2(n1) − x2(n2)x(n1)x3(n0)

the new variables introduced through the mapping γ are as follows

A = x(n0)

B = x(n1)

C = x(n2)

After a substitution we get our goal Laurent polynomial of

f(A,B,C) = 4C2B2 − C2BA3

We now show an example of a multivariate mapping.

CHAPTER 4. CHANGE OF BASIS ALGORITHMS 32

Example 4.1.2 Change to the binomial basis, and apply the above mapping to

f(n,m;x) = xn
2m2+2m−n. Using Equations 4.1 – 4.3, f becomes

f(n,m;x) = x(2(n2)+(n1))(2(m2)+(m1))+2(n0)(
m
1)−(n1)(

m
0)

= x4(n2)(
m
2)+2(n2)(

m
1)+2(n1)(

m
2)+(n1)(

m
1)+2(n0)(

m
1)−(n1)(

m
0)

= x4(n2)(
m
2)x2(n2)(

m
1)x2(n1)(

m
2)x(n1)(

m
1)x2(n0)(

m
1)/x(n1)(

m
0)

The new variables introduced through the mapping γ are as follows:

x1,0 = A = x(n1)(
m
0)

x0,1 = B = x(n0)(
m
1)

x1,1 = C = x(n1)(
m
1)

x2,1 = D = x(n2)(
m
1)

x1,2 = E = x(n1)(
m
2)

x2,2 = F = x(n2)(
m
2)

After a substitution we get our goal polynomial of

f(A,B,C,D,E, F) = F 4D2E2CB2A−1

4.2 Extension Algorithms

The extension algorithm for GCD is shown in Figure 4.1. It takes as input two

symbolic polynomials p and q, outputting their GCD g [Wat06].

The notion of applying GCDs to symbolic polynomials can be difficult to perceive.

For an evaluation map on the symbolic exponents φ : Int[n1, . . . , np](Z)→ Z,

CHAPTER 4. CHANGE OF BASIS ALGORITHMS 33

cob gcd:
Input: p, q ∈ R[n1, . . . , np;x1, . . . , xv]
Output: g ∈ R[n1, . . . , np;x1, . . . , xv] such that g is the GCD of p and q

1. Let p′ be the result of changing the exponent polynomials of p to the
binomial basis

2. Let q′ be the result of changing the exponent polynomials of q to the
binomial basis

3. γ : x
(n1
i1

)···(npip)
k 7→ xk,i1...,ip

4. P ← γ(p′)

5. Q← γ(q′)

6. G← gcd(P,Q)

7. g ← γ−1(G)

8. Return g after changing the exponent polynomials back to a power
basis

Figure 4.1: Change of Basis Extension Algorithm for GCDs of Symbolic
Polynomials

φ(g) | gcd(φ(p), φ(q)). For other polynomials g′ ∈ Q[n1, . . . , np;x1, . . . , xv] such that

φ(g′) | φ(p) and φ(g′) | φ(q), then g′ | g, making g the greatest common divisor. This

computation is unique up to units, being monomials.

The first step of the extension algorithm is to convert the exponents of the two

input polynomials to the binomial basis. This is done in the same manner as shown in

Example 4.1.1 and Example 4.1.2. P and Q are then constructed using the mapping

γ, with di being the maximum degree of ni in p and q. These newly constructed

polynomials are Laurent polynomials. Their GCD is then found and it is remapped

to its symbolic binomial exponent form, and then switched back to the power basis.

The extension algorithm for factorization is shown in Figure 4.2. It takes as input

symbolic polynomial p, outputting f1, . . . , fm such that their product is equal to p,

CHAPTER 4. CHANGE OF BASIS ALGORITHMS 34

cob factorize:
Input: p ∈ R[n1, . . . , np;x1, . . . , xv]
Output: f1, . . . , fm ∈ R[n1, . . . , np;x1, . . . , xv] such that all fi are irre-
ducible and their product is p

1. Let p′ be the result of changing the exponent polynomials of p to the
binomial basis

2. γ : x
(n1
i1

)···(npip)
k 7→ xk,i1...,ip

3. P ← γ(p′)

4. F1, . . . , Fm ← factor(P)

5. For i from 1 to m do

(a) fi ← γ−1(Fi)

6. Return f1, . . . , fm after changing the exponent polynomials back to
a power basis

Figure 4.2: Change of Basis Extension Algorithm for Factorization of Sym-
bolic Polynomials

unique to units. [Wat06]

4.3 The Necessity for Binomial Basis

We have noted that because of fixed divisors, it is necessary to change the exponents

to a binomial basis. The reason behind this is not always clear to the reader. If

xn, xn
2
, . . . are algebraically independent, one might think that a simple substitution

would suffice. However, that can eliminate the shared properties of the different

terms. For instance, consider Example 4.3.1. By performing the incorrect variable

substitution, we lose the property that both exponents when evaluated must always

be even, and the difference of squares could not be used.

CHAPTER 4. CHANGE OF BASIS ALGORITHMS 35

Example 4.3.1 Factorize f(n;x, y) = xn
2−n− y2. First, let us try to factorize with-

out changing to the binomial basis. By using the substitution

A = xn
2

B = xn

C = y

we get f(A,B,C) = AB−1 − C2, which has no smaller factors. However, if we

performed our change of basis first, we would have

f(n;x, y) = x2(n2) − y2(n0)

= (x(n2))2 − (y(n0))2

Substituting the following

A = x(n2)

B = y(n0)

we have

f(A,B) = A2 −B2

= (A−B)(A+B)

f(n;x, y) = (x(n2) − y(n0))(x(n2) + y(n0))

= (x(n2−n)/2 − y)(x(n2−n)/2 + y)

CHAPTER 4. CHANGE OF BASIS ALGORITHMS 36

4.4 GCD and Factorization Examples

We will now show the GCD computation of a and b, and the factorization of a using

the change of basis extension algorithm.

a = 20 x5m2n−2n2+n2m2+1 + 12x7m2n−2n2−m − 30x7mn+n2m2+1 − 18x7mn+2m2n−m

b = 8 x5m2n−n2+m2

+ 12x5m2n−2n2+n+m − 12x7mn+n2+m2 − 18x7mn+n+m

Example 4.4.1 Compute the GCD of a and b.

Again using Equations 4.1 – 4.3, the basis of the exponents are changed.

a = 20x4(n2)(
m
2)+2(n2)(

m
1)+12(n1)(

m
2)+6(n1)(

m
1)−4(n2)−2(n1)+1 + 12x14(n1)(

m
2)+7(n1)(

m
1)−4(n2)−2(n1)−(m1)

−30x4(n2)(
m
2)+2(n2)(

m
1)+2(n1)(

m
2)+8(n1)(

m
1)+1 − 18x4(n1)(

m
2)+9(n1)(

m
1)−(m1)

b = 8x10(n1)(
m
2)+5(n1)(

m
1)−2(n2)−(n1)+2(m2)+(m1) + 12x10(n1)(

m
2)+5(n1)(

m
1)−4(n2)−(n1)+(m1)

−12x7(n1)(
m
1)+2(n2)+(n1)+2(m2)+(m1) − 18x7(n1)(

m
1)+(n1)+(m1)

Treating n as n1 and m as n2, using the translation γ : x
(n1
i1

)···(npip)
k 7→ xk,i1...,ip we will

eliminate the exponent variables by introducing these new base variables:

x2,2 = A = x(n2)(
m
2)

x2,1 = B = x(n2)(
m
1)

x2,0 = C = x(n2)

x1,2 = D = x(n1)(
m
2)

x1,1 = E = x(n1)(
m
1)

CHAPTER 4. CHANGE OF BASIS ALGORITHMS 37

x1,0 = F = x(n1)(
m
0)

x0,2 = G = x(m2)

x0,1 = H = x(m1)

x0,0 = I = x

thus producing

a = 20A4B2C−4D12E6F−2I + 12C−4D14E7F−2H−1 − 30A4B2D2E8I

−18D4E9H−1 (4.4)

b = 8C−2D10E5F−1G2H + 12C−4D10E5F−1H

−12E7C2FG2H − 18E7FH (4.5)

Standard GCD algorithms operate primarily on polynomials, disallowing negative

exponents. Recall that every monomial is a unit and thus has no effect on the GCD

computation when multiplied to a or b. We will multiply a and b by monomials that

are large enough to remove all negative powers. This is known as the lowest-degree

unit. Multiplying a by C4F 2H and b by C4F gives us

ar = 20A4B2D12E6HI + 12D14E7 − 30A4B2C4D2E8F 2HI −

18D4E9C4F 2 (4.6)

br = 8C2D10E5G2H + 12D10E5H − 12C6E7F 2G2H − 18C4E7F 2H (4.7)

g = gcd(ar, br) = 4D10E5 − 6E7C4F 2 (4.8)

Now, substituting back to return to a symbolic polynomial with binomial basis

CHAPTER 4. CHANGE OF BASIS ALGORITHMS 38

g = x10(n1)(
m
2)+5(n1)(

m
1) − 3

2
x7(n1)(

m
1)+4(n2)+2(n1)

Finally, using Equations 2.2 – 2.4 again, g has standard power basis for its expo-

nent polynomials

g = 4x5nm2 − 6x7nm+2n2

Example 4.4.2 Compute the factorization of a. We can use the exact same con-

version techniques as seen in the previous example to transform a into the Laurent

polynomial seen in Equation 4.6. The following is its factorization, in transformed,

binomial basis, and standard basis:

f = 2D2E6
(
2D10 − 3E2C4F 2

) (
3ED2 + 5A4B2HI

)
= 2x2(n1)(

m
2)+6(n1)(

m
1)(2x10(n1)(

m
2) − 3x2(n1)(

m
1)+4(n2)+2(n1))

(3x(n1)(
m
1)+2(n1)(

m
2) + 5x4(n2)(

m
2)+2(n2)(

m
1)+(m1)+1)

= 2xnm
2+5nm(2x5nm2−5nm − 3x2nm+2n2

)(3xnm
2

+ 5xn
2m2−nm2+m+1)

4.5 Remarks

This section lists some important aspects of this algorithm. See Chapter 8 for an

investigation of its complexity.

The GCD and factorization algorithms of Figures 4.1 and 4.2 are quite similar.

This transformation algorithm is generic, working for other operations as well.

The most noticeable drawback to this algorithm is that in changing to the binomial

basis we are introducing an exponential number of variables with respect to the

number of symbolic exponent indeterminates. This is especially noticeable with sparse

exponent polynomials. For instance, transforming xm
100n100+1 + 1 to the binomial

CHAPTER 4. CHANGE OF BASIS ALGORITHMS 39

exponent basis would introduce on the order of 10000 variables! The next chapter

will describe a second method for operations for symbolic polynomials that does not

increase the number of variables.

Chapter 5

Evaluation/Interpolation

Algorithms

This chapter introduces an alternative algorithm to change of basis, using evaluation

and interpolation on the exponent variables.

5.1 Projection Methods

As aforementioned, the extension algorithm of the previous chapter creates an expo-

nential number of variables; it may be advantageous to use an evaluation/interpolation

scheme if the degree of the input polynomial is large. This projection method pro-

ceeds by mapping the exponent polynomials to integers at several evaluation points,

performing the desired operation, and interpolating the images of each exponent poly-

nomial separately. Figures 5.1 and 5.2 show the dense projection algorithms for GCD

and factorization respectively [Wat06].

The dense GCD projection algorithm takes as input two symbolic polynomials

a, b whose symbolic exponents have maximum degree d. We assume that the evalua-

40

CHAPTER 5. EVALUATION/INTERPOLATION ALGORITHMS 41

e/i dense gcd:
Input: a, b ∈ R[n1, . . . , np;X]
Output: g ∈ R[n1, . . . , np;X] such that g is the GCD of a and b

1. Let d be the max degree of all exponent polynomials in a and b

2. For i from 1 to (d+ 1)p do

(a) Let ei ∈ Zp be distinct evaluation points for n1, . . . , np

(b) gi ← gcd(a(ei;X), b(ei;X))

3. Match corresponding terms in each gi

4. t← g1

5. For every exponent u1, in g1 do

(a) Let ui be the matching exponent from gi

(b) Let j be the multivariate interpolating polynomial over the val-
ues (e1, u1), . . . , (e(d+1)p , u(d+1)p)

(c) Replace the exponent u1 in t with j

6. Return t

Figure 5.1: Dense Projection Algorithm for GCDs of Symbolic Polynomials

tion points are “good”; all bad specializations, which can cause linear dependencies

(detailed in Section 2.4) and term collapsing (detailed in Section 5.5), are discarded.

It outputs the GCD of a and b, the same result as the algorithm from Figure 4.1 up

to units.

Figure 5.1 makes use of dense multivariate interpolation via the extended Van-

dermonde Matrix and thus requires (d + 1)p evaluation points. After the initial

evaluations and GCD computations, the terms of each gi are matched. Finding corre-

sponding terms is most easily done by matching the absolute value of the coefficients;

however, if two terms share the same coefficient this can not be done. We will further

discuss how to select the appropriate terms in a later section. The exponents of each

CHAPTER 5. EVALUATION/INTERPOLATION ALGORITHMS 42

e/i dense factorize:
Input: a ∈ R[n1, . . . , np;X]
Output: f1, . . . , fm ∈ R[n1, . . . , np;X] such that all fi are irreducible and
their product is a

1. Let d be the max degree of all exponent polynomials in p

2. For i from 1 to (d+ 1)p do

(a) Let ei ∈ Zp be distinct evaluation points for n1, . . . , np

(b) fi,1, . . . , fi,m ← factor(a(ei;X))

3. Match corresponding factors of fi,j for varying j

4. Match corresponding terms for each fi,j

5. t← f1,1, . . . , f1,m

6. For every exponent u1, in f1,1, . . . , f1,m do

(a) Let ui be the matching exponent from fi,1, . . . , fi,m

(b) Let j be the multivariate interpolating polynomial over the val-
ues (e1, u1), . . . , (e(d+1)p , u(d+1)p)

(c) Replace the exponent u1 in t with j

7. Return t

Figure 5.2: Dense Projection Algorithm for Factorization of Symbolic Poly-
nomials

term of each GCD are then interpolated, monomial by monomial, and reconstructed

to form the desired result.

The multivariate interpolation step is essentially solving a system of linear equa-

tions; we must be certain that the Vandermonde system is nonsingular. Dependent

evaluation points must be discarded. It is also possible to find several gi with a vary-

ing number of terms. This is due to two or more terms collapsing together. These

smaller GCDs, with fewer terms should be discarded as well. If a GCD is found with

more terms, all previous images contain a collapse of terms and are discarded.

CHAPTER 5. EVALUATION/INTERPOLATION ALGORITHMS 43

The factorization algorithm is nearly identical to its GCD counterpart, save for

the fact that it has one input polynomial and outputs several polynomials. As such,

it suffers from the same term identification problems as the GCD algorithm. This is

in addition to the classical problem of matching corresponding factors.

5.2 Dense Projection Examples

We will now show the GCD computation of a and b and the factorization of a using

the dense projection methods of the previous section.

a = 14 y7−10m2−18mn−16n2

x−13m2−21n+19+2mn−5n2

+

4 y19+8m+13m2−10mnx−23m2−2n−10+16m−17mn −

63 y−16mn+7−10m2−16n2

x19−19n+2mn−5n2 −

18 y−8mn+19+8m+13m2

x−10+16m−10m2−17mn (5.1)

b = 8 y−18m−4n−20mn−16n2

x−13m2+9n+3−5m−10mn −

10 y−18m+18n−19m2−9mnx−13m2+9n−1+9mn+10n2 − 2x−19m2+12n+5m+5n2 −

36 y−18mn−18m−4n−16n2

x3−5m+11n−10mn +

45 y−7mn−18m+18n−19m2

x−1+11n+9mn+10n2

+ 9 y2mnx5m+14n−6m2+5n2

(5.2)

Example 5.2.1 Compute the GCD of a and b. The exponents of the two input

polynomials are bivariate and have a maximum degree of 2, thus requiring (2+1)2 = 9

evaluation points to interpolate. The nine randomly selected evaluation points, and

their respective GCD can be found in Table 5.1.

The final GCD polynomial will be of the form −2+9yp1xp2 , where p1 and p2 are of

the form c8n
2m2+c7n

2m+c6n
2+c5nm

2+c4nm+c3n+c2m
2+c1m+c0. Two multivari-

CHAPTER 5. EVALUATION/INTERPOLATION ALGORITHMS 44

n m gcd(a(n,m;x, y), b(n,m;x, y))
3 5 −2 + 9y30x331

7 4 −2 + 9y56x222

2 6 −2 + 9y24x472

4 3 −2 + 9y24x125

9 4 −2 + 9y72x226

9 7 −2 + 9y126x655

2 4 −2 + 9y16x212

8 8 −2 + 9y128x848

5 8 −2 + 9y80x842

Table 5.1: Evaluation Points for Example 5.2.1.

ate interpolations must be performed, one to solve for the coefficients in p1, the other

for p2. Interpolating the evaluation points over [30, 56, 24, 24, 72, 126, 16, 128, 80], we

find p1 = 2mn. Interpolating over [331, 222, 472, 125, 226, 655, 212, 848, 842], we find

p2 = 2n+ 13m2. Thus, the final output GCD symbolic polynomial is

−2 + 9y2mnx2n+13m2

Example 5.2.2 Compute the factorization of a. As with the previous example, nine

(n,m) pairs are required for interpolation. Using the same values as the previous

example, the factors of each evaluation can be found in Table 5.2.

n m factor(a(n,m;x, y))
3 5 (−9y30x331 + 2)(7x382 + 2y891)
7 4 (−9y56x222 + 2)(7x279 + 2y1420)
2 6 (−9y24x472 + 2)(7x463 + 2y1048)
4 3 (−9y24x125 + 2)(7x143 + 2y595)
9 4 (−9y72x226 + 2)(7x233 + 2y1996)
9 7 (−9y126x655 + 2)(7x1028 + 2y2995)
2 4 (−9y16x212 + 2)(7x219 + 2y540)
8 8 (−9y128x848 + 2)(7x1285 + 2y3084)
5 8 (−9y80x842 + 2)(7x1081 + 2y2268)

Table 5.2: Evaluation Points for Example 5.2.2.

CHAPTER 5. EVALUATION/INTERPOLATION ALGORITHMS 45

There will be two output factors, which will be of the form −9yp1xp2 +2 and 7xp3 +

2yp4 , where p1, p2, p3, p4 = c8n
2m2+c7n

2m+c6n
2+c5nm

2+c4nm+c3n+c2m
2+c1m+c0.

Four multivariate interpolations are to be done, one for each pi. Interpolating the

n and m pairs over [30, 56, 24, 24, 72, 126, 16, 128, 80], we find p1 = 2nm. Likewise,

interpolating the exponents of the remaining pi, we find

p1 = 2mn (5.3)

p2 = 13m2 + 2n (5.4)

p3 = 10m2 + 19mn− 16m− 5n2 − 19n+ 29 (5.5)

p4 = 23m2 + 8mn+ 8m+ 16n2 + 12 (5.6)

Thus, the final output factors of a are

(−9y2mnx13m2+2n + 2)(7x10m2+19mn−16m−5n2−19n+29 + 2y23m2+8mn+8m+16n2+12) (5.7)

5.3 Sparse Interpolation

As previously mentioned, using the naive approach of the previous section requires

on the order of (d + 1)p evaluations. In practice, symbolic polynomials are sparse.

Using sparse interpolation instead of dense, the algorithm will no longer require an

exponential number of evaluation points. For t-sparse symbolic polynomials, we can

reduce the minimum number of required evaluations to O(pdt). The sparse projection

GCD algorithm can be seen in Figure 5.3. This algorithm incorporates notions from

its dense relative (Figure 5.1), and Zippel interpolation (Figure 2.2). The algorithm

takes as input symbolic polynomials a and b.

As output, the algorithm produces the GCD of a and b, the exact result of pre-

CHAPTER 5. EVALUATION/INTERPOLATION ALGORITHMS 46

e/i sparse gcd:
Input: a, b ∈ R[n1, . . . , np;X]
Output: g ∈ R[n1, . . . , np;X] such that g is the GCD of a and b

1. Let d be the max degree of all exponent polynomials in a and b

2. Let ei,j be the ith evaluation for nj

3. E1 ← e1,i, e2,1, . . . , ev−1,1, ev,1

4. r1 ← gcd(a(E1;X), b(E1;X))

5. t← 1

6. For i from 1 to p do

(a) For j from 2 to d+ 1 do

i. For k from 1 to t do

A. Ek ← e1,k, . . . , ei−1,k, ei,j, ei+1,1, . . . , ev,1

B. gk ← gcd(a(Ek;X), b(Ek;X))

ii. rj ← g1

iii. For every exponent u1, in g1 do

A. Let uk be the matching exponent from gk

B. Let q be the matching exponent from r1

C. Using uk and Ek, let s be the polynomial with the form
of q whose coefficients are the solution of the system of
t linear equations

D. Replace the exponent u1 in rj with s

(b) Let r1 ∈ R[n1, . . . , ni;X] be the symbolic polynomial ob-
tained by interpolating matching exponent values in rj over
ej,1, . . . , ej,d+1

(c) Let t be the max number of terms of all exponent polynomials
in r1

7. Return r1

Figure 5.3: Sparse Projection Algorithm for GCDs of Symbolic Polynomi-
als

CHAPTER 5. EVALUATION/INTERPOLATION ALGORITHMS 47

viously described symbolic polynomial GCD methods up to units. We once again

make the assumption of having only “good” evaluation points. When the algorithm

commences, there is no knowledge of the form of the output polynomial. A dense

interpolation for n1 is performed, by varying n1, d + 1 times, and keeping the other

exponent variables constant. After this initial interpolation, we can be certain of

the number of exponent polynomials, the base coefficients and the base variables in

each term. We are now basically performing classical Zippel interpolation for every

exponent polynomial using the same evaluation points.

As this is a revision of the dense version, some of its inherent problems may arise,

namely term identification of two monomials with identical coefficients and term

collapsing. Moreover, it is possible that evaluations produce dependent equations,

which must be removed to ensure a consistent linear system. If too many equations

are thrown away, while unlikely, it is possible that there will not be a sufficient number

of remaining evaluations, and a new set of points must be used. This is because

individual values are shared across several evaluations. This problem is specific only

to the sparse algorithm and does not arise in dense interpolation.

As with all of the preceding factorization algorithms, Figure 5.4 is very similar to

the sparse GCD algorithm, the only difference being that factorization can return a

set of polynomials rather than just a single one.

5.4 Sparse Projection Examples

We will now show the GCD computation of a (Equation 5.1) and b (Equation 5.2)

and discuss the factorization of a using the sparse projection methods of the previous

section.

CHAPTER 5. EVALUATION/INTERPOLATION ALGORITHMS 48

e/i sparse factorize:
Input: a ∈ R[n1, . . . , np;X]
Output: f1, . . . , fm ∈ R[n1, . . . , np;X] such that all fi are irreducible and
their product is a

1. Let d be the max degree of all exponent polynomials in p and q

2. Let ei,j be the ith evaluation for nj

3. E1 ← e1,i, e2,1, . . . , ev−1,1, ev,1

4. r1,1, . . . , r1,m ← factor(a(E1;X))

5. t← 1

6. For i from 1 to p do

(a) For j from 2 to d+ 1 do

i. For k from 1 to t do

A. Ek ← e1,k, . . . , ei−1,k, ei,j, ei+1,1, . . . , ev,1

B. fk,1, . . . , fk,m ← factor(a(Ek;X))

ii. rj,1, . . . , rj,m ← f1,1, . . . , f1,m

iii. For every exponent u1, in f1,1, . . . , f1,m do

A. Let uk be the matching exponent from fk,1, . . . , fk,m

B. Let b be the matching exponent from r1,1, . . . , r1,m

C. Using uk and Ek, let s be the polynomial with the form
of b whose coefficients are the solution of the system of
t linear equations

D. Replace the exponent u1 in rj,1, . . . , rj,m with s

(b) Let r1,1, . . . , r1,m ∈ R[n1, . . . , ni;X] be the symbolic polynomials
obtained by interpolating matching factors and exponent values
in rj,k over ej,1, . . . , ej,d+1

(c) Let t be the max number of terms of all exponent polynomials
in r1,1, . . . , r1,m

7. Return r1,1, . . . , r1,m

Figure 5.4: Sparse Projection Algorithm for Factorization of Symbolic
Polynomials

CHAPTER 5. EVALUATION/INTERPOLATION ALGORITHMS 49

Example 5.4.1 Compute the GCD of a and b. The exponents of the two input

polynomials are bivariate and have a maximum degree of two, thus each variable

requires at most three values. This gives a total of nine possible evaluation points;

however, they will not all be needed. For simplicity, we will assume we know the

sparsity of the resulting polynomials; it has two terms. The seven required evaluation

points and their respective GCDs are found in Table 5.4.1.

n m gcd(a(n,m;x, y), b(n,m;x, y))
3 3 −2 + 9y18x123

3 4 −2 + 9y24x214

3 5 −2 + 9y30x331

4 3 −2 + 9y24x125

4 4 −2 + 9y32x216

5 3 −2 + 9y30x127

5 4 −2 + 9y40x218

Table 5.3: Evaluation Points for Example 5.4.1.

By keeping n constant at n = 3, we can use the first three evaluations to interpolate

each symbolic exponent for m. Interpolating [18, 24, 30] and [123, 214, 331] over the

m values [3, 4, 5] gives us the polynomials p1 = 6m and p2 = 13m2 + 6 respectively.

According to Zippel, it is highly improbable that p1 will contain an m2 or a constant

term, and that p2 will contain an m monomial. At this point we are certain that

our final GCD will be of the form −2 + 9xAm
2+ByCm, where A,B,C ∈ Z[n]. We call

a1 = Am2 +B and a2 = Cm our anchors. Substituting p1 and p2 into their respective

anchors gives us

g1 = −2 + 9x13m2+6y6m (5.8)

Two more symbolic polynomials of the above form are needed to interpolate for n;

however, as the exponents have at most two terms, constructing these polynomials

only requires two evaluations each. By using the n = 4 evaluations and substituting

CHAPTER 5. EVALUATION/INTERPOLATION ALGORITHMS 50

into the anchors we obtain a systems of linear equations for a1,

9A+B = 125 (5.9)

16A+B = 216 (5.10)

which when solved yields A = 13 and B = 8. Substituting into the second anchor

the following system of equations is constructed,

3C = 24 (5.11)

4C = 32 (5.12)

which is trivially solved for C = 8. After substituting A,B,C into the anchors we

get the second polynomial used to interpolate for n

g2 = −2 + 9x13m2+8y8m (5.13)

The exact steps are repeated, but for the n = 5 evaluations. The first system of

equations is,

9A+B = 127 (5.14)

16A+B = 218 (5.15)

which holds true for A = 13, B = 10. The second system,

3C = 30 (5.16)

4C = 40 (5.17)

CHAPTER 5. EVALUATION/INTERPOLATION ALGORITHMS 51

is trivially C = 10. After substituting again, the final intermediate GCD is obtained

g3 = −2 + 9x13m2+10y10m (5.18)

Now, the matching exponent polynomial coefficients in gi are interpolated indepen-

dently. This results in the goal exponent polynomials in Z[n,m]. Interpolating for A

in a1 is trivial, as it is 13 in all gi. Interpolating [6, 8, 10] over the n values [3, 4, 5]

results in 2n, thus B = C = 2n. Substituting these polynomials in for A,B,C will

give us the end GCD of

−2 + 9x13m2+2ny2nm (5.19)

Recall that the dense version of solving this exact problem required nine GCD

evaluations. Using sparse interpolation saved two evaluation computations. In this

low degree example, the factorization computation of a using sparse interpolation

would proceed exactly the same as the previous example. Note that the factorization

of a (as already calculated in Example 5.2.2) has a maximum number of exponential

terms of three. As its degree is only two, the exponent polynomials are not sparse

enough to take advantage of Zippel’s algorithm.

5.5 Bad Evaluation Points and Term Selection

Consider interpolating for the symbolic polynomial p using the given evaluation im-

ages:

p(3;x) = 7 + 11x (5.20)

p(4;x) = 18 (5.21)

p(5;x) = 7x+ 11 (5.22)

CHAPTER 5. EVALUATION/INTERPOLATION ALGORITHMS 52

At first glance, it is not clear how to match the exponents to find the solution,

p = 7xm−4 − 11. We can see that the symbolic polynomial evaluated at n = 4 is a

constant, while evaluated at 3 and 5, there are two terms; however, the base variable

x is attached to different coefficients. In this form, interpolation cannot be done on

these images.

Equation 5.21 is smaller than the other evaluations due to collapsing terms. There

is always a possibility that two or more exponents will evaluate to the same value, in

which case, when simplified, the like terms will be added together. In this example,

the exponent of x maps to zero, and p(4;x) becomes the sum 7 and 11. It may be

possible to perform some reverse engineering to attempt to “unsimplify” the results,

but it is easier to disregard the evaluation and obtain a new image. Term collapsing

always lowers the number of terms in the evaluated image. If at some point a new

image with more terms is evaluated, the preceding images must be removed as they all

contained a collapse of terms. For GCDs of a single exponent variable, this can occur

for at most dt(t− 1)/2 points, with t the number of exponent polynomials and d the

maximum degree of those polynomials [Wat07a]. There may be an infinite number of

the bad evaluation points for multivariate exponents; however, by randomly choosing

evaluation points, their probability of arising is very small.

Equations 5.20 and 5.22 still cannot be interpolated, due to variable placement.

Recall that these are Laurent polynomials, and as such, multiplying by any monomial

will leave a GCD or factorization unchanged. We can always normalize by multiplying

our evaluated images by monomials to make one of the terms constant. This will

ensure that the variables of the remaining terms match. Multiplying Equation 5.22

by x−1, we have

p(5;x) = 7 + 11x−1 (5.23)

CHAPTER 5. EVALUATION/INTERPOLATION ALGORITHMS 53

which then matches the form of Equation 5.20 and they can be used together in an

interpolation.

Term identification of symbolic polynomials with identical absolute coefficients

can also be problematic. Consider the interpolation of a symbolic polynomial, p,

with one exponent variable and maximum degree of 3, using the following images

p(2;x) = 5x18 + 5x9 + 3x−10 (5.24)

p(4;x) = 5x65 + 5x42 + 3x−20 (5.25)

p(5;x) = 5x126 + 5x60 + 3x−25 (5.26)

p(6;x) = 5x217 + 5x82 + 3x−30 (5.27)

We wish to independently interpolate the exponents of each term, but in this case

we have two terms with the coefficient of 5. We have no direct means of knowing

which matching exponent values to select when interpolating. Watt [Wat07a], has

shown a few different methods of grouping corresponding terms which we describe in

the following three sections.

5.5.1 Brute Force

The first idea involves trying all possible correspondences until the correct one is

found. Using four evaluations points, every permutation will be interpolated by a

polynomial of degree 3 or less. However, if we introduce a fifth point, the only

interpolating polynomial of degree 3 or less is the desired ordering of properly matched

terms. We introduce the following image.

p(7;x) = 5x344 + 5x108 + 3x−35 (5.28)

CHAPTER 5. EVALUATION/INTERPOLATION ALGORITHMS 54

We have two confounded terms, and 5 evaluations points, giving a total of 24 = 16

possible assignments. Table 5.5 shows all possible correspondences. There is a column

for each term, and a row for each correspondence. Each entry in the table contains

a list of exponents for that term for each evaluation. Note that the final column is

constant; term identification is not needed as its exponents are known.

Corres. Term 1 Term 2 Term 3
5xe1 5xe2 3xe3

1 [18,65,126,217,344] [9,42,60,82,108] [-10,-20,-25,-30,-35]
2 [18,65,126,217,108] [9,42,60,82,344] [-10,-20,-25,-30,-35]
3 [18,65,126,82,344] [9,42,60,217,108] [-10,-20,-25,-30,-35]
4 [18,65,126,82,108] [9,42,60,217,344] [-10,-20,-25,-30,-35]
5 [18,65,60,217,344] [9,42,126,82,108] [-10,-20,-25,-30,-35]
6 [18,65,60,217,108] [9,42,126,82,344] [-10,-20,-25,-30,-35]
7 [18,65,60,82,344] [9,42,126,217,108] [-10,-20,-25,-30,-35]
8 [18,65,60,82,108] [9,42,126,217,344] [-10,-20,-25,-30,-35]
9 [18,42,126,217,344] [9,65,60,82,108] [-10,-20,-25,-30,-35]
10 [18,42,126,217,108] [9,65,60,82,344] [-10,-20,-25,-30,-35]
11 [18,42,126,82,344] [9,65,60,217,108] [-10,-20,-25,-30,-35]
12 [18,42,126,82,108] [9,65,60,217,344] [-10,-20,-25,-30,-35]
13 [18,42,60,217,344] [9,65,126,82,108] [-10,-20,-25,-30,-35]
14 [18,42,60,217,108] [9,65,126,82,344] [-10,-20,-25,-30,-35]
15 [18,42,60,82,344] [9,65,126,217,108] [-10,-20,-25,-30,-35]
16 [18,42,60,82,108] [9,65,126,217,344] [-10,-20,-25,-30,-35]

Table 5.4: Correspondences for Term Identification.

The final correspondence is the only one which interpolates polynomials with

degrees that are not 4. We can be certain that this is the correct matching of terms.

Using these interpolating polynomials, we can construct the desired answer of

p(n;x) = 5x2n2+10 + 5xn
3+1 + 3x−5n (5.29)

With t confounded symbolic exponents and n evaluation points, there are a total of

t!n−1 possible correspondences that must be tested. This doubly exponential com-

CHAPTER 5. EVALUATION/INTERPOLATION ALGORITHMS 55

plexity is undesirable, and only feasible for very small values of n and t.

5.5.2 Ordering at Extreme Values

An alternative approach corresponds terms by observing that when choosing evalua-

tion points that are “large enough”, the corresponding terms of the image will have

a consistent order according to degree. For univariate exponents, the exponent poly-

nomials intersect a finite number of times. If we were to choose evaluations larger

than the largest intersection point, then we are ensured that the resulting evaluations

will be well ordered. For instance, all images of Equation 5.29 evaluated at n > 3 are

well ordered. This method of selecting corresponding terms is not viable in practice.

Firstly, we do not know the interpolating polynomial, and are unsure of how large

“large enough” really is. Moreover, by choosing larger evaluation points, the degree of

the images grows dramatically, increasing the computation time of the image GCDs.

5.5.3 Interpolation of Symmetric Functions

The final, and best suited method of term correspondence, is by performing the

interpolation of symmetric functions. The Elementary Symmetric Functions, πk, over

n variables {x1, . . . , xn} are defined as

π1(x1, . . . , xn) =
∑

1≤i≤n

xi (5.30)

π2(x1, . . . , xn) =
∑

1≤i≤j≤n

xixj (5.31)

...

πn(x1, . . . , xn) =
∏
1≤n

xi (5.32)

CHAPTER 5. EVALUATION/INTERPOLATION ALGORITHMS 56

For example, the elementary symmetric functions for three variables are:

π1(x1, x2, x3) = x1 + x2 + x3 (5.33)

π2(x1, x2, x3) = x1x2 + x1x3 + x2x3 (5.34)

π3(x1, x2, x3) = x1x2x3 (5.35)

If we have s terms that are indistinguishable, t1, . . . , ts, we can interpolate πj(t1, . . . , ts)

over different values of j, and then solve for some ti by using an evaluation to break

the symmetry. We will once again attempt to interpolate for p, using the evaluations

from Equations 5.24 – 5.28. There are two indistinguishable terms, say A(n) and

B(n), each of degree 3 of the form

A(n) = a3n
3 + a2n

2 + a1n+ a0 (5.36)

B(n) = b3n
3 + b2n

2 + b1n+ b0 (5.37)

and thus we require the two variable elementary symmetric functions

π1(A,B) = A(n) +B(n) (5.38)

π2(A,B) = A(n)×B(n) (5.39)

If we substitute the above equations for A and B we get.

A(n) +B(n) = (a3 + b3)n
3 + (a2 + b2)n

2 + (a1 + b1)n+ a0 + b0 (5.40)

A(n)×B(n) = (a3b3)n
6 + (a2b3 + a3b2)n

5 + (a1b3 + a2b2 + a3b1)n
4 +

(a0b3 + a1b1 + a2b1 + a3b0)n
3 + (a0b2 + a1b1 + a2b0)n

2 +

(a0b1 + a1b0)n+ a0b0 (5.41)

CHAPTER 5. EVALUATION/INTERPOLATION ALGORITHMS 57

We wish to interpolate these two functions. The degree of π2(A,B) is at most 6. An

additional two evaluations are required.

p(8;x) = 5x513 + 5x138 + 3x−40 (5.42)

p(9;x) = 5x730 + 5x172 + 3x−45 (5.43)

The following table details the calculation of the elementary symmetric polynomials

and their interpolation.

n A(n) +B(n) A(n)×B(n)
2 18 + 9 = 27 18× 9 = 162
4 65 + 42 = 107 65× 42 = 2730
5 126 + 60 = 186 126× 60 = 7560
6 217 + 82 = 299 217× 82 = 17794
7 344× 108 = 37152
8 513× 138 = 70794
9 730× 172 = 125560

Interp n3 + 2n2 + 11 2n5 + 10n3 + 2n2 + 10

Table 5.5: Correspondences for Term Identification.

The coefficients of the interpolating symmetric polynomials are set equal to their

respective coefficient equations from Equations 5.40 and 5.41. This creates a system

of 11 equations with 8 unknowns; however, this has an infinite number of solutions.

The symmetry must be broken by assigning n an arbitrary value, say n = 2. Thus,

we have an additional two equations

a3 + a2 + a1 + a0 = 18 (5.44)

b3 + b2 + b1 + b0 = 9 (5.45)

and a system with a single solution, namely

CHAPTER 5. EVALUATION/INTERPOLATION ALGORITHMS 58

a3 = 0 a2 = 2 a1 = 0 a0 = 0

b3 = 1 b2 = 0 b1 = 0 b0 = 1

This gives us the final interpolated symbolic polynomial of

p(n;x) = 5x2n2

+ 5xn
3+1 + 3x−5n (5.46)

If we have s indistinguishable terms, of max degree d, this method requires O(ds)

evaluations to match corresponding terms. [Wat07a]

5.6 Remarks

At first glance, sparse interpolation would seem to be the method of choice – dense

evaluation/interpolation requires an exponential number of images and extension

methods create an exponential number of variables. However, the degree bound of

the evaluated exponent polynomials is often too large (in the millions) for computer

algebra systems to compute GCDs or factorizations in a timely manner. In practice,

evaluations are chosen as small as possible to hopefully minimize the degree of the

images, but this is insufficient. The degrees are still huge.

Interpolation might have the potential to outperform the change of basis method.

The next chapter investigates more intelligent methods of selecting evaluation points

that will result in images of smaller degree.

Chapter 6

Better Evaluation Points

The sparse interpolation of the exponent polynomials allows for a linear number of

evaluations; however, we are still left with the problem of the exponent polynomials

evaluating to large values. The degree of the evaluated images has a huge influence

over the computation time, and is determined solely by the selection of values for

the exponent polynomials. In this chapter we will introduce two methods of selecting

evaluation points for symbolic polynomials that will lower the degree bound of the

evaluated images.

6.1 Optimizing Point Selection

The evaluated Laurent Polynomial images are normalized by dividing by the lowest

degree unit before the GCD or factorization computation. As such, we are not looking

for the values that will give us the lowest degree of the exponent polynomials, but

rather the values that give the minimal difference between the largest and smallest

evaluated degree. Exponent polynomials are integer-valued; our output points should

be integers as well.

59

CHAPTER 6. BETTER EVALUATION POINTS 60

This idea is best illustrated through the following example. Consider the symbolic

polynomial

a(n;x) = a1x
p(n) + a0x

q(n) (6.1)

We want to choose values of n such that |p(n) − q(n)| is as small as possible. If

there was a single exponent polynomial, the values surrounding its roots and local

minima would be selected.

This notion is shown in Figure 6.1. We have plotted a polynomial, p(n), of degree

4. The three smallest integer-valued points that lie on p(n), are n = 1, 2, 3, all near

its root. However, if we were to interpolate p(n), we would need 5 evaluations. The

five smallest points near the root of p(n) are shown as a square. The five smallest

points near the root or any local minima are shown as a large circle. A better solution

can be found by using the points near the local minima.

The complexity of the problem grows by allowing for an arbitrary number of

exponent polynomials with an arbitrary number of indeterminates. Figure 6.2 shows

several exponent polynomials, fi(n). The vertical distance between the largest and

smallest polynomials for all of n is shaded grey. We are looking for the integer values

of n that minimize that vertical distance.

6.1.1 Problem Statement

The problem of finding k points that minimize the maximal difference of the r input

exponent polynomials can be generalized to the following:

Given r polynomials p1, p2, . . . , pr ∈ Q[X1, X2, . . . , Xv], find k distinct values

n1, n2, . . . , nk ∈ Z that provide the k smallest values for

PM − Pm = max{p1(n), p2(n), . . . , pr(n)} − min{p1(n), p2(n), . . . , pr(n)}.

A simple approximate solution to this problem would be to evaluate at many

CHAPTER 6. BETTER EVALUATION POINTS 61

x

6

2

6

y

3

8

4

2!2

0

!6!10

1

4 100!4!8

5

7

p(n)

5 pts, local minima

3 pts, no local minima

5 pts, no local minima

Figure 6.1: Evaluation Point Selection for one Exponent Polynomial (Left)

Figure 6.2: Several Exponent Polynomials (Right)

points, selecting the ones which gives the smallest PM −Pm. This does not guarantee

the best solutions. For multivariate problems, an exponential number of sample

points, with respect to the degree and number of variables, would need to be taken

to get a proper representation of the problem space.

6.1.2 A Symbolic Solution

An alternative solution is to solve for the two piecewise polynomials PM and Pm,

and then find the k points that minimize their difference. The optimal points will

be found surrounding the local minima and noncontinuous points of PM − Pm. This

guarantees to produce the optimal output values. For the univariate case, a maximum

of r! intersections must be solved for this construction.

This symbolic procedure is best suited when given a reasonable number of uni-

CHAPTER 6. BETTER EVALUATION POINTS 62

PM Pm

n
K4 K2 0 2 4 6

y

K20

K10

10

20

Optimal Points Critical Points PM-Pm

n
K4 K2 0 2 4 6

20

40

60

80

100

120

Figure 6.3: Piecewise Max and Min Polynomials for Example 6.1.1 (Left)

Figure 6.4: The Optimal Integer Points of PM − Pm (Right)

variate polynomials. Finding PM and Pm for multivariate input is infeasible.

Example 6.1.1 Find the 5 points that minimize PM − Pm for the polynomials in

Figure 6.2

The two piecewise polynomials of Figure 6.3 are built by first finding the largest

(smallest) polynomial at −∞, p1. Moving from −∞ to ∞ we will find all the inter-

sections of PM (Pm). The remaining polynomials are tested to see if they intersect

with p1. The closest intersection with p1 is the new largest (smallest) polynomial for

the piecewise function. This process is continued until the topmost (bottommost)

polynomial has no more further positive intersections available.

We can take their difference to find PM − Pm, as seen in Figure 6.4. We know

the equations of every piece of PM − Pm, as well as its non-continuous points of

intersection. Like the example from Figure 6.1, the optimal values are going to be

surrounding all of these critical points. The five integer points that minimize PM−Pm

are seen as black dots in Figure 6.4.

CHAPTER 6. BETTER EVALUATION POINTS 63

Figure 6.5: Several Multivariate Exponent Polynomials

6.1.3 A Numerical Solution

The above symbolic method is much less straightforward, and more computationally

expensive when the input is multivariate. Constructing the piecewise polynomials

PM and Pm for a small example, as seen in Figure 6.5 is hard, however, it is easy to

numerically evaluate PM − Pm at values. A numerical heuristic which attempts to

minimize this difference is a much more suitable choice for this task.

The optimal points may be found on, or near the intersection of a certain number

of polynomials. We propose a method that performs steepest descent on a polynomial

until it intersects with another. It then follows that intersection curve until it meets

with a third polynomial. It then follows the intersection of all three polynomials.

This continues onward, and finishes at an intersection of every polynomial or a local

minima. The algorithm is shown below as Figure 6.6.

We want to find several local minima so the main procedure is iterated m times.

The algorithm begins by choosing a random point l. All polynomials are evaluated

CHAPTER 6. BETTER EVALUATION POINTS 64

Input: {p1, p2, . . . , pr}, pi ∈ Q[X1, X2, . . . , Xv]
: k ∈ Z

Output: {o1, o2, . . . , ok}, oi ∈ Zv

1. Let m be the number of rounds to perform

2. Let n be the maximum number of descent iterations

3. Let ord : ({Q[X1, . . . , Xv]
r},Zv) → (Q[X1, . . . , Xv]

r) be a function
that sorts its input polynomials in descending order according to
their evaluation of the second argument

4. Let f : ({Q[X1, . . . , Xv]
r},Zv) → Z, such that f({q1, . . . , qv}, e) =

max(q1(e), . . . , qv(e))−min(q1(e), . . . , qv(e)).

5. For i from 1 to m do

(a) Select a random point l ∈ Zn

(b) S ← ord({p1, . . . , pr}, l)
(c) c← {}
(d) t← S1 b← Sr g ← l

(e) For j from 1 to n do

i. Let g be the minimal value obtained by steepest descent
on S1 − Sr at the point g, subject to constraints c and
recalculating S at each step. If S1 or Sr change the descent
halts.

ii. If g is a local minimum then break

iii. If t 6= S1 then

A. c← c ∪ {t− S1}
B. t← S1

iv. If b 6= Sr then

A. c← c ∪ {b− Sr}
B. t← Sr

(f) Take the k integer points in every direction of round(g) and add
them to pset

6. Return the k elements in pset that minimize f

Figure 6.6: Numerical Steepest Descent Algorithm for Evaluation Point
Selection for Symbolic Polynomials

CHAPTER 6. BETTER EVALUATION POINTS 65

and sorted at l. The objective function S1−Sr (the numerical equivalent of PM−Pm)

is selected and follows the path of steepest descent until there is a new topmost (when

t 6= S1) or bottommost (when b 6= Sr) polynomial, or a local minima is found. In

the latter case the search has completed, for the former we want to minimize the

same objective function while remaining on the topmost and bottommost curves of

intersection. This is done by setting the intersection curves as constraints. As new

pieces of PM and Pm are found additional constraints are added to the minimization.

Testing of the numerical method has shown considerable runtime improvement

over its symbolic counterpart. This is a heuristic. If the intersection of all polynomials

is not found, it does not guarantee the best solution.

6.2 Evaluating at Primitive Roots of Unity

Some background information on roots of unity can be found in Section 2.7. We will

take P as the next prime larger than the maximum degree of the exponent polyno-

mials. The initial motivation behind evaluating at these special complex, irrational

values was that the powers of ωP can not exceed P − 1 from its periodic proper-

ties. The effectiveness of the point optimization algorithm of the last section depends

greatly on the set of exponent polynomials. Evaluating at primitive roots of unity

provides a consistent alternative.

The algorithm will use ideas from the extension and projection methods. Each

exponent variable is first independently evaluated at a primitive P th root of unity

with the powers of ω reduced modulo P . The exponent polynomials are now uni-

variate in ω with highest possible degree of P − 1. Treating ω as a variable we use

the algebraic independence of xω, xω
2
, . . . to introduce new variables similar to the

extension method of Chapter 4; likewise, we must account for fixed divisors. Each

CHAPTER 6. BETTER EVALUATION POINTS 66

exponent polynomial is then mapped to the binomial basis. As the intermediate ω

polynomials are univariate, no additional variables are introduced in this translation.

The reduction of variables comes at a cost – the degree is no longer bounded by P ,

it grows exponentially. Variables are then substituted for each xω
j

i . This results in a

Laurent polynomial.

We will now demonstrate the above idea through example.

Example 6.2.1 Evaluate a at (n,m) = (ω2, ω) and map to a Laurent polynomial,

factor and map the exponents back to the power basis.

a(n,m;x) = 20 x5m2n−2n2+n2m2+1+12x7m2n−2n2−m−30x7mn+n2m2+1−18x7mn+2m2n−m

The highest degree is 2, so we will use the next prime larger than 3, P = 5. Performing

our initial evaluation we have

a(ω2, ω;x) = 20x5ω4−2ω4+ω6+1 + 12x7ω4−2ω4−ω − 30x7ω3+ω6+1 − 18x7ω3+2ω4−ω

As these are the 5th roots of unity, ω6 is equivalent to ω. Simplifying we have

a(ω2, ω;x) = 20x3ω4+ω+1 + 12x5ω4−ω − 30x7ω3+ω+1 − 18x2ω4+7ω3−ω

We will now introduce a change to the binomial basis following the same procedure

from Section 4.1.

a(ω;x) = 20x72(ω4)+108(ω3)+42(ω2)+4(ω1)+1 + 12x120(ω4)+180(ω3)+70(ω2)+4(ω1)

−30x42(ω3)+42(ω2)+8(ω1)+1 − 18x48(ω4)+114(ω3)+70(ω2)+8(ω1)

CHAPTER 6. BETTER EVALUATION POINTS 67

Using the substitution:

A = x(ω4)

B = x(ω3)

C = x(ω2)

D = x(ω1) = xω

E = x(ω0) = x

we obtain

at = 20A72B108C42D4E + 12A120B180C70D4 − 30B42C42D8E − 18A48B114C70D8

The polynomial at can be factorized into the following product (dropping the mono-

mial factor):

at = (2A72B66 − 3D4)(5E + 3A48B72C28)

We now perform back substitution, returning to symbolic polynomials with exponents

in the binomial basis.

a(ω;x) = (2x72(ω4)+66(ω3) − 3xω)(5x+ 3x48(ω4)+72(ω3)+28(ω2))

For the final step, using the same approach as the extension routine we change to the

monomial basis.

a(ω;x) = (2x3ω4−7ω3+4ω − 3xω)(5x+ 3x2ω4−2ω)

Following the steps of Example 6.2.1, an additional 8 evaluation images are re-

CHAPTER 6. BETTER EVALUATION POINTS 68

quired to calculate the interpolating polynomials for each of the exponents. The

GCD and factorization algorithms are detailed in Figures 6.7 and 6.8 respectively.

These algorithms are a poor choice for univariate exponents. Obtaining the first im-

age by evaluating at ω will cost exactly the same as running the original change of

basis algorithm to completion, but if we interpolate, d more images still need to be

calculated.

In practice, we need to change the exponent polynomials to the binomial basis

because of fixed divisors; however, there are interesting analytical occurrences if we

choose to remain in the monomial basis. It is possible to generate all images from a

single point using permutations of the primitive roots of unity. All subsequent images

are structurally identical to its generator – the problem of identifying corresponding

terms with identical coefficients disappears. Moreover, unlike the change to the bi-

nomial basis, sparse exponent polynomials are not mapped to dense polynomials.

Performing a single GCD computation rather than (d+ 1)p or pdt allows for tremen-

dous performance gains. Additionally, the degree is bound only by the input exponent

polynomial coefficient size. While this idea does not work correctly for all possible

inputs, the idea that additional images can be generated through permutations of the

original is very powerful and something that should be studied further.

CHAPTER 6. BETTER EVALUATION POINTS 69

sympoly gcd unity:
Input: a, b ∈ R[n1, . . . , np;X]
Output: g ∈ R[n1, . . . , np;X] such that g is the GCD of a and b

1. Let d be the max degree of exponent variables in a and b

2. Let P be the next prime larger than d+ 1

3. Let γ : x
ωjP
i 7→ xi,j

4. For i from 1 to (d+ 1)p do

(a) Let ei ∈ Cp be distinct evaluation points for n1, . . . , np, each at
powers of ωP

(b) a′ ← a(ei;X) b′ ← b(ei;X)

(c) Let a′ and b′ be the result of changing the exponent polynomials
of a′ and b′ to the binomial basis

(d) a′ ← γ(a′) b′ ← γ(b′)

(e) G← gcd(a′, b′)

(f) gi ← γ−1(G)

(g) Let gi be the result of changing the exponent polynomials of gi
to the power basis

5. Return the interpolating symbolic polynomial of
(e1, g1), (e2, g2), . . . , (e(d+1)v , g(d+1)v) over X

Figure 6.7: Projection Algorithm for the GCD of Symbolic Polynomials
Evaluating at Roots of Unity

CHAPTER 6. BETTER EVALUATION POINTS 70

sympoly factor unity:
Input: a ∈ R[n1, . . . , np;X]
Output: f1, . . . , fm ∈ R[n1, . . . , np;X] such that all fi are irreducible and
their product is a

1. Let d be the max degree of exponent variables in a

2. Let P be the next prime larger than d+ 1

3. Let γ : x
ωjP
i 7→ xi,j

4. For i from 1 to (d+ 1)p do

(a) Let ei ∈ Cp be distinct evaluation points for n1, . . . , np, each at
powers of ωP

(b) a′ ← a(ei;X)

(c) Let a′ be the result of changing the exponent polynomials of a′

to the binomial basis

(d) a′ ← γ(a′)

(e) F1, . . . , Fm ← factor(a′)

(f) fi,j ← γ−1(Fj) for 1 ≤ j ≤ m

(g) For 1 ≤ j ≤ m, let fi,j be the result of changing the exponent
polynomials of fi,j to the power basis

5. Return the interpolating symbolic polynomials of each matching fac-
tor fi,j of (e1, f1,j), (e2, f2,j), . . . , (e(d+1)p , f(d+1)p,j) over X

Figure 6.8: Projection Algorithm for the Factorization of Symbolic Poly-
nomials Evaluating at Roots of Unity

Chapter 7

Empirical Comparison

This chapter will compare the performance of GCDs for four methods (change of

basis, sparse interpolation, point selection with dense interpolation, evaluation at

roots of unity) empirically.

7.1 Criteria

Each exponent of a symbolic polynomial is a polynomial. Thus, in performing GCDs,

there are a multitude of input parameters that must be varied before we can draw

any conclusive results.

Increasing the number of base variables has a few impacts on complexity. A multi-

variate base will more than likely have more exponent polynomials than a univariate.

For example, consider the two monomials xm
2−1 and xm

2−1ymn
2
. For point selec-

tion, increasing the number of exponent polynomials adds more constraints to the

minimization and possibly additional iterations. There is an interpolation for each

exponent polynomial in the evaluated images. Increasing the number of exponents

will increase the number of interpolations. For change of basis and roots of unity pro-

71

CHAPTER 7. EMPIRICAL COMPARISON 72

jection, an additional base variable will linearly increase the number of new variables

introduced. Moreover, the GCD computation of the translated Laurent polynomials

will have an added complexity with an additional base variable. For our testing, we

allow for one, two and three variables in our base.

The number of terms in the base also determines the number of exponent polyno-

mials. With an increased base size sparse GCD methods also become less likely. For

our testing, we allow for a small (2 to 4) and large (5 to 9) number of base terms.

The base coefficient ring has no direct impact on the mechanics of the aforemen-

tioned algorithms that we are testing, only in the Laurent GCD computations. An

increased base coefficient size will have a negative impact on performance; however,

as it has no immediate influence over the above procedures, these will be left unvaried.

The coefficients are integers ranging from −125 to 125.

The magnitude of the exponent integer-valued coefficients has a much stronger

effect on performance. An increased coefficient range will lead to an increased degree

when the exponents are evaluated. For our testing, we allow for small (−5 to 5),

medium (−10 to 10) and large (−15 to 15) coefficients in the exponent.

Increasing the number of exponent variables has the greatest cost on performance.

For the interpolation algorithms, going from a single exponent to several increases the

number of required images. It also increases the degrees, when evaluated. Regarding

point selection, in the worst case, each additional variable requires a minimization

iteration. For our testing, we allow for one, two and three exponent variables.

Along with the number of exponent variables, the degree is also a very important

parameter. For projection algorithms, increasing the degree requires more evaluation

images. For the extension procedure, more variables are introduced. This is on top

of the larger degrees that will result from their evaluation. Larger degrees in the

primitive roots of unity projection method leads to larger primes being used. As a

CHAPTER 7. EMPIRICAL COMPARISON 73

consequence, the transformed degree and number of variables increase drastically. For

our testing, we vary the degree from two to five. For this chapter when we say degree

we mean the total degree, the highest sum of indeterminate powers in any term.

These parameters were used to randomly generate input for two cases, a trivial

and nontrivial GCD. For each case three examples were created. Running these tests

against our four routines, gives us over 5000 samples.

All routines were implemented in Maple 11, run serially on a 2 GHz Intel Core

Duo with 2 GB ram. Maple 11 uses Brown’s modular GCD algorithm for the GCDs

of the larger dense projection algorithms; and LinZip, a variation of Zippel’s sparse

interpolation for the others [Wit04].

7.2 Experimental Results

We will now show several graphs which will summarize our findings from our large

sample set. We are not only interested in the timings of these computations, but also

in the number of evaluations for interpolation procedures, the number of variables

introduced for change of basis, and the maximum degree. Please note that several of

the following graphs use a logarithmic Y axis. There are a lot of very small and very

large points on the same graph making this suitable.

The implemented point selection procedure does not precisely follow the steps of

the algorithm from Figure 6.6. The coded routine uses the difference of the two top-

most polynomials (S1 and S2 respectively) rather than the topmost and bottommost

polynomials (S1 and Sr respectively) as the objective function. We expect the timing

results to be unchanged by this modification.

Each test was given a maximum time allotment of 600 seconds, after which the

process was aborted. In the graphs, these occurrences are assigned a value of 1000

CHAPTER 7. EMPIRICAL COMPARISON 74

seconds. As there are three examples for each distinct parameter combination, the

median is always used. This is preferable over the mean because for the point selection

and sparse interpolation timings there is sometimes a huge variance between the

examples.

The upcoming graphs are for nontrivial GCDs. We always vary the degree along

with another parameter (for each degree, rather than stacked atop each other, the

parameters are spaced horizontally to facilitate comparison).

Varying the Number of Exponent Variables

We alter the number of exponent variables and degree, while keeping the base size

small, exponent coefficient size small and a univariate base.

For univariate exponents, all algorithms complete quickly. From Chapter 6, we

know that the roots of unity projection algorithm is not optimal for single variable

exponent polynomials. For the given parameter values, the number of exponent vari-

ables seems to have no dramatic effect on the change of basis results. The overhead of

the point selection procedure, especially for multivariate exponents for small exam-

ples contributes to its early poor performance; however, notice that the point selection

method is not growing as fast as the sparse interpolation technique and is better for

the largest example in this set.

The next graph shows the problem in selecting evaluation points at random.

Sparse interpolation was reaching degrees close to a million. Roots of unity pro-

jection was also generating large image degrees. Point selection can bring the degree

down to the thousands.

Notice the step increases in timings, image degree and number of variables between

degrees of 3 and 4 for the primitive roots of unity projection procedure. The examples

CHAPTER 7. EMPIRICAL COMPARISON 75

Figure 7.1: Experimental Results by Varying Number of Exponent Vari-
ables and Degree

CHAPTER 7. EMPIRICAL COMPARISON 76

Figure 7.2: Experimental Results by Varying Number of Exponent Vari-
ables and Degree

CHAPTER 7. EMPIRICAL COMPARISON 77

for degree values of 2 and 3 will use the prime 5 – as they both use the same prime

the results are nearly identical. Alternatively, when the degree is 4 or 5, the prime

7 is used. The increased prime leads to larger degrees and an increased number of

variables. The step increases, which can be seen in other computer algebra techniques

evaluating at roots of unity, continue for larger degrees. A step to the next prime

occurs when the degree is one less than the current prime (ie. 2, 4, 6, 10, 12, 16, and

so on).

In looking at the extreme cases of this sample set we note that the extension

algorithm can introduce upwards of 25 total variables in its images, while interpolation

requires more than 100 images. It appears that performing one GCD with 25 variables

is much more efficient than 100 univariate GCDs. Even discarding the time it takes

to find the optimal evaluation images, the sparse and dense projection methods can

not come close to matching the efficiency of the change of basis routines.

Varying the Number of Base Variables

We alter the number of base variables and degree, while keeping the base size small,

exponent coefficient size small and a bivariate exponent. The results are shown in

the graphs from Figure 7.3 and Figure 7.4.

One can draw many of the same conclusions from Figures 7.1 – 7.2 and Figures

7.3 – 7.4. We see that change of basis is still the fastest. The remaining three are

a few orders of magnitude worse. The degrees of the sparse evaluations are much

larger, while the optimal evaluations remain at approximately one thousand. This

attributes to the very poor performance of using random evaluations for several base

variables.

CHAPTER 7. EMPIRICAL COMPARISON 78

Figure 7.3: Experimental Results by Varying Number of Base Variables
and Degree

CHAPTER 7. EMPIRICAL COMPARISON 79

Figure 7.4: Experimental Results by Varying Number of Base Variables
and Degree

CHAPTER 7. EMPIRICAL COMPARISON 80

Varying the Size of the Exponent Coefficients

We alter the size of the exponent coefficients and degree, while keeping the base size

small, univariate base and bivariate exponent. The results are shown in the graphs

from Figure 7.5.

The size of the exponent coefficients has no effect on the number of evaluation

points or the number of variables required; their graphs have been omitted. Aside

from the sparse medium points, the data sets for each algorithm are nearly indistin-

guishable. For the given parameter values, modifying the exponent coefficients did

not have a noticeable performance change.

Varying the Number of Base Terms

We alter the number of terms in the base and degree, while keeping a univariate base

and bivariate exponent with small coefficients. The results are shown in the graphs

from Figure 7.6

One would expect the degree of images with additional base terms to remain

unchanged; however, a small increase is seen. The number of base terms is propor-

tional to the number of exponent polynomials. When evaluating at random, input

with more exponent polynomials are more likely to contain bad evaluations, which

lead to high degrees. The point selection optimization routine would have additional

constraints, making it more difficult to find a minimization.

The timings are similar to previous tests with the change of basis procedure besting

the others by a couple orders of magnitude. The point selection algorithm is more

efficient than sparse interpolation for degrees larger than three and roots of unity

projection for degrees larger than four.

CHAPTER 7. EMPIRICAL COMPARISON 81

Figure 7.5: Experimental Results by Varying Exponent Coefficients and
Degree

CHAPTER 7. EMPIRICAL COMPARISON 82

Figure 7.6: Experimental Results by Varying Number of Base Terms and
Degree

CHAPTER 7. EMPIRICAL COMPARISON 83

Larger Examples

The exponent degree and number of variables have the greatest impact on perfor-

mance. These two parameters will be varied once again, this time with three base

variables, a large base and small coefficient size. The results are shown in the graphs

of Figure 7.7 and Figure 7.8.

Note the tremendously high rate of increase for sparse interpolation in both timing

and image degree for small input degrees. The cost of going to the next prime

for the roots of unity projection method is also very large. Point selection is more

efficient than the other evaluation/interpolation methods for degrees larger than 2.

The extension algorithm performs much better than its competition. It can complete

problems in less than 10 seconds that take more than 10 minutes for its projection

counterparts.

The largest examples for change of basis introduced close to 100 new variables

and had a degree of around 10000, and computed a single GCD. Point selection

computes over 100 GCDs with three variables with a degree of around 25000. The

GCD algorithm used by Maple is much better suited for large number of variables

than large degree.

Trivial GCDs

The findings of the trivial GCD experiments seen in Figures 7.9 – 7.11 are similar to

their respective nontrivial complements. By definition, these GCDs are one. As such,

we have not measured the degree or number of variables present in the output. The

sparse interpolation and roots of unity projection methods show the most noticeable

differences. Sparse interpolation only needs to interpolate once, requiring d+1 images.

This is especially evident for the smaller examples of Figures 7.9 – 7.11, where the

CHAPTER 7. EMPIRICAL COMPARISON 84

Figure 7.7: More Experimental Results by Varying Number of Exponent
Variables and Degree

CHAPTER 7. EMPIRICAL COMPARISON 85

Figure 7.8: More Experimental Results by Varying Number of Exponent
Variables and Degree

CHAPTER 7. EMPIRICAL COMPARISON 86

sparse scheme outperforms extension.

7.3 Analysis of Results

It is clear that for GCDs, change of basis is the most suitable algorithm. In practice,

when the varied criteria were small, compared to random selection, the overhead of

searching for optimal evaluations outweighed its benefits. As the exponent degree

rises, and more variables are present, selecting good evaluations becomes increasingly

more important. Comparing the projection methods we see that the point optimiza-

tion algorithm is the best, followed by roots of unity projection and then sparse

interpolation.

In the set of sparse interpolation examples, it was not uncommon for the system to

be computing the very first evaluated GCD for over 10 minutes, often consuming all

available system memory until the Maple kernel crashed. It seems odd that a GCD

calculation would require upwards of several gigabytes of memory. Upon further

investigation of a typical kernel crash, the Maple Chinese remaindering of the GCD

coefficients was using more than 700 moduli. The cumulative product of these moduli

had reached over 3000 digits in length.

The degree of the change of basis algorithm was generally the same order as the

point selection method. The number of variables it introduces increases at about at

the same rate as the number of images needed for dense interpolation. As aforemen-

tioned, the GCD algorithm favors performing one GCD with many variables over

many GCDs with few variables.

In most examples, we saw a reduced number of required evaluations for the sparse

method. The examples were not very sparse, so the numbers were sometimes close to

the naive case. Regardless of sparsity, change of basis was consistently the fastest – it

CHAPTER 7. EMPIRICAL COMPARISON 87

Figure 7.9: Experimental Results for Trivial GCDs

CHAPTER 7. EMPIRICAL COMPARISON 88

Figure 7.10: Experimental Results for Trivial GCDs

CHAPTER 7. EMPIRICAL COMPARISON 89

Figure 7.11: Experimental Results for Trivial GCDs

is the most suitable general purpose algorithm to solve GCDs of symbolic polynomials.

The next chapter will complement these findings by presenting a formal theoretical

complexity analysis of the algorithms.

Chapter 8

Algorithmic Complexity

This chapter outlines the general asymptotic complexity estimates of the four methods

tested in the previous chapter.

We will give complexity estimates for the extension, evaluation/interpolation,

point selection, and roots of unity projection algorithms. We will make the assump-

tion that all input, intermediate and output exponent, coefficient and evaluation

integers can fit into a machine word.

Experimenting with the sparse interpolation scheme, we have seen the great vari-

ance of timings from similar instantiations. Providing a thorough work estimate is

not possible. The number of operations varies greatly according to the structure and

coefficients of its input. Nonetheless, a general estimate can be given.

As illustrated throughout the previous chapters, symbolic polynomials have a

number of varying parameters. They will be denoted as follows:

• p - The number of exponent variables

• v - The number of base variables

90

CHAPTER 8. ALGORITHMIC COMPLEXITY 91

• d - Maximum degree of input exponent polynomials

• D - Maximum degree after an extension or evaluation

• c - Maximum exponent coefficient

• C - Base coefficient size (logarithmic)

• T - The number of base terms

• t - The maximum number of terms of any exponent polynomial

• e - The number of exponent polynomials

• n - The number of variables after an extension or evaluation

We will assume that the GCD computation of the extended and evaluated images

uses Brown’s and Zippel’s (LinZip) algorithms for dense and sparse GCDs respec-

tively. The work complexity for dense polynomial GCDs is O(C2Dn + nCDn+1). We

can assume that the number of variables, n, and the degree, D, are much larger than

the coefficient length. Thus, the estimate simplifies to O(nDn+1). The work complex-

ity for sparse polynomial GCDs is O(C2T 2+CTD2+TnD3+CnDT+D2n2T+CT 3+

T 3nD). Once again we can assume that the number of variables, n, and the degree,

D, are significantly greater than the number of terms and the coefficient length. This

simplifies the estimate to O(nD3 + n2D2). [Wit04]

8.1 Extension Algorithm

The change of basis method can be divided into three sections: mapping the input to a

Laurent polynomial, a GCD calculation and mapping back to a symbolic polynomial.

CHAPTER 8. ALGORITHMIC COMPLEXITY 92

We will first calculate the number of variables introduced. We assume that p and

v are both equal to 1. A univariate exponent polynomial of degree d, when rewritten

in the binomial basis will generally have d + 1 terms, regardless of initial sparsity,

and thus have d + 1 new variables. If we now allow for an arbitrary number, p, of

exponent variables, there would be p(d+ 1) exponent translations, namely
(
ni
j

)
,

i = 1, . . . , p; j = 0, . . . , d − 1. The expansion of the binomial polynomial will have a

term for each product of the form
(
n1

d1

)(
n2

d2

)
· · ·
(
np
dp

)
. There are (d + 1)p such terms.

Through algebraic independence, a new variable is created for each of these terms.

We will now allow for an arbitrary number of base variables. The (d + 1)p terms

will be in the exponents of each base variable. The algebraic independence of xn

and yn for x 6= y gives (d + 1)p new variables for each base indeterminate, totaling

n ∈ O(v(d+ 1)p).

The mapping γ : x
(n1
i1

)···(npip)
k 7→ xk,i1...,ip , which is used to change from a symbolic

polynomial to a Laurent polynomial outputs n new variables, and γ−1 inputs n vari-

ables. Therefore the first and last step of the extension algorithm together have a

complexity of O(v(d+ 1)p).

Note that the degree of the image is the maximum coefficient of all the exponent

polynomials in the binomial basis. Recall the equation
(
x
n

)
= x(x−1)...(x−n+1)

n!
. In map-

ping to the binomial basis, the factorial in the denominator will shift to the numerator

increasing the coefficient by a factor of O(d!). The largest possible coefficient (and

image degree) is then D ∈ O(cd!).

The new exponent polynomials are almost always dense, making the extended

images even more sparse. Using LinZip we get a final estimate of

CostCoB = O(n+ nD3 + n2D2) = O(v(d+ 1)p(cd!)3 + (v(d+ 1)p)2(cd!)2)

CHAPTER 8. ALGORITHMIC COMPLEXITY 93

8.2 Sparse Interpolation

The symbolic polynomial sparse interpolation method of Chapter 5 performs O(pdt)

polynomial GCDs followed by e sparse polynomial interpolations.

The number of variables of all evaluated images remains unchanged; n = v.

Let α be an evaluation of exponent indeterminates. The degree bound of that

evaluation will be O(cαd). In general we try to select α as small as possible. Following

this idea, the best values for each indeterminate would be in the interval [−d+1
2
, d+1

2
].

The degree bound is D ∈ O(c((d+ 1)/2)d).

Recall Zippel’s sparse interpolation algorithm of Figure 2.2. A total of O(pd)

systems of t linear equations in R are solved. A total of O(pt) univariate interpolating

polynomials are calculated. Assuming each system of equations is solved by Gaussian

elimination in O(n3), and each Lagrange interpolation is done in O(n2), the cost of a

single sparse interpolation is O(pdt3).

From the estimate of D, we can safely assume that

(D + 1)n � t. The complexity of the sparse interpolation scheme, CostSp, is

CostSp = O(pdt(nD3 + n2D2) + e(pdt3 + pt log2(d))

= O(pdt(vc3((d+ 1)/2)3d + v2c2((d+ 1)/2)2d) + epdt3)

8.3 Optimal Evaluations

The effectiveness of the point selection routine of Figure 6.6 on reducing image degrees

depends entirely upon the set of exponent polynomials, and cannot be generalized by

just their degree and coefficient bound. Worst case scenario is that the evaluations

are the same as selecting at random, or at small values. It is however, much more

CHAPTER 8. ALGORITHMIC COMPLEXITY 94

difficult to uncover a non-experimental estimate for the average and best cases.

As the evaluations returned from this procedure are all independent of each other,

they can not be used with Zippel’s interpolation. A typical GCD calculation using

this method would then consist of finding (d + 1)p “good” evaluations followed by

their GCDs and e multivariate interpolations.

The number of times the minimization is repeated, m in Figure 6.6, is normally

taken to be linearly related to the degree. For every exponent variable, a gradient

descent is done. Steepest descent has a linear convergence in the degree, and each

iteration costs O(d2). This results in an end cost of O(vd4).

As previously stated, we can not give an accurate estimate for D, and like the

sparse projection method, the number of variables remains unchanged.

Each multivariate interpolation is done using the extended Vandermonde Matrix

idea from Chapter 2. This is equivalent to solving a system with (d + 1)p equations

and unknowns. Assuming this is solved by Gaussian elimination, the cost will be

O((d+ 1)3p).

For the same reasons as the last section, we can safely assume the evaluated images

are sparse. Using LinZip for the image GCD calculations, we get a final asymptotic

estimate, CostPSel, of

CostPSel = O(vd4 + (d+ 1)p(nD3 + n2D2) + e(d+ 1)3p)

= O(vd4 + (d+ 1)p(vD3 + v2D2) + e(d+ 1)3p)

8.4 Roots of Unity Projection

The roots of unity projection algorithm of Figure 6.7 performs (d + 1)p change of

basis GCDs followed by e multivariate interpolations in C.

CHAPTER 8. ALGORITHMIC COMPLEXITY 95

Let P be the next prime larger than d + 1. We will assume that P ∈ O(d). The

evaluated exponent polynomials, regardless of p, become univariate after evaluating

at primitive roots of unity. Each exponent polynomial will have at most P terms.

The maximum number of terms will remain unchanged by changing to the binomial

basis. We are using the extension method from Section 8.1 to change basis, therefore

n ∈ O(v(de + 1)pe), where pe and de are the number of exponent variables and degree

after evaluating at roots of unity. We have de ∈ O(P) and pe = 1, giving us n ∈ O(vd)

indeterminates.

Similarly, we can use the same reasoning from Section 8.1 to calculate D from

de. The evaluated exponent polynomials have a degree, de, in O(d). Therefore, as

D ∈ O(cde!), we have D ∈ O(cd!). Although this is the same complexity class as

the degree for the change of basis method, O(cd!) is its lower bound for when each

exponent variable is evaluated at the first power of ωP . The degree of the roots of

unity projection method are always larger than the change of basis.

The assumption P ∈ O(d) is a general estimate used in lieu of just P to facilitate

comparisons with the other methods. If we ignore this assumption, we have

n ∈ O(vP) and D ∈ O(cP !). We see that the number of variables and translated

degree only change when a larger P is needed. This attributes to the step increases

of the roots of unity projection method discovered in the previous chapter.

The evaluation points can be organized similar to that of Zippel’s interpolation.

We can exploit this to use a better recursive dense multivariate interpolation algo-

rithm. This calculates O(d + 1)p univariate interpolations in C of size O(d) totaling

O((d + 1)p log2(d)). This is repeated e times, once for each exponent polynomial in

the GCD images.

Asymptotically, and usually in practice, the images are sparse. The complexity of

CHAPTER 8. ALGORITHMIC COMPLEXITY 96

roots of unity projection with the LinZip algorithm, CostUn, is

CostUn = O((d+ 1)p(n+ nD3 + n2D2) + e(d+ 1)p log2(d))

= O((d+ 1)p(vd(cd!)3 + (vd)2(cd!)2 + e log2(d)))

8.5 Summary of Results

The findings of the previous sections are summarized in Table 8.1.

Method Asymptotic Complexity
CoB O(v(d+ 1)p(cd!)3 + (v(d+ 1)p)2(cd!)2)
Sp O(pdt(vc3((d+ 1)/2)3d + v2c2((d+ 1)/2)2d) + e(pdt3 + pt log2(d)))
PSel O(vd4 + (d+ 1)p(vD3 + v2D2) + e(d+ 1)3p)
Un O((d+ 1)p(vd(cd!)3 + (vd)2(cd!)2 + e log2(d)))

Table 8.1: Asymptotic Complexity Estimates for Symbolic Polynomial GCDs

Each algorithm noted above is exponential with respect to the number of exponent

variables. The (d + 1)p multiplier of the roots of unity projection method would be

replaced by a linear factor if sparse interpolation were employed. Similarly, assuming

that D is non-exponential, it would be theoretically possible to reduce the point

selection complexity to polynomial time if the optimized evaluation values could allow

for Zippel interpolation. However, this is probably not a safe assumption; according

to the experimental evidence, its degree grows exponentially, although several times

more slowly when values are selected at random.

Let us compare the unity projection algorithm against the change of basis method

for when p = 1. Simplifying the two complexities, we see

CostCoB = O(vd(cd!)3 + (vd)2(cd!)2)

CostUn = O(d(vd(cd!)3 + (vd)2(cd!)2) + de log2(d))

CHAPTER 8. ALGORITHMIC COMPLEXITY 97

For univariate exponents, the reduced number of variables for the roots of unity

projection method disappears. The cost of computing each image is the same as

the standard change of basis procedure. As O(d) images are required to interpolate,

CostUn is d times larger than CostCoB.

In practice, these theoretical complexities may not always agree with empirical

data. It is sometimes the case in Maple that the sparse interpolation and point selec-

tion GCD images are calculated using Brown’s algorithm over LinZip. This leads to

doubly exponential complexity and explains the appreciable timing difference against

the change of basis method. Brown’s modular algorithm is normally invoked only

in the larger inputs of the example suite. It is unclear why this occurs; nonetheless,

hard coding Maple to explicitly perform LinZip in these instances does not produce

preferable results.

Chapter 9

Conclusion

9.1 Summary

Within this discourse, we have analyzed two existing methods for solving operations

on symbolic polynomials, and have investigated three new, alternative routines. In

doing so, we hope to have shed some light on the symbolic computational inadequacies

in modern computer algebra software.

The change of basis extension routine naturally arose from the UFD and algebraic

independence proofs of symbolic polynomials. On account of the binomial basis,

exponent polynomials are inherently dense leading to an exponential number of base

variables. The degree bound is also exponential.

Evaluation and interpolation is the second approach to handling symbolic poly-

nomials. Watt [Wat06] has given a dense interpolation method which has a constant

number of variables, but uses an exponential number of evaluation images of non-

polynomial degree. The number of evaluation images is reduced to a linear scale by

implementing a sparse interpolation scheme. This improves runtime performance,

but the high degree still leads to intractability for moderate to large examples.

98

CHAPTER 9. CONCLUSION 99

We can decrease the degree of the evaluated images by selecting the values that will

minimize the maximal difference of all exponent polynomials. For smaller examples,

the cost of searching for these values outweighs the benefits, but for more complex

input, this method of evaluation optimization is advantageous.

Another way to bound the degree of the images is to evaluate at primitive roots of

unity and perform a similar substitution of variables as the change of basis method.

When evaluating at different powers of ω, we can reduce multivariate exponent poly-

nomials to univariate. The binomial expansion of the extension method introduces a

linear, rather than exponential, number of new variables. Using the extension method

leads to an unbounded degree that grows exponentially.

The above procedures were tested with a number of semi-sparse examples. For

moderate sized input symbolic polynomials we see sparse interpolation perform the

worst, followed closely by the optimized value selection routine and primitive roots of

unity projection. The change of basis method is orders of magnitude more efficient.

All of the evaluation/interpolation methods have fewer variables, but the degrees

are larger. Additionally, a multitude of image GCDs and interpolations need to be

calculated. Although it does not retain sparsity, in practice the change of basis is the

most suitable algorithm from both a design and runtime perspective.

9.2 Future Work

There are a number of questions that remain unanswered and ideas to be explored.

The evaluation/interpolation algorithms all exhibit many independent processes:

calculating several GCDs and interpolating each multivariate exponent polynomial.

A multithreaded parallel implementation of symbolic polynomial interpolation would

see good speed up for roots of unity projection. This is on top of the added benefit

CHAPTER 9. CONCLUSION 100

of a parallel GCD algorithm for the images.

There are a couple of alternative implementations that would most likely see some

performance gains. The optimal point selection method could return values ordered

in a way to allow for Zippel interpolation. This would lower the number of images to

a linear scale, however, this addition would still not be comparable to the extension

method. On the other hand, the roots of unity projection values are already ordered

in a way to allow for sparse interpolation. This would eliminate the exponential factor

in the complexity estimate.

It may be possible for symbolic polynomial projection algorithms to be more

efficient than extension algorithms if additional images can be generated through

permutations of an original. Mentioned in the closing remarks of Chapter 6, this may

be a worthwhile investigation.

Recall that the primary mathematical objects studied in this thesis, described

by the ring R[X;Y], are just one specific instance of symbolic polynomials. The

exponents need not be integer-valued polynomials. The base need not be an indeter-

minate. Symbolic exponents could appear on coefficients. It would be worthwhile to

look at these issues.

Bibliography

[CCS98] Chabert, Jean-Luc, Chapman, Scott T., and Smith, William W. The

Skolem property in rings of integer-valued polynomials. Proceedings of the

American Mathematical Society, 126(11):3151–3159, nov 1998.

[Cha93] Jean-Luc Chabert. Integer-valued polynomials, Prufer domains, and local-

ization. Proceedings of the American Mathematical Society, 118(4):1061–

1073, aug 1993.

[CM99] Jianer Chen and Antonio Miranda. A polynomial time approximation

scheme for general multiprocessor job scheduling (extended abstract). In

Proceedings of the 31st Annual ACM Symposium on the Theory of Com-

puting, pages 418–427, 1999.

[DFJ54] G. B. Dantzig, D. R. Fulkerson, and S. M. Johnson. Solution of a large

scale traveling salesman problem. Operations Research, 2:393–410, 1954.

[Fau03] Laurene Fausett. Numerical Methods: Algorithms and Applications. Pear-

son Education Inc., 2003.

[Fri96] Sophie Frisch. Integer-valued polynomials on Krull rings. Proceedings of

the American Mathematical Society, 124(12):3595–3604, dec 1996.

101

BIBLIOGRAPHY 102

[GHLS90] Gilmer, Robert, Heinzer, William, Lantz, David, and Smith, William. The

ring of integer-valued polynomials of a Dedekind domain. Proceedings of

the American Mathematical Society, 108(3):673–681, mar 1990.

[HRS89] C.W. Henson, L. Rubel, and M. Singer. Algebraic properties of the ring

of general exponential polynomials. Complex Variables Theory and Appli-

cations, 13:1–20, 1989.

[MB79] Saunders MacLane and Garret Birkhoff. Algebra. Macmillan Publishing

Co., Inc., 2nd edition, 1979.

[PW06] Wei Pan and Dongming Wang. Uniform Gröbner bases for ideals

generated by polynomials with parametric exponents. In ISSAC ’06: Pro-

ceedings of the 2006 international symposium on Symbolic and algebraic

computation, pages 269–276, New York, NY, USA, 2006. ACM.

[Tur86] Jan Turk. The fixed divisor of a polynomial. The American Mathematical

Monthly, 93(4):282–286, apr 1986.

[vzGG03] Joachim von zur Gathen and Jurgen Gerhard. Modern Computer Algebra.

Cambridge University Press, 2nd edition, 2003.

[Wat06] Stephen Watt. Making computer algebra more symbolic. In Transgressive

Computing, pages 43–49, 2006.

[Wat07a] Stephen Watt. Two families of algorithms for symbolic polynomials. In

I. Kotsireas and E. Zima, editors, Computer Algebra 2006: Latest Advances

in Symbolic Algorithms – Proceedings of the Waterloo Workshop, pages

193–210. World Scientific, 2007.

BIBLIOGRAPHY 103

[Wat07b] Stephen Watt. What happened to languages for symbolic mathematical

computation. In Programming Languages for Mechanized Mathematics

(PLMMS), 2007.

[Wit04] Allan Wittkopf. Algorithms and Implementation for Differential Elimina-

tion. PhD thesis, Simon Fraser University, 2004.

[Yok04] Kazuhiro Yokoyama. On systems of algebraic equations with parametric

exponents. In ISSAC ’04: Proceedings of the 2004 international symposium

on Symbolic and algebraic computation, pages 312–319, New York, NY,

USA, 2004. ACM Press.

[Zip79] Richard Zippel. Probabilistic Algorithms for Sparse Polynomials. PhD

thesis, Massachusetts Institute of Technology, 1979.

BIBLIOGRAPHY 104

VITA

Name: Matthew Malenfant

Born: New Glasgow, Nova Scotia, 1983

Eduation:

• St. Francis Xavier University

Antigonish, Nova Scotia, Canada

2001-2005 BSc. with First Class Honours in Computer Science

Awards:

• National Sciences and Engineering Research Council of Canada Post Graduate

Scholarship

2005-2007

• A.A. Mac Donald Prize in Mathematics

2005

• Father Ginivin Award for Excellence in Mathematics

2003

• National Sciences and Engineering Research Council of Canada Undergraduate

Student Research Award

2001, 2002, 2003, 2004

