
On Measuring and Optimizing the Performance of

Parametric Polymorphism

(Spine Title: On the Performance of Parametric Polymorphism)
(Thesis Format: Monograph)

by

Laurentiu Dragan

Graduate Program

in
Computer Science

Submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

Faculty of Graduate Studies
The University of Western Ontario

London, Ontario

September, 2007

c© Laurentiu Dragan 2007

THE UNIVERSITY OF WESTERN ONTARIO

FACULTY OF GRADUATE STUDIES

CERTIFICATE OF EXAMINATION

Chief Advisor Examining Board

Dr. Stephen M. Watt Dr. Mark Giesbrecht

Advisory Committee
Dr. Marc Moreno Maza

Dr. Olga Veksler

Dr. David Jeffrey

The thesis by

Laurentiu Dragan

entitled

On Measuring and Optimizing the Performance of Parametric

Polymorphism

is accepted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Date

Chairman of Examining Board

ii

Abstract

On Measuring and Optimizing the Performance of Parametric Polymorphism

Laurentiu Dragan

Doctor of Philosophy

Graduate Department of Computer Science

The University of Western Ontario

2007

With the introduction of support for “generic” style programming in mainstream

languages, it is possible to write generic algorithms by using parametric polymor-

phism. Parametric polymorphism can be expressed with templates in C++, generics

in Java and C# and dependent types in Aldor. Generic code is not as fast as spe-

cialized code, because the compilers usually do not make any optimizations based on

the specific properties of the data used by the generic algorithm. In order to make

generic code appealing, the performance of generic code must be similar to that of

specialized code.

First goal of this thesis is to understand what is the performance penalty for using

generic code for scientific computing. Ideally, programmers should be able to write

expressive programs while compilers should do the optimization. Most benchmarks

implement algorithms as efficiently as possible by specializing the code for particular

data sets and even performing some hand optimizations in the source code to eliminate

the impact of wether certain optimizations are performed. We have implemented

SciGMark, a benchmark with both generic and specialized code that shows us the

difference in execution time between a highly optimized version and a generic version.

iii

The results obtained by SciGMark show that generic code lags far behind hand-

specialized code.

The second goal of this thesis is to provide optimization ideas that would allow

writing generic code with less performance penalty. For this, we propose a compiler

optimization called type tower. The type tower optimization is split into two parts:

code specialization and data layout optimization. We have evaluated this optimization

for the Aldor programming language because it has the most general support for

parametric polymorphism, compared to C++, C#, and Java.

The code specialization optimization specializes the generic types by producing

clones of the original type and then transforming the clone to replace the variable

type parameter with constant values. This allows optimizations that are not possible

in a general context. This optimization alone produces important speedups at the

cost of an increased code size.

The data layout optimization relies on code specialization optimization and im-

proves performance by rearranging the data representation such that types composed

from several smaller types are grouped together in a larger aggregated type. It is

then possible to optimize the operations belonging to this specialized type to produce

better memory behavior by reducing the number of memory allocations performed.

The thesis presents tools that are able to measure the performance overhead im-

posed by the use of generic code. We have shown that a price must be paid for using

parametric polymorphism with the current generation of compilers. However, the

cost can be substantially reduced by the proposed optimizations.

Keywords: parametric polymorphism, generics, dependent types, compiler opti-

mization, specialization, partial evaluation, generic code benchmark

iv

Acknowledgments

First, I would like to thank my supervisor, Dr. Stephen M. Watt who gave me the

chance to work on this remarkable project and who was always there to guide every

step of my work.

Thanks to people in the Ontario Research Centre for Computer Algebra for many

great discussions. I would like to thank Ben, Cosmin and Oleg for their comments

on earlier drafts.

Most of all, I am grateful to my wife for her support and understanding during

this thesis. Her love and support helped me go through the hardest of times. Thank

you Magdalena, I could not have done it without you.

v

Contents

Certificate of Examination . ii

Abstract . iii

Acknowledgments . v

Table of Contents . vi

List of Figures . x

List of Tables . xiii

List of Code Listings . xv

List of Symbols . xx

1 Introduction 1

1.1 Importance of Parametric Polymorphism 1

1.2 The Cost of Parametric Polymorphism 2

1.3 Improving the Performance of Parametric Polymorphism 3

1.4 Thesis Outline . 6

2 Background and Related Work 7

2.1 Parametric Polymorphism . 7

2.1.1 Ada . 10

vi

2.1.2 Aldor . 11

2.1.3 C++ . 15

2.1.4 C# . 19

2.1.5 Java . 21

2.1.6 Maple . 24

2.2 Compiler Optimizations . 28

2.2.1 Interprocedural Analysis and Optimization 28

2.2.2 Partial evaluation . 30

2.3 The Aldor Compiler . 35

2.4 The Aldor Run-Time Domain Representation 40

2.5 FOAM Intermediate Code Representation 48

2.6 Domain representation in FOAM . 55

2.6.1 Creating a domain . 56

2.6.2 Creating a parametric domain 62

2.6.3 How to Use Domain Functions 65

2.6.4 Library access from FOAM 67

2.7 Benchmarks . 68

3 Benchmarking Generic Code 70

3.1 Introduction . 70

3.2 Benchmarks . 71

3.3 Motivation . 73

3.4 SciMark . 74

3.4.1 Fast Fourier Transform (FFT) 75

3.4.2 Jacobi Successive Over-Relaxation (SOR) 75

vii

3.4.3 Monte Carlo Integration . 75

3.4.4 Sparse Matrix Multiplication 77

3.4.5 Dense LU Matrix Factorization 78

3.4.6 Other Aspects of SciMark 2.0 78

3.5 SciGMark . 81

3.5.1 New Kernels Included in SciGMark 82

3.5.2 From SciMark 2.0 to SciGMark 88

3.5.3 SciGMark for Aldor . 92

3.5.4 SciGMark for C++ . 94

3.5.5 SciGMark for C# . 99

3.5.6 SciGMark for Java . 100

3.5.7 SciGMark for Maple . 104

3.6 Results . 108

3.6.1 Results in Aldor . 110

3.6.2 Results in C++ . 111

3.6.3 Results in C# . 112

3.6.4 Results in Java . 113

3.6.5 Results in Maple . 114

3.7 Conclusions and Future Research . 115

4 Automatic Domain Code Specialization 119

4.1 Introduction . 119

4.2 Motivation . 120

4.3 Domain Code Specialization . 122

4.3.1 Example . 123

viii

4.3.2 Proposed Optimization for Domain Functions 129

4.3.3 Finding Domain Constructing Functions and Getting Domain

Related Information . 133

4.3.4 Cloning . 148

4.3.5 Specializing the Functions in the Cloned Domtor 150

4.3.6 Avoiding Multiple Copies of the Same Specialization 152

4.3.7 Specializing the Libraries . 152

4.3.8 Domains Not Known at Compile Time 154

4.4 Performance Results . 155

4.4.1 Tests on Different Aspects . 155

4.4.2 Testing with SciGMark . 160

4.5 Applicability to Other Programming Languages 164

4.5.1 C++ . 164

4.5.2 C# . 165

4.5.3 Java . 166

4.6 Related Work . 167

4.7 Conclusions and Future Research . 169

5 Automatic Domain Data Specialization 170

5.1 Introduction . 170

5.2 Automatic Domain Data Specialization 171

5.2.1 Example . 171

5.2.2 Data Representation Change Problems 182

5.2.3 Domain Interface Preservation 183

5.2.4 Data Representation Change in Cloned Types 185

ix

5.3 Performance Results . 205

5.4 Applicability to Other Programming Languages 207

5.5 Related Work . 208

5.6 Conclusions and Future Research . 210

6 Conclusions 212

A Appendix 215

A.1 SciGMark Example . 215

A.2 Examples of Simple Tests for Code Specialization 222

Bibliography 228

Vita 235

x

List of Tables

3.1 C++ micro-benchmark: STL vector versus C-style arrays. 95

3.2 Java micro-benchmark: Vector versus arrays. 102

3.3 Differences in implementation of specialized and generic code 107

3.4 Performance of generic and specialized code in the Aldor programming

language for the small dataset. The values are presented in MFlops. . 110

3.5 Performance of generic and specialized code in the Aldor programming

language for the large dataset. The values are presented in MFlops. . 110

3.6 Performance of generic and specialized code in the C++ programming

language using the small dataset. The values are presented in MFlops. 111

3.7 Performance of generic and specialized code in the C++ programming

language using the large dataset. The values are presented in MFlops. 111

3.8 Performance of generic and specialized code in the C# programming

language on the small dataset. The values are presented in MFlops. . 112

3.9 Performance of the generic and specialized code in the C# programming

language using the large dataset. The values are presented in MFlops. 112

3.10 Performance of generic and specialized code in the Java programming

language using the small dataset. The values are presented in MFlops. 113

xi

3.11 Performance of generic and specialized code in the Java programming

language using the large dataset. The values are presented in MFlops. 113

3.12 SciGMark MFlops in Maple 10 . 115

4.1 The results for Test1. 156

4.2 The results for Test2. 157

4.3 The results for Test3. 157

4.4 The results for Test4. 158

4.5 The results for Test5. 158

4.6 The results for Test6. 159

4.7 The results for Test7. 159

4.8 The results for Test8. 160

4.9 The results for Polyg. 160

4.10 The results for fast Fourier transform. 161

4.11 The results for successive over-relaxation. 161

4.12 The results for Monte Carlo. 162

4.13 The results for matrix multiplication. 162

4.14 The results for LU factorization. 163

4.15 The results for polynomial multiplication. 163

4.16 The results for matrix inversion using quad-tree representation. . . . 163

4.17 Comparison between generic and specialized code in C++. The results

are reported in MFlops. 165

4.18 Comparison between generic and specialized code in C#. The results

are reported in MFlops. 165

xii

4.19 Comparison between generic and specialized code in Java. The results

are reported in MFlops. 167

5.1 Translation between unoptimized to optimized code for statements in-

side functions. 189

5.2 Mapping scheme for fields of the old format into the new format of Pair.195

5.3 Connection between fields of the container and variables containing the

record to be inlined. 195

5.4 Time and run-time memory improvement after hand specialization of

polynomial multiplication. 205

xiii

List of Figures

2.1 A partial evaluator. 31

2.2 Two level Core C. 34

2.3 Compilation stages for the Aldor compiler. Each compilation stage is

presented in boxes and the result of each stage is shown on the arrow

connecting the stages. Parse tree is a tree representation of the source

code. AbSyn is the abstract syntax tree, a normalized parse tree. Sefo

is the semantic form where all the nodes in the abstract syntax tree

has a type annotation. First Order Abstract Machine (FOAM) is the

intermediate language used by the Aldor compiler. 36

2.4 Small Aldor code sample which computes the minimum. 38

2.5 The corresponding FOAM code for the code sample. 38

2.6 A flow graph example. 39

3.1 The UML diagram of the interfaces and implementation examples for

Complex and RecMat. 89

4.1 Dynamic dispatch of function calls used by unoptimized code. 128

xiv

4.2 After domain specialization function calls are not dynamically dis-

patched. 131

5.1 Data representation for polynomial with complex coefficients (before

specialization) . 175

5.2 Data representation for polynomial with complex coefficients (after

specialization) . 178

xv

Listings

2.1 Generic swap function in the Ada programming language. 9

2.2 Instantiating the generic swap function. 10

2.3 An usage example for Ada generics. 11

2.4 Aldor example of dependent types. 12

2.5 Aldor implementation of Ring interface. 13

2.6 IRing class in C++. 17

2.7 Example of templates used to perform the computation of XY 19

2.8 C# implementation of Ring type. 20

2.9 Java implementation of Ring type. 23

2.10 Java implementation of the Complex type. 24

2.11 Maple Example . 25

2.12 Maple example (The polynomial). 26

2.13 Maple example (The polynomial Part 2). 27

2.14 Maple Example (Usage example). 28

2.15 Generic version of a function using Aldor programming language syntax. 32

2.16 Specialized version of a function using Aldor programming language

syntax. 32

xvi

2.17 Domain interface . 42

2.18 DomainRep interface. 44

2.19 DispatchVector interface. 45

2.20 CatObj . 45

2.21 CatRep . 46

2.22 CatDispatchVector . 47

2.23 Run-time functions dealing with domain manipulation. 49

2.24 Run-time functions dealing with domain manipulation (Continued). . 50

2.25 A simple FOAM example. 51

2.26 A simple FOAM example (Continued). 52

2.27 Simple example of Aldor domains . 55

2.28 Domain construction function. 57

2.29 The first stage of domain construction 58

2.30 The second stage of domain construction. 59

2.31 The second stage of domain construction (Continued). 60

2.32 The declaration of the lexical level associated to Dom1. 61

2.33 The algorithm to combine two hashes. 61

2.34 The closure of the parametric domain producing function. 62

2.35 Instantiating Dom2 by calling Dom2(Dom1). 62

2.36 The domain producing function Dom2. 63

2.37 The domain producing function Dom2 (Continued). 64

2.38 Lexical environment for parameter instances. 64

2.39 The lexical environment corresponding to Dom2. 65

2.40 Access to domain exports . 66

xvii

2.41 Use the domain export after it was imported. 67

2.42 Initialization of library units. 68

2.43 Initialization of library units. 68

3.1 Implementation of Complex parametric type in Aldor. 93

3.2 Implementation of Complex category in Aldor. 93

3.3 IComplex interface in C++. 96

3.4 Complex class implemented in C++. 96

3.5 Complex class implemented in C++. 97

3.6 IComplex interface implemented in C#. 100

3.7 IComplex interface implemented in C#. 101

3.8 Complex implementation in Java. 103

3.9 IComplex interface implementation in Java. 103

3.10 Implementation of a generic type in Maple. 104

3.11 Implementation of the double wrapper. 105

3.12 The ADT version of double wrapper. 106

3.13 The generic version of the FFT algorithm. 107

4.1 Ring category . 123

4.2 Generic version of domain for complex operations 124

4.3 Generic version of domain for polynomial operations. 125

4.4 Generic version of domain for polynomial operations (Continued). . . 126

4.5 Addition between two polynomials. 127

4.6 C language representation of important run-time values 135

4.7 C language representations of FOAM arrays and records. 136

4.8 C language representation of closures 137

xviii

4.9 Unoptimized call . 141

4.10 Optimized call . 142

4.11 C language representation of Aldor domains 143

4.12 C language representation of Domtors. 145

4.13 Unspecialized domtor . 145

4.14 Specialized domtor . 146

4.15 C language representation of Unit. 146

4.16 Example showing a domain that is constructed based on run-time values.154

4.17 Domain instance is constructed in a regular function. 155

5.1 The Ring type. 172

5.2 Implementation of a generic polynomial of type Ring. 173

5.3 Polynomial multiplication. 174

5.4 Code specialized polynomial. 176

5.5 Code specialized polynomial (Continued). 177

5.6 Specialized polynomial representation. 179

5.7 Specialized polynomial representation (Continued). 180

5.8 Complex domain using stack based allocation instead of heap. 181

5.9 Addition between two floating point numbers in Aldor. 186

5.10 Addition between two floating point numbers in Aldor with local ex-

pansion of the fields from record 8. 187

5.11 Optimized version of floating point addition in Aldor. 187

5.12 FOAM code for domain representation. 192

5.13 The record declaration corresponding to Rep. 192

5.14 The Pair domain. 193

xix

5.15 The record declaration of the representation of Pair. 193

5.16 The specialized record declaration of the representation of Pair. . . . 194

5.17 The record declaration of the representation of Pair. 194

5.18 The pair function. 196

5.19 The specialized version of the pair function. 198

5.20 Polynomial of complex coefficients. 199

5.21 Representation of Polynomial domain. 200

5.22 Initializing TrailingArray from library. 201

5.23 Initializing TrailingArray from library. 202

5.24 The specialized version of the representation of the Polynomial domain.203

5.25 The trailing array declaration. 204

5.26 The FOAM code of get function from Polynomial(Complex). 205

5.27 The specialized version of get function. 206

A.1 Generic version of fast Fourier transform. 216

A.2 Specialized version of fast Fourier transform. 219

A.3 Test4 implementation. 222

A.4 Test4 implementation. 224

A.5 Test6 implementation. 225

A.6 Test7 implementation. 226

A.7 Test8 implementation. 227

xx

Chapter 1

Introduction

1.1 Importance of Parametric Polymorphism

Parametric polymorphism, a language feature that allows programs to be written

using type parameters, is now supported by several modern programming languages

such as Ada, Aldor, C++, C# and Java. In C++ the language constructs supporting

parametric polymorphism are known as “templates” and in Java, C# and Ada, they

are known as “generics”.

Good examples of the utility of generic libraries are provided by the C++ Standard

Template Library (STL) and the Boost libraries [1]. There are many computer algebra

libraries using parametric polymorphism: the NTL library for number theory [59],

the LinBox library for symbolic linear algebra [25], the Sum-IT library for differential

operators [9] and the BasicMath library [41], to restrict attention to just a few. In

Java and C#, type-safe collections use generics. The feasibility of generic code for

scientific computing has been investigated in [28, 67].

1

2

Previous studies [28, 51, 67] have shown that modern implementations of C++,

C# and Java now have sufficient performance for traditional scientific computing.

As scientific computing evolves to take greater advantage of modern programming

language features, we must understand which of these can be implemented sufficiently

efficiently for numerically intensive codes. In this thesis we start by understanding

what are the costs associated with the use of parametric polymorphism. Once the

costs have been identified, we propose solutions to reduce the cost of using parametric

polymorphism.

In some programming languages such as Java or C#, the generics were provided as

a mechanism to implement generic collections. This can be seen from the difficulties

encountered when trying to use generics to create generic algorithms. In other lan-

guages such as C++ and Aldor, generics are very powerful and allow implementation

of generic algorithms.

1.2 The Cost of Parametric Polymorphism

Although parametric polymorphism has been widely accepted in symbolic computa-

tion, and for “container” libraries in object-oriented computing, it has not yet been

widely adopted in numerically intensive computation. One of the prerequisites for its

adoption in this context is a clear understanding of its cost.

To address this question we have developed a benchmark for generics in scientific

computing. We call it the “SciGMark” benchmark because it is an extension of the

well known SciMark benchmark [51] using generics.

The benchmark suite contains various language implementations of a number of

tests. The first version of SciGMark contains all of the tests from SciMark for Aldor,

C++, C# and Java in both specialized and generic form. We have added polyno-

3

mial multiplication and matrix multiplication with a recursive data representation to

represent some types of scientific computation missing from the original suite.

Initially, Java’s performance was unacceptable for numerically intensive compu-

tation. To encourage performance improvement of Java for numerical computation,

benchmarks where created to measure the performance relative to higher-performance

languages such as Fortran and C. By running the Scimark benchmark on new Java

virtual machines one can observe a dramatic increase in performance to the point

that Java implementations can be comparable to C and, in some cases, even faster.

We anticipate that the same performance evolution could occur for generics.

With parametric polymorphism available in certain mainstream languages, such

as C++, Java and C#, we foresee an increased reliance on generic code. To support

this, compilers must be able to optimize generic code to an acceptable level. We

therefore need benchmarks to measure the performance of compilers in this area. We

hope that the SciGMark benchmark will help in this regard.

1.3 Improving the Performance of Parametric Poly-

morphism

The implementation of parametric polymorphism admits many optimizations. It

should be possible, in principle, to see similar performance for code that uses para-

metric types and hand-specialized code, provided the compiler is able to perform suit-

able code transformations. In their current state, however, the compilers we tested

fall far short of achieving this. We believe that providing a benchmark for generics

in scientific computing can help improve this situation.

4

The nature of scientific computing can place different emphasis on the performance

of generics than other programming styles. In most object-oriented programming,

objects are created and then, their state is modified through the invocation of a series

of methods. In mathematical computing, expressions tend to be more functional, with

objects being short-lived and unmodified. The optimization of generic code must take

this into account.

We have chosen the Aldor programming language to evaluate our proposed opti-

mizations because the Aldor support for parametric polymorphism is the most general

compared to C++, C#, and Java. Generic programming in Aldor is less cumbersome

than in C++, and more flexible than in C# or Java. Moreover, Aldor allows for types

to be constructed at runtime making its parametric polymorphism a more interesting

setting for optimizations.

The Aldor programming language is particularly well suited for programs related

to computer algebra. The language provides extensive generic libraries for mathemat-

ical objects. This makes it possible to construct types that are based on compositions

of generic types that lead to what we call “type towers”. One such example could be:

DenseUnivariatePolynomial(Complex(Fraction(BigInteger)))

Such “towers” of types lead to performance degradation if the compiler is not able to

deal gracefully with their optimization.

Generic code cannot be fully optimized in generic form, so we have used partial

evaluation as a method to specialize the code. However, unlike general partial eval-

uators, we applied our optimization in the special setting of parametric types. This

has permitted us to create an efficient implementation of the specializer. The cur-

rent implementation performs full specialization, constructing specialized versions for

each type instantiation. For places where only partial information is available, a par-

5

tial specialization of the type is performed. Optimization by code specialization was

studied in general by some interprocedural methods like cloning [17]. Customization

is another code specialization technique used by the SELF programming language

where possible values for the type parameters are guessed and specializations based

on the guessed values are created during the compilation phase. At run-time, particu-

lar specializations are picked from the ones already created [14]. A different approach

is used in partial evaluators, where the specialization is done based on some inputs

to the program. Partial evaluation for object-oriented languages has been presented

in [56, 57]. Specialization of virtual calls in object-oriented languages has also been

studied in [20].

Code specialization has two drawbacks: the code size is increased and the compi-

lation process takes more time to finish because of the increased number of domains

that have to be compiled.

To measure the performance of the type tower optimization, some simple tests

were designed that showed significant improvements. However, the simple tests were

not representative of real world programs. As such, SciGMark was used to measure

the performance obtained for algorithms used in scientific computation. After using

SciGMark, it was clear that there was still room for improvement.

In creating the SciGMark benchmark suite, we identified two sources for the per-

formance gains achieved by converting from the generic model to the specialized

model. One of the aspects was code specialization, and other was data representation

specialization. It was clear that by replacing a generic data type with a specialized

form, further improvements could be obtained.

Data representation specialization for object-oriented programming languages has

been studied in [21]. Their proposed method was to fuse the objects that have a one

6

to one relation between the parent and the child. The articles also prove that, for

this particular case, fusing the objects preserves the semantics of the program.

Data specialization optimization analyzes the data inlining in the case of paramet-

ric polymorphism, and the particularities that might simplify the data flow analysis

in this case.

1.4 Thesis Outline

The remainder of this thesis is organized as follows. The second chapter presents

background information related to parametric polymorphism and compiler optimiza-

tions. It then describes the Aldor compiler, in particular, with its run-time system and

intermediate language. The third chapter presents the SciGMark benchmark suite

that is used to measure the compiler’s optimization power with respect to paramet-

ric polymorphism. The fourth chapter describes the code specialization optimization

implemented for the Aldor compiler and some additional tests performed in program-

ming languages such as C++, C# and Java. The fifth chapter presents an analysis

of the data specialization optimization implemented for Aldor compiler. Finally, the

sixth chapter summarizes and presents some final conclusions.

Chapter 2

Background and Related Work

2.1 Parametric Polymorphism

This section makes a few observations about the implementation of generics in the

languages and compilers we tested, and on how this affected the implementation of

the tests.

Polymorphism, in the context of programming languages, means that same code

can be used with different types. If a functions accepts for its arguments, or result,

values of different types, it is said to be polymorphic. Polymorphic types are types

whose operations are applicable to values of more than one type [12]. Strachey [60] di-

vided the type polymorphism into two distinct categories: ad-hoc polymorphism and

parametric polymorphism. Cardelli and Wegner [12] later refined the polymorphism

categories into universal and ad-hoc. The universal polymorphism is further divided

into parametric and inclusion, while ad-hoc consists of overloading and coercion. The

ad-hoc polymorphism is obtained when a function works, or appears to work, on sev-

eral different types (which might not exhibit a common structure) and may behave

in unrelated ways for each type. We are not concerned in this thesis about this

7

8

kind of polymorphism. Parametric polymorphism is obtained when a function works

uniformly on a range of types: these types normally exhibit a common structure.

Parametric polymorphism was introduced as early as CLU [37] and ML [40, 39]

programming languages more than three decades ago, and has now become important

in mainstream languages. For example, it is supported in Ada, C++, C#, Java and

Modula-3.

Parametric polymorphism can be implemented in different ways, each of which

has different overhead trade-offs. Currently, there are two main approaches: the

“homogeneous” approach and the “heterogeneous” approach.

The heterogeneous approach constructs a special case class for each different use

of type parameters. For example, with std::vector from the C++ STL, one can

construct std::vector<int> and std::vector<double>. Because C++ uses the het-

erogeneous approach, two distinct classes are generated for the above cases: one with

the type parameter replaced by int and one with it replaced by double. This ap-

proach duplicates the code of the std::vector generic class and produces different

specialized compiled forms.

This approach has the benefit that the compiled code is specialized, and therefore

fast. The drawback is that object code can be bulky, with many different versions of

each class. Bulky object code can cause problems due to space constraints at any level

of the memory hierarchy. Furthermore, much more sophisticated system software is

required if generics are to be instantiated at run time.

The homogeneous approach uses the same instance of code for all uses of the type

parameters. Specialized behavior is achieved through inheritance polymorphism of

variables belonging to the parameter type. Java uses this approach by “erasing” type

information and using the Object class instead of the specialized form. Instances

of Object are cast back to the target class whenever necessary. This method has

9

Listing 2.1: Generic swap function in the Ada programming language.

1 -- Function declaration

2 generic

3 type Element_Type is private;

4 procedure Generic_Swap(Left, Right : in out Element_Type);

5

6 -- function definition

7 procedure Generic_Swap(Left, Right : in out Element_Type) is

8 Temporary : Element_Type;

9 begin

10 Temporary := Left;

11 Left := Right;

12 Right := Temporary;

13 end Generic_Swap;

an overhead comparable to that of subclassing, and the code size is comparable to

the non-generic version. For example, Vector<Integer> will be transformed to a

Vector that contains Object type values, and the compiler will check if the type of

the elements inserted into the collection are objects of type Integer (or a subclass).

This approach allows the same code to be used for all instances of Vector, therefore

Vector<Double> is also just Vector.

In some languages such as C# and Java, it is possible to specify a class or an inter-

face as a bound that declares the operations that are allowed on the type parameter.

For example, let us suppose that we have an interface Addable which declares the

add operations. If one constructs a collection Aggregate<T extends Addable>, it is

possible to create a sum operation that adds all the elements in the collection. This

would not be possible with a type Aggregate<T> since Object class does not have an

add operation.

Aldor uses a variation on the homogeneous approach. Instead of obtaining the

specialized behavior from sub-classing polymorphism, Aldor has types that are first-

10

Listing 2.2: Instantiating the generic swap function.

1 procedure Swap is new Generic_Swap(Integer);

2 procedure Swap is new Generic_Swap(Float);

class values, allowing it to use types like any other variable. This provides excellent

flexibility and the ability to construct domains at runtime. However, the cost of this

implementation is decreased execution speed. This is even more visible when the

parameters of the domains are other parametric domains, leading to a deeply nested

type (or type tower). Because of the way Aldor is implemented, extensive type towers

affect the performance.

2.1.1 Ada

Ada uses generics to implement parametric polymorphism. Implementation details

of Ada generics are provided in, [8].

An example of generic programming is given by the generic swapping function

that is presented in Listing 2.1. To create a generic package, one has to begin the

package with the keyword “generic” and a list of generic formal parameters. The list

of formal parameters is like the list of parameters in a procedure declaration. For

the implementation, the names declared in the generic formal parameters list can be

used as types inside the package.

To be able to use a generic package, we have to create a real package from the

generic version. This process is called instantiation, and the result is called an in-

stance. These are big words for a simple concept. An example of two Swap procedure

instances instantiated from the generic one can be seen in Listing 2.2.

11

Listing 2.3: An usage example for Ada generics.

1 with Generic_Swap;

2 procedure Tswap is

3 procedure Swap is new Generic_Swap(Integer);

4 A, B : Integer;

5 begin

6 A := 5;

7 B := 7;

8 Swap(A, B);

9 end Tswap;

Listing 2.2 overloads the Swap function with two definitions by instantiating the

generic function, Generic Swap, with two types: Integer and Float. Listing 2.3

shows an example of usage of the Generic Swap function.

2.1.2 Aldor

Aldor [27, 70, 74] was designed as an extension language for the Axiom computer

algebra system [31]. It became a general purpose programming language that placed

an emphasis on the uniform handling of functions and types, and less emphasis on

a particular object model. However, even though Aldor has a general purpose li-

brary, it also comes bundled with computer algebra specific libraries, showing its

affinity towards computer algebra. The Aldor programming language was designed

to be efficient and to offer support for optimizations. Many optimizations were al-

ready implemented in the Aldor compiler, making it possible to write code that had

comparable efficiency to C or Fortran compilers.

The rich type system made Aldor a good candidate to test type-related opti-

mizations ideas. This section gives a brief introduction to the Aldor programming

language, with emphasis on its capabilities related to generic types.

12

Listing 2.4: Aldor example of dependent types.

1 suml(R: ArithmeticType, l: List R): R == {

2 s: R := 0;

3 for x in l repeat s := s + x;

4 s

5 }

Functions as first class values are a characteristic of functional programming lan-

guages. However, Aldor goes beyond that and uses types as first class values. When

types and functions are first class values they can be created and manipulated just like

any other values. This allows the rich relationships between mathematical structures

to be modeled efficiently.

An unusual feature of Aldor is its pervasive use of dependent types [49]. This allows

the type of one subexpression to depend on the value of another. It also allows normal

functions to provide parametric polymorphism, see Listing 2.4. In this example, the

variable l is a list that contains elements of type R. R is also used to give the return

type of the function.

The type system in Aldor is organized on two levels: domains and categories. The

categories represent the types of domains, and they declare the operations that can

be performed on an implementing domain. They are analogous to interfaces of Java

or C#.

Cardelli and Wegner [12] introduced the notion of bounded quantifiers for types.

They presented universal, existential and subtyping quantifiers. Later, Canning et

al. [11], introduced the notion of F-bounded polymorphism. The F-bounded polymor-

phism allows for the bound to be a function of the bounded variable. An example

of F-bounded polymorphism given by Oderski and Wadler in Pizza [46] is the Pair

class:

13

Listing 2.5: Aldor implementation of Ring interface.

1 define IRing: Category == with {

2 + : (%, %) -> %;

3 a : (%, %) -> %;

4 clone : % -> %;

5 newArray : int -> Array %;

6 };

7

8 define IMyComplex(E: IRing): Category == IRing with {

9 create: (E,E) -> %;

10 getRe : % -> E;

11 setRe : (%,E) -> ();

12 getIm : % -> E;

13 setIm : (%,E) -> ();

14 };

15

16 define MyComplex(E: IRing): IMyComplex(E)

17 == add {

18 Rep == Record(r: E, i: E);

19 (t:%) + (o:%): % == per [rep(t).r+rep(o).r, rep(t).i+rep(o).i];

20 a(t:%, o:%): % == per [a(rep(t).r,rep(o).r), a(rep(t).i+rep(o).i)];

21 }

class Pair<elem implements Ord<elem>>

Dependent types are similar to the bounded polymorphism provided by Java and

C#, but they allow better type checking for generic types. In bounded polymorphism,

as seen in object-oriented languages, the type instantiation can be the bound or any

sub-class of the bound. With dependent types the type instantiation must be exactly

the type used as parameter. For instance, in Listing 2.4, if R is the type Integer,

then the list l will contain only Integer elements.

In the following sections, we continue by presenting the features of Aldor as we

describe the construction of a new type representing complex numbers. We shall use

the same example for the C++, C# and Java programming languages. In Listing 2.5,

a new category IRing is defined. In Aldor, primitive categories are created by using

14

the keyword with. The operations available from the IRing category are +, a, clone,

and newArray. The type of a symbol is introduced after the colon. For example,

“+” has the function type (%,%)->%. The % symbol has a special meaning in Aldor,

namely the type of the current domain.

Categories can be extended by specifying the base category and new exports. This

is done by placing a category before the with keyword and putting the new operations

inside the with block. In our example, the IMyComplex category extends the IRing

category with methods: create, getRe, setRe, getIm and setIm.

A primitive domain is defined using an add statement. Domains can be used ei-

ther as packages or as abstract data types. As packages, they represent a collection

of named values (functions, types or values), and as abstract data types they repre-

sent a distinguished type and a collection of related exported named values. In the

MyComplex domain definition, the type of the domain is IMyComplex. This means

that MyComplex should provide implementations for all the operations declared in

IMyComplex.

Throughout this thesis we use domains as abstract data types.

When used as abstract data types, domains contain a representation for the dis-

tinguished type. The representation is denoted by the constant Rep, which is the

internal representation of the type. The public view of the data type is accessible via

the name %. To convert between the public and private view of the data type, Aldor

offers two macros:

per : Rep → %

rep : % → Rep

Domains can be passed as parameters to functions. In the definition of MyComplex,

a type parameter E of type IRing is provided which represents the real and imaginary

15

part of the complex number. The type of the elements can be of any type that satisfies

the category IRing. This means that the operations declared in IRing can be called

on the real and imaginary parts of IMyComplex. The representation of the MyComplex

domain is a record with two fields r and i, both of type E.

DoubleRing is a wrapper of the DoubleFloat type which implements the category

IRing. The DoubleRing domain can be used as a parameter for MyComplex by using

the instantiation:

MyComplex(DoubleRing)

This construction is similar to the use of generics in Java and C# or templates in C++.

2.1.3 C++

In C++, parametric polymorphism is achieved by using templates [61, 62]. C++ tem-

plates are implemented using a macro engine that expands templates to generate

the specialized code. When the parameter is instantiated, the compiler checks and

generates the resulting code. This approach allows more straightforward code spe-

cialization and compile-time optimization.

C++ does not support bounded polymorphism. That is, it does not allow any qual-

ifications on the types used as a parameters in the templates. As a consequence com-

pilers cannot check parametric code for correctness until the template is instantiated.

Type checking is thus deferred to the moment of instantiation. Whenever a tem-

plate is instantiated, the actual definition of the template is specialized by replacing

the template parameter with the actual instance. For example, to create a container

std::vector with elements of type int, we would write: std::vector<int>. At this

point, the code for std::vector is duplicated, and the parameter of the std::vector

template is replaced by int. The specialized code is then checked by the compiler.

16

The lack of proper support for bounded polymorphism in C++ is compensated by

clever tricks using the template specialization technique to restrict the generic code

in special cases. One such technique is called SFINAE which is an acronym for “sub-

stitution failure is not an error”. The idea of SFINAE is to use template specialization

to provide a function definition only for some type parameters. For the types that

are forbidden, but which provide the operations required by the template, a template

specialization is provided that produces a compilation error. Particular cases can be

used to implement bounded polymorphism. This requires template metaprogram-

ming to check the polymorphism constraints explicitly. We do not find this to be a

completely satisfactory implementation.

In C++, it is the programmer’s responsibility to instantiate the template with a

type that has the required operations. Unfortunately, because it is not possible to

type check the generic code, the error messages are usually misleading. In addition,

if the generic code is not properly tested and documented instantiations may reveal

problems in the code only at a later stage of code development.

Another issue with the templates from C++ is the requirement that the sources of

the templates be made available to the instantiating code. This requirement forces

the programmer to provide the implementation in the source form in the header files.

Not all software vendors wish to do this.

The IRing class for C++ can be implemented as shown in Listing 2.6. C++ does

not have interfaces, but similar semantics can be obtained with the use of abstract

classes with all methods being pure virtual. This declaration would force all the calls

to be virtual, reducing the performance of the C++ implementation. To avoid this,

the classes corresponding the interfaces in other programming languages (the classes

starting with the letter I) do not use virtual functions.

17

Listing 2.6: IRing class in C++.

1 template <typename T>

2 class IRing {

3 public:

4 void ae(const T& o);

5 T operator+(const T& o) const;

6 T a(const T& o) const;

7 . . .

8 };

9

10 template <typename C, typename E>

11 class IComplex : IRing<C> {

12 public:

13 C create(E re, E im) const;

14 E getRe() const;

15 void setRe(E re);

16 E getIm() const;

17 void setIm(E im);

18 };

19

20 template<typename R> class Complex : IComplex<Complex<R>,R> {

21 R re, im;

22 public:

23 Complex(R re = 0, R im = 0) {this->re = re; this->im = im;}

24 Complex<R> operator+(const Complex<R>& o) const

25 {

26 Complex<R> t;

27 t.re = re + o.getRe(); t.im = im + o.getIm();

28 return t;

29 }

30 . . .

31 };

18

The IRing class is parametric because the C++ language does not offer the %

concept as seen in the Aldor programming language. Inside the definition of the

IRing class, the type of the actual class which implements the IRing operations is not

known. For this reason, the class that implements the IRing uses itself as a parameter

for the IRing class. This construction allows IRing to have more precise signatures

for its operations. For example, if IRing is not parametric then the functions must

use the type IRing and the implementing class must also use IRing to override it. The

operator+ function from IRing would be declared as: IRing operator+(IRing o)

instead of the declaration from Listing 2.6. The overriding from implementing class

Complex would have to be IRing operator+(IRing o) as well. This new declaration

requires a cast which may lead to runtime errors, by deferring the type checking from

compile-time to run-time.

The IComplex class (Listing 2.6) extends the IRing class with operations: create,

getRe, setRe, getIm, and setIm. Like IRing, an extra type parameter is required to

pass the type of the implementing class. The class Complex, from Listing 2.6, shows

an example of implementation of complex numbers using parametric polymorphism.

The initial intention of the templates was to provide better support for generic pro-

gramming. Later, it was discovered that with template specialization, it was possible

to write code that was evaluated by the C++ compiler while expanding the templates.

Veldhuizen [65] explained how to use templates to perform static computation. An

example of compile-time (static) computation that was presented in [65] is given in

Listing 2.7. The code presented in Listing 2.7 computes XY at compile time and

the constant z will have the value 125 when the executable code is produced. This

computation with templates is called template meta-programming.

19

Listing 2.7: Example of templates used to perform the computation of XY .

1 template<int X, int Y>

2 struct ctime_pow {

3 static const int result = X * ctime_pow<X, Y-1>::result;

4 };

5

6 //Base case to terminate recursion

7 template<int X>

8 struct ctime_pow<X,0> {

9 static const int result = 1;

10 };

11

12 //Example use:

13 const int z = ctime_pow<5,3>::result; // z = 125

2.1.4 C#

The implementation of generics in C# is described by Kennedy and Syme [34, 38, 75].

Like Java, C# is compiled to an intermediate language. The intermediate language

is executed by the runtime environment known as the Common Language Runtime

(CLR). The CLR is similar to the Java virtual machine. The whole software devel-

opment framework is called the .NET framework.

C# generics are implemented at the CLR level. The advantage of the C# imple-

mentation of generics, compared to the Java implementation, is that type information

is retained at runtime, making optimizations by a just-in-time compiler possible. This

also avoids some of the restrictions imposed by generics as implemented in Java. For

example, in C#, unlike Java, it is possible to create instances whose type is of the

type parameter.

C# provides a language-level differentiation between heap allocated and stack

allocated objects. This gives the programmer the choice between small objects that

have fast stack allocation and slower copy time, or larger heap allocated objects that

20

Listing 2.8: C# implementation of Ring type.

1 public interface IRing<T> {

2 T a(T other_elem);

3 void ae(T other_elem);

4 T clone();

5 T newInstance();

6 T[] newArray(int size);

7 }

8

9 public interface IComplex<C, E>: IRing<C> where E: IRing<E> {

10 C create(E re, E im);

11 E getRe();

12 void setRe(E re);

13 E getIm();

14 void setIm(E im);

15 }

16

17 public struct Complex <R>: IComplex<Complex<R>,R>

18 where R: IRing<R> {

19 public Complex<R> a(Complex<R> o) {

20 return new Complex<R>(re.a(o.re), im.a(o.im));

21 }

22 }

are manipulated by reference. The stack-allocated objects are constructed using the

keyword struct, while the heap-allocated objects are constructed using the keyword

class [30]. C# also allows the use of basic types as type parameters. In contrast to

Java, in C# it is possible to use Complex<double> instead of Complex<DoubleRing>.

CLR uses a mixed approach by implementing heterogeneous parametric polymor-

phism for basic types (similar to C++) and a homogeneous approach for reference

types (similar to Java). When it is necessary for a value type to behave like an ob-

ject, it is boxed by allocating a new object on the heap and copying the value into

the newly allocated object [36].

In C#, there are two types of collections: generic and non-generic. Non-generic

21

collections store all the elements as references with type object. This can lead to

heterogeneous collections that are not type safe. The alternative, generic collections,

introduced in version 2.0 of .NET, use parametric polymorphism. They are type safe

and exhibit better performance than non-generic collections. Any stack-allocated ob-

ject that is stored in a non-generic collection is automatically boxed by the compiler,

leading to decreased performance compared to using classes. The use of generic col-

lections together with stack-allocated objects might increase performance, since no

auto-boxing is performed for generic collections. For this reason, types are imple-

mented as stack-allocated structures, allowing the CLR to optimize the structure’s

allocation. An example similar to the previous one, this time for C# generics, is

presented in Listing 2.8.

2.1.5 Java

There were several different proposals to introduce generics for Java. One of the first

proposed approach was to use virtual types as described by Thorup [64]. A different

extension called “Pizza” was proposed by Odersky and Wadler [46]. Pizza extended

Java with parametric polymorphism, higher-order functions and algebraic data types.

The Pizza compiler implemented both heterogeneous and homogenous approach for

translating generic types into Java types and the conclusion was that in Java the

heterogenous approach did not produce big speedups while increasing the size of the

code [45].

Other proposed approaches to implement generics in Java were presented by Bank,

Myers and Liskov in [4]. They proposed two new instructions invokewhere and

invokestaticwhere to the Java bytecode to deal with bounded polymorphism.

22

Another idea used a hybrid approach: one erased class plus one thin wrapper for

each parameterized class is NextGen [13]. Viroli and Natali [68, 69] propose a method

to carry the type information for parametric types at run-time, and in order to avoid

the computational overhead, create instances at load-time. This has a small impact

on the overall performance.

Version 5 of Sun’s Java compiler uses the GJ [6, 7] approach to implement gener-

ics. An advantage of this approach is that it does not require changes to the virtual

machine and has no additional performance penalty beyond the subclassing polymor-

phism commonly used in Java. The resulting code is the same as in the version that

does not use generics. However, in order to keep the virtual machine compatible,

some functionality and potential speedup has been sacrificed. An example of such

restriction is the inability to construct a new object that has the class of the type

parameter. This design was used by Sun in their compiler and is now part of Java.

Generic programming in Java performs static type checking on the type parame-

ters and then erases the type information of the type parameters. After the erasure,

the specialized behavior is obtained by the sub-classing polymorphism. For example,

a List <Integer> is actually transformed by the compiler to List that contains

Object-type elements. In Java, Object is the super-type of all types, so any object

is of type Object. By replacing the actual type with Object, the type information

is erased. This implementation is called the erasure technique. Elements are cast

down to Integer when extracted from the List. This homogeneous approach uses

the same representation for all instantiations, and does not increase the code size.

One problem using generics in Java is that one cannot instantiate parameters

using primitive types, such as int, float, char and so on. The problem is partially

addressed using wrapper classes and “auto-boxing”, a language feature for automatic

conversion between primitive types and reference types. Another problem is that the

23

Listing 2.9: Java implementation of Ring type.

1 interface IRing <T> {

2 T a(T other);

3 void ae(T other);

4 T clone();

5 T[] newArray(int size);

6 T newInstance();

7 }

8 interface IComplex<C, E extends IRing<E>> extends IRing<C> {

9 create(E re, E im);

10 E re();

11 void setRe(E re);

12 E im();

13 void setIm(E im);

14 }

type information is lost at compile time, making it impossible to construct a new

instance of the type parameter [35]. There are two ways to solve this problem: by

creating a factory object to produce new instances or by using reflective features of

the language, such as Class.newInstance.

Examples of generic code in Java can be seen in the Listing 2.9.

Java uses bounded polymorphism by specifying the class or interface that is a

super-type of the actual type parameter. When the instance of the type is erased,

it is erased to the specified super-type, giving the compiler information about what

methods can be invoked on the type parameter. This way it is possible to compile

the class without knowing the actual instantiation that will be used. By using the

final keyword, one could ensure that a class will not be extended. However, there

is no way to specify as a requirement a final interface as a parameter to the type

parameter.

The code that uses the IRing and IComplex interfaces is presented in Listing

2.10. By explicitly specifying the Complex class as a type parameter to IComplex,

24

Listing 2.10: Java implementation of the Complex type.

1 public class Complex <R extends IRing<R>>

2 implements IComplex<Complex<R>,R> {

3 public Complex<R> a(Complex<R> o) {

4 return new Complex<R>(re.a(o.re()), im.a(o.im()));

5 }

6 }

the Java type inference will issue fewer warnings and the code will be cleaner, because

IComplex interface declare the “a” method as Complex a(Complex a). If IRing and

IComplex would not have known the Complex type, the method to be overridden

would have been IRing a(IRing a). This second case can be made to work, but it

issues many unchecked warnings. It also requires some runtime type casts from IRing

to the type in which the method is defined, leading to possible runtime exceptions.

To work around Java shortcomings, we specified a newInstance method to create

new values of the parameter type. Each program had to store a sample value belonging

to the parameter type and use it to construct new values later on. We could have used

reflective features, but reflective features are slower than normal method invocation.

2.1.6 Maple

Maple offers the possibility to create modules. It is also possible to have functions

that return modules. Thus, it is possible to implement parametric polymorphism.

Another possibility of using generic code from Maple is to access Aldor through an

interface with the help of the ALMA framework [44]. This approach would bring

the benefits of the extensive support for generic programming and high performance

provided Aldor to Maple. However, one would be also interested in the consequences

25

Listing 2.11: Maple Example

1 IMod := proc (p)

2 module()

3 export zero,

4 ‘+‘, ‘*‘, ‘=‘,

5 convertIn, convertOut;

6 zero:= 0;

7 ‘+‘ := (a,b) -> a+b mod p;

8 ‘*‘ := (a,b) -> a*b mod p;

9 ‘=‘ := (a,b) -> evalb(a = b);

10 convertIn := proc(n)

11 if not type(n, ’integer’) then

12 error("Bad number")

13 end if;

14 n mod p

15 end;

16 convertOut := v -> v;

17 end module

18 end proc:

of using parametric polymorphism in Maple, so we describe in the following how this

can be achieved by using only Maple.

An example can be seen in Listings 2.11, 2.12, 2.13 and 2.14. We have created a

parametric type representing a modular integer IMod (Listing 2.11), and a parametric

domain Poly using a dense representation (Listings 2.12 and 2.13). Poly uses as

parameter an object of type Ring. IMod, is an implementation of such an object.

Unfortunately, in Maple is not possible to specify the type of the parameter if the

parameter has a user defined type as is the case with modules. The types export

functions like =, +, *, convertIn, convertOut; Poly provides also the operations

pcoef and pdegree (these names were use to avoid collision with standard coeff

and degree functions. This example shows the powerful mechanism provided by the

Maple modules to write generic algorithms.

26

Listing 2.12: Maple example (The polynomial).

1 Poly := proc (x) proc(R)

2 module()

3 export zero, ‘+‘, ‘*‘, ‘=‘, convertIn, convertOut, pcoef, pdegree;

4 local fixDegree;

5 zero := [];

6 # Drop leading coefficients equal to zero.

7 dropZeros := proc(p)

8 local i, dtrue, d;

9 d := pdegree(p);

10 dtrue := -1;

11 for i from d to 0 by -1 do

12 if not R:-‘=‘(R:-zero, pcoef(p,i)) then

13 dtrue := i;

14 break

15 end if

16 end do;

17 if d = dtrue then p else [op(0..dtrue+1, p)] end if

18 end proc:

19 ‘+‘ := proc(p,q)

20 local i, d;

21 d := max(pdegree(p), pdegree(q));

22 dropZeros([seq(R:-‘+‘(pcoef(p,i), pcoef(q,i)), i=0..d)]);

23 end proc:

24 ‘*‘ := proc(p, q)

25 local a, i, j, pd, qd;

26

27 if p = zero or q = zero then return zero end if;

28

29 pd := pdegree(p); qd := pdegree(q);

30 a := array(0..pd+qd);

31 for i from 0 to pd + qd do a[i] := R:-zero(); end do;

32 for i from 0 to pd do

33 for j from 0 to qd do

34 a[i+j] := R:-‘+‘(a[i+j],

35 R:-‘*‘(pcoef(p,i), pcoef(q,j)));

36 end do

37 end do;

38 [seq(a[i], i = 0..pd+qd)]

39 end proc:

27

Listing 2.13: Maple example (The polynomial Part 2).

1 ‘=‘ := proc(p,q)

2 local i;

3 if pdegree(p) <> pdegree(q) then return false end if;

4 for i from 0 to degree(p) do

5 if not R:-‘=‘(pcoef(p,i), pcoef(q,i)) then

6 return false

7 end if

8 end do;

9 true

10 end proc:

11 convertIn := proc(w0)

12 local i, w;

13 w := collect(w0,x);

14 dropZeros(

15 [seq(R:-convertIn(coeff(w,x,i)), i=0..degree(w,x))])

16 end proc;

17 convertOut := proc(p)

18 local i, dp;

19 dp := pdegree(p);

20 add(R:-convertOut(pcoef(p,dp-i)) * x^(dp-i), i = 0..dp)

21 end proc;

22 pdegree := p -> nops(p) - 1;

23 pcoef := proc(p,i)

24 if i+1<=nops(p) then p[i+1] else R:-zero end if

25 end proc:

26 end module

27 end proc end proc:

28

Listing 2.14: Maple Example (Usage example).

1 Px := Poly(x);

2 Py := Poly(y);

3 Pz := Poly(z);

4

5 pm := Px(Py(Pz(IMod(17))));

6

7 a0 := 2*x^2+4*y^2+3*z^2+(2*x*y*z)+y*(4*x+5*z);

8 a := pm:-convertIn(a0);

9 oa := pm:-convertOut(a);

10 o2a := pm:-convertOut(pm:-‘+‘(a,a));

11 oaa := pm:-convertOut(pm:-‘*‘(a,a));

2.2 Compiler Optimizations

2.2.1 Interprocedural Analysis and Optimization

Modularity is very important for programming languages because it allows creation

of well-designed programs that are easier to understand and maintain. Modular

programs separate the program into several procedures. Each procedure presents an

interface and acts as black box by hiding the implementation details inside its body

and offering some functionality which is described by its name. When needed, the

caller selects a procedure based on name and provides some arguments that follow

the rules of the interface. This separation of the problem into smaller sub-problems is

a desired feature from the software engineering point of view. However, this approach

makes it hard for a compiler to perform some optimizations.

Most compilers perform intraprocedural code analysis and optimizations. These

optimizations have been thoroughly studied [3, 42]. Unfortunately, these optimization

cannot send the information across procedure calls, and the compiler cannot make

any assumptions about the data that has been passed in through the interface. As

29

described in [17], traditionally there are two approaches to solve this problem:

• locally expand the callee at the call site, procedure called inlining or procedure

unfolding and then perform the regular intraprocedural optimizations

• perform interprocedural analysis and optimization.

Interprocedural analysis uses the calling structure of the program to construct and

transmit the information between call sites. The interprocedural optimization consists

of a sequence of phases that do control-flow analysis, data-flow analysis, alias analysis,

and code transformations. Intraprocedural optimizations perform similar steps, but

unlike interprocedural the scope of the analysis is restricted to the procedure.

Both solutions proposed to extend the scope of the optimizations beyond function

boundaries have disadvantages. The inline expansion can lead to code growth, and

as a direct consequence, to increased compilation time [18]. Code growth is a real

problem with embedded devices where memory resource is limited. Other problems

with inline expansion include: possible instruction cache misses, increased pressure

on register allocation for local variables. In the cases of recursive function calls, is

not even possible to perform function inlining. The interprocedural analysis can be

rather expensive to implement and, at the end, results are not always worth the

implementation effort and the increased compilation time.

Richardson and Ganapathi studied the effectiveness of interprocedural optimiza-

tions in comparison to procedure integration [52, 53, 54]. They have shown that

procedure integration is very effective, but it increased the compilation time by a fac-

tor of 10. On the other hand, simple intraprocedural analysis was not very efficient,

and the complexity of the compiler is increased considerably by the interprocedural

analysis support. There is evidence that interprocedural analysis is more valuable for

parallel architectures [10].

30

Control flow analysis constructs a program call graph. The other important as-

pect of the interprocedural analysis is the data flow analysis. This analysis provides

information about the data manipulation, but unlike the intraprocedural analysis this

analysis crosses the procedure barrier.

Interprocedural analysis is useful for optimizations like: procedure integration,

constant propagation, register saving between calls, replacing call by value with call

by reference for parameters that are not modified by the called procedure, using

interprocedural data-flow information to enhance intraprocedural information.

2.2.2 Partial evaluation

The process of fixing one or more arguments of a program, to produce a residual

program is called partial evaluation. Beckman [5] introduces the term partial eval-

uation as program specialization. In analysis, projection or restriction means fixing

a parameter of a function of n variables, obtaining a function of n − 1 variables. In

logic, the same procedure is called currying.

There are many applications of partial evaluation in pattern recognition, com-

puter graphics by ray tracing, neural network training, database queries, spreadsheet

computation, scientific computing, and discrete hardware simulation. But one of the

main applications is compiler generation and code compilation.

A graphic representation of a partial evaluator is shown in Figure 2.1 (adapted

from [32]). One can see that the partial evaluator takes as input the source program

and some input in1 and produces a specialized program as a result. The specialized

program takes as input the resulted inputs to the program and produces the output.

The first input is considered to be static, because once it is used by the partial

31

specialized program
pin1

dynamic input
in2

input program
p

static input
in1

partial evaluator
’mix’

output

Figure 2.1: A partial evaluator.

evaluator it cannot be changed. The rest of the inputs are dynamic, since they can

change at run-time in the residual program pin1.

Static inputs are inputs that are either given as constants for a subset of problems

that can be solved by the generic program p. The static inputs can also change, but

that requires a re-specialization of the program p for each change. This means that

static inputs should be selected from the input data that does not vary as often as the

rest. The advantage of a partial evaluator is that the time to produce the specialized

form and the time to execute the specialized program on the dynamic input takes

less than executing the program p on all input data as variable.

Partial evaluation relies on some techniques to specialize the program. These

techniques are: symbolic evaluation, unfolding function calls, and program point

specialization.

The example presented in Listing 2.15 can be specialized by applying partial

evaluation techniques for a value “5” of the formal parameter a. The resulting code

is presented in the Listing 2.16. The symbolic evaluation detected that the condition

in the if statement is false for the input value of five, and therefore the body of if

32

Listing 2.15: Generic version of a function using Aldor programming language syntax.

1 f(a:AldorInteger, b:AldorInteger): AldorInteger == {

2 if (a > 10) then {

3 for i in 1 .. a repeat b := b + 2 * i;

4 }

5 2 * a + b;

6 }

Listing 2.16: Specialized version of a function using Aldor programming language
syntax.

1 f__5(b:AldorInteger): AldorInteger == {

2 10 + b;

3 }

statement becomes dead code which is eliminated. The value of expression 2*a + b

evaluates to 10+b by evaluating the subexpression 2*a.

The example presented above uses only the symbolic evaluation part of the partial

evaluation. There are no function calls in the body of f to be unfolded or specializa-

tion points.

The code simplification from the previous example can be performed by intrapro-

cedural analysis and optimization once the specialization of the function has been

performed. Function specialization can be performed only by partial evaluation or

the interprocedural analysis.

In order to analyze the code, partial evaluators use either “concrete interpretation”

or “abstract interpretation” of the code.

Abstract interpretation is an estimation of some properties of code without actu-

ally evaluating it. For example, one can find out if the the expression 5 * 2 is odd or

even, by concrete interpretation which would evaluate the expression to 10 and then

33

determining whether the result is odd or even. With abstract interpretation, the ex-

pression is not evaluated, but the result is inferred, knowing that multiplication of an

odd and an even number is always even. Abstract evaluation is even more important

when the value of one of the operands is not known. If the given expression is x * 2

it is possible to infer that the result is even.

For imperative languages such as C, a two-level execution solution is presented

in [32]. They propose a simple language, called Core C. The Core C language is a

“syntactic desugaring” of the C language which contains only a very simple set of

instructions and types. The standard C language is translated to Core C and the

resulting program is analyzed.

In Figure 2.2, one can see two parallel definitions for some non-terminals. The

non-terminals starting with two belong an extended two-level Core C language, while

the other ones belong to the regular Core C language.

Intuitively, all the underscored statements and expressions require code generation

by the partial evaluator. The underscored statements and expressions are dynamic,

since they cannot be evaluated statically, and the regular statements and expressions

are static, since they can be evaluated statically.

The partial evaluator executes a two level Core C program. The dynamic state-

ments and expressions are first reduced and then the residual code code corresponding

to the reduced value is generated. The static expressions are evaluated. During the

execution, all the variables and parameters are computed and stored to be able to

optimize the code.

For function calls that need specialization, if an already existing specialization is

found, that specialization is shared, otherwise the function is specialized by a recursive

call of the executing program.

34

〈2CC〉 ::= 〈2decl〉* 〈2fundef〉*
〈2decl〉 ::= 〈2type〉 id 〈2typespec〉 | decl
〈decl〉 ::= 〈type〉 id 〈typespec〉
〈2type〉 ::= base | 〈2type〉 * | struct id { 〈2decl〉+ } | type
〈type〉 ::= base | 〈type〉 * | struct id { 〈2decl〉+ }
〈2typespec〉 ::= 〈2typespec〉 [const] | typespec

〈typespec〉 ::= ε | 〈typespec〉 [const] | typespec
〈2fundef〉 ::= 〈2type〉 fid (〈2decl〉*) { 〈2decl〉* 〈2stmt〉+ }
〈fundef〉 ::= 〈type〉 fid (〈decl〉*) { 〈decl〉* 〈stmt〉+ }
〈2stmt〉 ::= 〈stmt〉

| lab : expr 〈2exp〉
| lab : return 〈2exp〉
| lab : goto lab
| lab : if (〈2exp〉) lab lab
| lab : call id = fid (〈2exp〉*)

〈stmt〉 ::= lab : expr 〈exp〉
| lab : return 〈exp〉
| lab : goto lab
| lab : if (〈exp〉) lab lab
| lab : call id = fid (〈exp〉*)

〈2exp〉 ::= 〈exp〉 | lift 〈exp〉
| struct 〈2exp〉 . id
| index 〈2exp〉 [〈2exp〉]
| indr 〈2exp〉
| addr 〈2exp〉
| unary uop 〈2exp〉
| binary 〈2exp〉 bop 〈2exp〉
| ecall eid (〈2exp〉*)
| alloc (id)
| assign 〈2exp〉 = 〈2exp〉

〈exp〉 ::= cst const | var id
| struct 〈exp〉 . id
| index 〈exp〉 [〈exp〉]
| indr 〈exp〉
| addr 〈exp〉
| unary uop 〈exp〉
| binary 〈exp〉 bop 〈exp〉
| ecall eid (〈exp〉*)
| alloc (id)
| assign 〈exp〉 = 〈exp〉

Figure 2.2: Two level Core C presented in [32].

35

For the dynamic return statement, the expression is reduced and the value of the

residual return is used.

2.3 The Aldor Compiler

The Aldor compiler is able to generate stand-alone executables, object libraries in

native format for the target operating system, portable byte code libraries and C

or Lisp sources. Aldor source code is transformed into FOAM, the intermediate

language representation. All the optimizations are done at the FOAM level, and then

the FOAM code is translated to native code for the OS or is left as is to be compiled

or interpreted on the target operating systems [26, 72].

The compilation stages for the Aldor compiler are presented in Figure 2.3. The

include phase includes all the files specified by the #include directives. The scan

phase converts the text stream into a stream of tokens. The parsing phase performs

a semantic analysis and converts the tokens stream into a parse tree. The macro

expansion is performed on the parse tree. The result of all these phases is a parse

tree. The parse tree is normalized, checked for correctness and, in the scope-binding

phase, the scopes of the variables are deduced. The result of these phases is a an

abstract syntax tree.

Type inference is performed on the resulting abstract syntax tree to verify the

correctness of the program with respect to type usage. The result of type inference

phase is a semantic form (Sefo) which is an abstract syntax tree annotated with

type information. The symbol table (Stab) is also filled with information about each

known symbol and its meaning. In the next phase, an intermediate code is generated.

The Aldor intermediate code is FOAM (First Order Abstract Machine). The result

of this phase is an intermediate FOAM representation of the source program.

36

FOAM

optimize
FOAM

code
Lisp

generate

code
C

generate

code
ao

generate

generate
native
code

.ao .c .lsp

executable

parse
scan

expand macro

include

type
inference

Sefo intermediate
code

generator

AbSyn

FOAM

scope binding
syntax checker
syntax normalizer

Aldor
source

parse
tree

Figure 2.3: Compilation stages for the Aldor compiler. Each compilation stage is
presented in boxes and the result of each stage is shown on the arrow connecting the
stages. Parse tree is a tree representation of the source code. AbSyn is the abstract
syntax tree, a normalized parse tree. Sefo is the semantic form where all the nodes
in the abstract syntax tree has a type annotation. First Order Abstract Machine
(FOAM) is the intermediate language used by the Aldor compiler.

37

The next phase is optimization, where FOAM-to-FOAM transformations are per-

formed to produce optimized code that is platform independent. The optimizations

done at this stage are architecture independent. Depending on the level of optimiza-

tion, several passes are performed.

The next stage is code generation. The Aldor compiler is able to generate Aldor

portable intermediate code in the form of ao files. The ao files can be interpreted by

the Aldor compiler, since the Aldor compiler also includes an interpreter. It can also

produce C code or Lisp. A C compiler can be invoked to produce native executables

from the C source files produced by the Aldor compiler.

The compiler contains several key data structures. Their internal names are pre-

sented in the following:

• AbSyn (abstract syntax tree) is the tree constructed by the semantic analysis

• Sefo (semantic form) is an abstract syntax tree annotated with type and mean-

ing

• Syme (symbol meaning) contains information about the symbols used in the

Aldor program. It is the most used data structure throughout the compiler.

• TForm (type form) represents the type information constructed by the type in-

ference. The type inference phase executes passes over the syntax tree: bottom-

up and top-down. In the bottom-up phase the possible types of each node are

propagated from leaves to the root, and in the top-down phase, the unique type

restriction is enforced.

• Foam is intermediate code representation

The abstract syntax tree resembles very closely the source code. An abstract

syntax tree containing annotations for usage information and inferred unique types

38

if (a<b) then

min := a

else

min := b

print << min;

Figure 2.4: Small Aldor code sample
which computes the minimum.

0: (If (BCall SIntLT (Loc 0) (Loc 1) 2)

1: (Set (Loc 2)(Loc1))

(Goto 3)

2: (Set (Loc 2) (Loc 0))

3: (CCall Word (Lex 0 0) (Loc 2))

Figure 2.5: The corresponding FOAM code
for the code sample.

is ready to be translated into the intermediate code. The leaves contain symbol

meanings and some symbols are linked to their position in the source file.

The code generation searches for function definitions, “deep” identifiers usage

(i.e. identifiers that are not defined inside the local function) and then creates the

FOAM code for the top level definitions and top level references lexical variables (i.e.

variables that are used in a deeper lexical level than the their definition) and global

variables. Function values are represented by closures (i.e. binding of the function

code together with the execution environment).

Optimization tools used by the Aldor compiler include flow graphs and data flow

analysis. The flow graphs are directed graphs where the nodes are basic blocks and

the edges represent the links between the basic blocks. Basic block are sequences of

FOAM instructions that have exactly one entry point and one exit point. This means

that there are no branches inside the basic block. All code branches are represented

by the edges in the flow graph. An example of an Aldor code that computes the

minimum value between two variables can be seen in Figure 2.4. The FOAM code

constructed by the Aldor compiler for the code presented in Figure 2.4 is presented in

Figure 2.5. The labels in Figure 2.5 correspond to the beginning of each basic block.

The flow graph resulted from the FOAM code presented in Figure 2.5 can be seen in

Figure 2.6. This example is presented in [26].

39

0

1 2

3

Figure 2.6: A flow graph example.

Based on the information gathered, several optimizations can be implemented.

The Aldor compiler provides the following optimizations: copy propagation, constant

folding, hash folding, peep-hole, common subexpression elimination, procedure inte-

gration, control flow optimization, dead code elimination, environment merging.

Copy propagation replaces values of several definitions with the same value by

a single value, for example: l1:=l0; l2:=l1; foo(l2) is replaced with foo(l0).

After this, if the values of l2 is never used, the assignment and the variable can be

eliminated.

Constant folding computes the values of simple operations applied to constant

values. For example, a := 3*5 will be computed as a:=15. Hash folding is similar

in scope, but knows how to deal with run-time function calls that extract the hash

of a domain. Hash folding eliminates calls to domainGetHash!, which is a runtime

function call to retrieve the hash of the domain.

Peep hole optimization applies simple code transformations that are limited in

scope to only a small piece of code. For example, applying known properties of

boolean algebra.

Common sub-expression elimination tries to remove redundant operations. For

example, l0:=t1*t1+t1*t1 is replaced by l1:=t1*t1;l0:=l1+l1.

40

Procedure integration is the most important aspect of the Aldor compiler. One

of the main issues with optimizations is that procedure calls limit the scope of the

optimization. If there is no interprocedural analysis, the optimization information

constructed in a procedure cannot be passed to the called procedures. Procedure

integration can alleviate this problem by locally unfolding the code of the callee in

the caller. In Aldor, functions are represented by function closures which have a

higher execution time cost since they are runtime objects. Inlining makes the calls

faster.

Control flow optimization reorganizes the basic blocks to eliminate unnecessary

jumps. This is important after procedure integration because the code of the callee

is appended at the end of the caller which might produce an unnecessary jump.

Dead code elimination removes the parts of the program that are never called or

the variables that are never used.

Environment merging replaces heap-allocated object by local variables so that

heap allocation, which is an expensive operation, is never performed. This is done

for the variables that do not escape the local function.

All these optimizations make the Aldor compiler a powerful one. Therefore, care-

fully written Aldor code is comparable in performance with the equivalent program

written in the C programming language.

2.4 The Aldor Run-Time Domain Representation

In Aldor, domains and categories are run-time objects and, as a consequence, they

can be created only when they are actually needed. To support this kind of behavior

a run-time system is provided. The implementation of the run-time system can be

found in the implementation file runtime.as. The run-time system offers other run-

41

time services as well, like debugging hooks, but its most important part is dealing

with domains and categories.

The implementation details of the Aldor domains is important for the optimization

presented here. Since there is no documentation available that describes these details,

this section will present a short description of the run-time system support for the

Aldor domains.

Aldor domains are designed to operate in an environment of mixed run-time sys-

tems. To achieve this, there are three domains that represent the run-time Aldor

domain. These three domains are: Domain, DomainRep and DispatchVector.

The role of Domain is to offer a top level domain representation, independent of

the run-time, and provide information about the hash codes of the domains and their

exported functions. Internally, it uses DomainRep as the native Aldor run-time domain

and DispatchVector for the exported functions. The operations implemented by the

Domain domain can be seen in the Listing 2.17.

As stated before, DomainRep is the native domain representation, which deals

with particularities of the Aldor run-time domains. One such particularity is that

Aldor domains are implemented in a lazy fashion (i.e. they are created only they are

needed.) From the study of the DomainRep, it can be seen that Aldor domains are

created in two stages:

1. Construct minimal information to be able to retrieve the domain instantiation

by:

• calling the function domainAddHash! to fill in the domain hash (an integer

value number to uniquely identify the domain)

• calling the function domainAddNamFn! to fill the name of the domain

42

Listing 2.17: Domain interface

1 +++ Domain is the top-level domain representation, designed to operate in

2 +++ an environment of mixed runtime systems. The domain consists of

3 +++ a pointer to the domain’s native representation, and a vector of

4 +++ functions for accessing it. Currently only "get" and "hash" functions

5 +++ are required.

6 Domain: Conditional with {

7 new: DomainRep -> %;

8 ++ new(dr) creates a new domain by wrapping

9 ++ a dispatch vector around a DomainRep.

10 newExtend: DomainRep -> %;

11 ++ extend(dr) creates a new domain by wrapping

12 ++ the dispatch vector for extensions around a DomainRep.

13 getExport!: (%, Hash, Hash) -> Value;

14 ++ getExport!(dom, name, type) gets an export from a domain,

15 ++ given the hash codes for its name and type. Takes a hard

16 ++ error on failure.

17 getExportInner!: (%, %, Hash, Hash, Box, Bit) -> Box;

18 ++ getExportInner!(dom, name, type, box, skipDefaults)

19 ++ Fetch an export from the given domain, putting the result

20 ++ in the box. It won’t look in category default packages if

21 ++ if skipDefaults is true. Returns nullBox on failure.

22 getHash!: % -> Hash;

23 ++ getHash!(dom) returns the hash code for a domain.

24 testExport!: (%, Hash, Hash) -> Bit;

25 ++ testExport!(dom, name, type) tests for an

26 ++ export with the given name and type in the domain

27 getName: %->DomainName;

28 ++ getName(dom) returns the name of a domain

29 inheritTo: (%, Domain)->Domain;

30 ++ returns an object suitable for being a parent of dom2

31 ++ This function is so that A# can have a single function

32 ++ for both computing the hashcodes of types and initialising

33 ++ a domain. Really ought to be expunged.

34 makeDummy: () -> %;

35 ++ specialized domain creators

36 fill!: (%, %) -> ();

37 reFill!: (%, DispatchVector, DomainRep) -> ();

38 domainRep: % -> DomainRep;

39 }

43

• creating a function closure addLevel1 to fully construct the domain, with

all its exports

2. Completely construct the domain by calling the function addLevel1 which fills

in all the domain data

This implementation allows Aldor domains to delay instantiation until the func-

tion from the domain is actually called. The interface of the DomainRep domain can

be seen in Listing 2.18.

The last part of the run-time domain implementation is the DispatchVector

which deals with run-time independent representation of the domain’s exported func-

tions. This is an implementation independent way to extract domain information

such as: name, hash or exported functions. The interface of the DomainRep domain

can be seen in Listing 2.19.

Categories use a similar mechanism as the as the one described for domains. The

domains that deal with Aldor run-time categories are: CatObj, CatRep and Cat-

DispatchVector, described below. Their interfaces are given in Listings 2.20, 2.21

and 2.22 respectively.

CatObj has a similar functionality to Domain. The actual interface to the CatObj

is presented in Listing 2.20.

CatRep is the run-time representation of Aldor categories with a functionality

similar to DomainRep. The interface to this domain can be seen in Listing 2.21.

The domain that does the dispatching for categories is CatDispatchVector. It is

similar in function to the domain DispatchVector. The interface for CatDispatch-

Vector can be seen in Listing 2.22.

To eliminate the duplication of duplicate domains, a cache containing the already

created domains is used. The way the cache is used can be seen in Listings 2.36 and

44

Listing 2.18: DomainRep interface.

1 +++ DomainRep defines the run-time representation of axiomxl domains.

2 +++ Initially domains only hold a function which, when called, fills in

3 +++ the hash code for the domain, and sets another function. When this

4 +++ function is called, the parent and export fields are set, and any

5 +++ code from the "add" body is run. Domains cache the last few lookups.

6 DomainRep: Conditional with {

7 new: DomainFun % -> %;

8 ++ new(fun) creates a new domain.

9 prepare!: % -> ();

10 ++ prepare!(dom) forces a domain to fully instantiate.

11 addExports!: (%, Array Hash, Array Hash, Array Value) -> ();

12 ++ addExports!(dom, names, types, exports)

13 ++ sets the exports fields of a domain.

14 addDefaults!: (%, CatObj, Domain) -> ();

15 ++ addDefaults!(dom, defaults, domain) sets the default package

16 ++ for a domain. Additional arg is the wrapped domain.

17 addParents!: (%, Array Domain, Domain) -> ();

18 ++ addParents!(dom, parents) sets the parent field of a domain.

19 addHash!: (%, Hash) -> ();

20 ++ addHash!(dom, hash) sets the hash field of a domain.

21 addNameFn!: (%, ()->DomainName) -> ();

22 ++ addName!(dom, name) sets the naming fn of a domain.

23 get: (%, Domain, Hash, Hash, Box, Bit) -> Box;

24 ++ get(dom, name, type, box, skipDefaults) Fetch an export from the

25 ++ given domain, putting the result in the box.

26 hash: % -> Hash;

27 ++ hash(dom) returns the hash code for a domain.

28 getExtend: (%, Domain, Hash, Hash, Box, Bit) -> Box;

29 ++ get(dom, name, type, box, skipDefaults)

30 ++ Fetch an export from an extended domain.

31 hashExtend: % -> Hash;

32 ++ hashExtend(dom) returns the hash code for extended domains.

33 extendFillObj!: (%, Array Domain) -> ();

34 ++ fills extend info

35 axiomxlDispatchVector: () -> DispatchVector;

36 ++ axiomxlDispatchVector() creates the dispatch vector for domains.

37 extendDispatchVector: () -> DispatchVector;

38 ++ extendDispatchVector() creates the dispatch vector for extended

39 ++ domains.

40 dummyDispatchVector: () -> DispatchVector;

41 }

45

Listing 2.19: DispatchVector interface.

1 +++ Structure containing a domain’s protocol for getting exports and

2 +++ producing hash codes. This is in a separate structure to accomodate

3 +++ mixed runtime environments.

4 DispatchVector: Conditional with {

5 new: (DomNamer, DomGetter, DomHasher, DomInheritTo) -> %;

6 ++ new(get, hash) constructs a dispatch vector.

7 getter: % -> DomGetter;

8 ++ getter(dv) returns the getter function.

9 hasher: % -> DomHasher;

10 ++ hasher(dv) returns the hash code function.

11 namer: %-> DomNamer;

12 ++ namer(dv) returns the function giving the name of a domain

13 tag: % -> Int;

14 reserved: % -> Reserved;

15 inheriter: % -> DomInheritTo;

16 }

Listing 2.20: CatObj

1 +++ CatObj is the top-level category representation.

2 CatObj: Conditional with {

3 new: CatRep -> %;

4 ++ new(cr) creates a new category by wrapping

5 ++ a dispatch vector around a CatRep.

6 getDefault!: (%, Domain, Hash, Hash, Box) -> Box;

7 ++ getDefault!(cat, pcent, name, type, box)

8 ++ Find a default from the given category,

9 ++ putting the result in box. Returns nullBox on failure.

10 getParent: (%, Int) -> %;

11 ++ getParent(cat, i) finds the i-th parent of cat.

12 parentCount: % -> Int;

13 ++ returns the # of parents of the category

14 build: (%, Domain) -> %;

15 name: % -> DomainName;

16 hash: % -> Hash;

17 makeDummy: () -> %;

18 fill!: (%, %) -> ();

19 reFill!: (%, CatDispatchVector, CatRep) -> ();

20 }

46

Listing 2.21: CatRep

1 +++ CatRep defines the run-time representation of axiomxl categories.

2 CatRep: Conditional with {

3 new: (CatRepInit %, ()->Hash, ()->DomainName) -> %;

4 ++ new(fun) creates a new category.

5 prepare!: % -> ();

6 ++ prepare!(cat) forces a category to fully instantiate.

7 addExports!: (%, Array Hash, Array Hash, Array Value) -> ();

8 ++ addExports!(cat, names, types, exports)

9 ++ sets the exports fields of a category.

10 addHashFn!: (%, ()->Hash) -> ();

11 addParents!: (%, Array CatObj) -> ();

12 ++ addParents!(cat, pars) set the parent field of a category.

13 addNameFn!: (%, ()->DomainName) -> ();

14 ++ addName! sets the name of an category.

15 axiomxlCatDispatchVector: () -> CatDispatchVector;

16 ++ axiomxlCatDispatchVector() creates the dispatch vector

17 ++ for axiomxl categories.

18 dummyDispatchVector: () -> CatDispatchVector;

19 ++ creates the dispatch vector for unfilled categories

20 }

47

Listing 2.22: CatDispatchVector

1 +++ Structure containing a category’s protocol for getting parents/hash

2 +++ codes.

3 CatDispatchVector: Conditional with {

4 new: (CatNamer, CatBuilder, CatGetter, CatHasher,

5 CatParentCounter, CatParentGetter) -> %;

6 ++ new(build, get, hash, parentCount, parentGet)

7 ++ constructs a category dispatch vector.

8 builder: % -> CatBuilder;

9 ++ builder(cat) returns the building function of the category.

10 getter: % -> CatGetter;

11 ++ getter(cat) returns the getter function of the category.

12 hasher: % -> CatHasher;

13 ++ hasher(cat) returns the hasher function of the category.

14 namer: % -> CatNamer;

15 ++ returns the naming function of the category.

16 parentCounter: % -> CatParentCounter;

17 ++ parentCounter(cat) returns the #parents function.

18 parentGetter: % -> CatParentGetter;

19 ++ parentGetter returns the getParent function.

20 }

48

2.37. The cache increases the performance significantly and it uses runtime functions

rtCacheExplicitMake, rtCacheCheck and rtCacheAdd.

An extract of the most important functions that operate on domains is presented

in Listings 2.23 and 2.24.

The implementation of the runtime systems can be found in runtime.as which is

part of the libfoam library, the core library of the Aldor compiler.

2.5 FOAM Intermediate Code Representation

First Order Abstract Machine (FOAM) is an intermediate programming language

used by the Aldor compiler. Any Aldor program is compiled into FOAM [73]. Aldor

code is translated in FOAM and then all optimizations are produced by FOAM-to-

FOAM transformations.

The main designed goals of FOAM are:

• well-defined semantics, independent of platform

• efficient mapping to Common Lisp and ANSI C

• easy manipulation

Each Aldor source file is compiled to a FOAM unit. A program may be formed by

several FOAM units. Each program must contain at least one unit, and the program

starts by calling the first program in the FOAM unit corresponding to the current

file being compiled. The first program is called with a empty (NULL) environment

as the initial environment.

Each FOAM unit is formed by a list of declarations, and a list of definitions.

The declaration part is formed by a list of formats. Each format is a list of lexical

49

Listing 2.23: Run-time functions dealing with domain manipulation.

1 -- Functions for creating and enriching axiomxl domains.

2 domainMake: DomainFun(DomainRep) -> Domain;

3 ++ domainMake(fun) creates a new lazy domain object.

4 domainMakeDispatch: DomainRep -> Domain;

5 ++ domainMakeDispatch(dr) wraps a dispatch vector

6 ++ around a DomainRep.

7 domainAddExports!: (DomainRep, Array Hash, Array Hash, Array Value)->();

8 ++ domainAddExports!(dom, names, types, exports)

9 ++ Set the exports of a domain.

10 domainAddDefaults!: (DomainRep, CatObj, Domain) -> ();

11 ++ domainAddDefaults!(dom, defaults, dom)

12 ++ Sets the default package for a domain.

13 domainAddParents!: (DomainRep, Array Domain, Domain) -> ();

14 ++ defaultsAddExports!(dom, parents)

15 ++ Set the parents of a default package.

16 domainAddHash!: (DomainRep, Hash) -> ();

17 ++ domainAddHash!(dom, hash) sets the hash code of a domain.

18 domainAddNameFn!: (DomainRep, ()->DomainName)->();

19 ++ sets the domains naming function

20 domainGetExport!: (Domain, Hash, Hash) -> Value;

21 ++ domainGetExport!(dom, name, type)

22 ++ Gets an export from a domain, given the hash codes for

23 ++ its name and type. Takes a hard error on failure.

24 domainTestExport!: (Domain, Hash, Hash) -> Bit;

25 ++ domainTestExport!(dom, name, type)

26 ++ returns true if the given export exists in dom

27 domainHash!: Domain -> Hash;

28 ++ domainHash!(dom) returns the hash code from a domain.

29 domainName: Domain -> DomainName;

30 ++ domainName returns the name of a domain

31 domainMakeDummy: () -> Domain;

32 domainFill!: (Domain, Domain) -> ();

50

Listing 2.24: Run-time functions dealing with domain manipulation (Continued).

1 -- Functions for creating and enriching axiomxl categories.

2 categoryAddParents!: (CatRep, Array CatObj, CatObj) -> ();

3 ++ categoryAddExports!(dom, parents, self)

4 ++ Set the parents of a default package.

5 ++ additional arg is for uniformity

6 categoryAddNameFn!: (CatRep, ()->DomainName) -> ();

7 ++ Sets the name of a category.

8 categoryAddExports!: (CatRep, Array Hash, Array Hash, Array Value) -> ();

9 ++ categoryAddExports!(dom, names, types, exports)

10 ++ Set the exports of a category.

11 categoryMake: (CatRepInit(CatRep),()->Hash,()->DomainName)->CatObj;

12 ++ Constructing new cats

13 categoryBuild: (CatObj, Domain) -> CatObj;

14 categoryName: CatObj -> DomainName;

15 ++ Returns the name of a category

16 categoryMakeDummy: () -> CatObj;

17 categoryFill!: (CatObj, CatObj) -> ();

18

19 -- Utility functions called from code generation.

20 noOperation: () -> ();

21 ++ Do nothing --- used to clobber initialisation fns.

22 extendMake: DomainFun(DomainRep) -> Domain;

23 ++ extendMake(fun) creates a new lazy extend domain object;

24 extendFill!: (DomainRep, Array Domain) -> ();

25 ++ adds the extendee, extender pair to an extension domain

26 lazyGetExport!: (Domain, Hash, Hash) -> LazyImport;

27 ++ creates a lazy function to retrieve the export

28 lazyForceImport: LazyImport->Value;

29 ++ forces a get on the lazy value

30 rtConstSIntFn: SingleInteger->(()->SingleInteger);

31 ++ Save on creating functions.

32 rtAddStrings: (Array Hash, Array String) -> ();

33 ++ Adds more strings to the list of known exports

34 domainPrepare!: Domain -> ();

35 ++ initializes a domain.

51

Listing 2.25: A simple FOAM example.

1 (Unit

2 (DFmt

3 (DDecl

4 LocalEnv

5 (GDecl Clos "phd1" -1 4 0 Init)

6 (GDecl Clos "noOperation" -1 4 1 Foam)

7 (GDecl Clos "phd1_Dom2_635009245" -1 4 0

8 Foam)

9 ...

10 (DDecl

11 Consts

12 (Decl Prog "phd1" -1 4)

13 (Decl Prog "Dom1Cat" -1 4)

14 ...

15 (DDecl LocalEnv (Decl Clos "m" -1 4))

16 (DDecl LocalEnv (Decl Word "p" -1 4))

17 ...

18 (DDecl

19 LocalEnv

20 (Decl Word "TextWriter" -1 4)

21 ...

52

Listing 2.26: A simple FOAM example (Continued).

1 (DDef

2 (Def

3 (Const 0 phd1)

4 (Prog

5 ...

6 NOp

7 ...

8 (DDecl Params)

9 (DDecl

10 Locals

11 (Decl Clos "" -1 4)

12 ...

13 (DFluid)

14 (DEnv 14)

15 (Seq

16 (CCall NOp (Glo 5 runtime))

17 (Set

18 (Glo 0 phd1)

19 (Glo 1 noOperation))

20 ...

21 (Def

22 (Glo 0 phd1)

23 (Clos (Env 0) (Const 0 phd1)))

24 (Def

25 (Glo 2 phd1_Dom2_635009245)

26 (Cast Clos (Nil)))

27 ...

53

elements that exist in a scope that forms an environment. The declaration contains

formats for globals, constants, fluid scope variables, local environments, non-local

environments. The definition part consists of program definitions and initializations

of locally defined global variables.

An example of FOAM code is presented in Listings 2.25 and 2.26. Due to the fact

that the FOAM code is usually long, in the presented example there are only some

samples from the various categories of FOAM constants. Figures 2.25 and 2.26 show a

unit with samples from declarations and definitions. One can see the LISP-like syntax

and the tree structure. The FOAM operation is the first operation after opening the

bracket, followed by a number of arguments indented one level more than the current

operation. Also the first lexical presented is phd1 which is also the name of the file

and the name of the program that contains the initialization code for the current file.

The Aldor source code used to generate the FOAM program is presented in Listing

2.27.

An interesting aspect of the FOAM capabilities is the support for function closures.

Closures are objects that bind together the code of the function with its environment.

The advantage of the closures is that they can be executed anywhere in the program,

even if the environment required by the function is not accessible at the point of

execution.

In FOAM, the type for the closure is Clos and the syntax of the closure constructor

is “(Clos env prog)”. The execution environment can be constructed relative to the

lexical environment of the current function (by using “(Env level)”) or extracted

from another closure (by using “(CEnv clos)”). The program is either a reference

to a program definition “(Const idx)” or extracted from a different closure by using

“(CProg clos)”. In the example presented ifn Figures 2.25 and 2.26, the global variable

with index 0 is a closure with the current environment and the program index 0.

54

The FOAM instruction to delimit programs is Prog. It must be supplied a list of

formal parameters described by a DDecl instruction, a list of fluid variables (variables

that have dynamic binding) described by a DFluid, a list of referenced environments

described by DEnv and the sequence of instructions described by Seq instructions.

For function calls there are four instructions:

1. (BCall opId e0 ... en−1) - builtin call which is used for FOAM builtin operations.

BCall is equivalent to (OCall type (BVal opId) (Env -1) e0 ... en−1)

2. (CCall type clos e0 ... en−1) - closed call which is used for calling the closure

objects. CCall is equivalent to (OCall type (CProg clos) (CEnv clos) e0 ... en−1)

3. OCall type fun env e0 ... en−1 - open calls are calls that explicitly refer-

ence the program and the environment. The OCall is equivalent to (PCall

FOAM Proto Foam type fun env e0 ... en−1)

4. PCall proto type fun env e0 ... en−1 - protocol calls are the most general

form of call. The calling protocols defined by FOAM are: FOAM Proto Foam,

FOAM Proto Other, FOAM Proto Init, FOAM Proto C, FOAM Proto Lisp, FOAM -

Proto Fortran.

The Aldor programming language uses lexical scoping. Instructions that create

new lexical scopes are: where, +->, with, add, for var in, and applications e.g.

Record(i: Integer == 12) [74]. In FOAM, each lexical scope is associated to a

DDecl which contains a list of symbols declared at that lexical level and their types.

For each FOAM program, the environments referenced are declared in DEnv. There

are four different types of lexically scoped references in FOAM:

• (Glo index) - global variables

55

Listing 2.27: Simple example of Aldor domains

1 #include "axllib.as"

2 import from SingleInteger;

3 SI ==> SingleInteger;

4 Dom1Cat: Category == with { m: SI -> SI; };

5 Dom1: Dom1Cat == add {

6 m (g: SI) : SI == { import from SI; g := g + 1; }

7 }

8 Dom2(p: Dom1Cat): Dom1Cat == add {

9 m (x: SI) : SI == {

10 import from SI;

11 for i in 1..2 repeat { x := m(x)$p + 1; } --$

12 x;

13 }

14 }

15 import from Dom2 Dom1;

16 print << m(0) << newline;

• (Loc index) - local variables

• (Lex level index) - lexicals. Lexical variables can be nested. The level specifies

the number of levels up the lexical levels stack.

• (Par index) - function parameters

A complete description of the grammar for the FOAM intermediate language

can be found in the FOAM language specification [73]. Since presenting the FOAM

structure is not the goal of this thesis, the needed information will be provided along

when presenting the optimizations made.

2.6 Domain representation in FOAM

As presented in Aldor User Guide [74], domains are environments providing collec-

tions of exported constants. Exported constants are types, functions or other values.

56

According to this definition, domains are, in a way, similar to classes from object-

oriented programming languages. This representation is reviewed in detail here, as

this is important to understand the optimizations presented later.

In order to understand how domains are represented in FOAM, we start by pre-

senting the source code of a simple example. This example creates a category Dom1Cat

as a type which exports a function m. The function m takes an integer value as an ar-

gument and returns another integer value as a result. Next, two domains are defined,

namely Dom1 and Dom2. Both of them implement the Dom1Cat category. Dom1 is a

regular domain, and Dom2 is a parametric one. The parameter of Dom2 is a domain

of type Dom1Cat. This declaration allows the construction Dom2(Dom1). This is the

simplest example that creates domains in Aldor. An example which only creates Dom1

would not be enough to illustrate the construction method of parametric domains,

since their construction is slightly different from the construction of regular domains.

The complete source code is presented in Listing 2.27.

The example presented in Listing 2.27 will be used in the following to describe

how to create the regular and parametric domains, access the exports of a domain,

and how to access functions from the library.

2.6.1 Creating a domain

The FOAM function which corresponds to the file level scope is the definition with

index 0. In this function, one can see the call presented in Listing 2.28 which defines

the global with index 3 to be a new domain created with the help of the run-time

system by calling domainMake. As explained in Section 2.4, the Aldor domains are

lazy and they are constructed in two stages. The first stage is initiated by calling the

function domainMake with a closure as argument.

57

Listing 2.28: Domain construction function.

1 (Def

2 (Glo 3 phd1_Dom1_774680846)

3 (CCall

4 Word

5 (Glo 23 domainMake)

6 (Clos (Env 0) (Const 2 addLevel0))))

The next step in understanding how a domain is constructed is to follow the defi-

nition (Const 2 addLevel0) given in Listing 2.29. The role of addLevel0 functions

is to set the domain name function and hash. The domain object is given as a param-

eter to the closure. The returned value is another closure that represents the second

stage in domain creation.

The actual construction of the domain is performed by (Const 3 addLevel1).

The addLevel1 functions will add the exports of the domain. Listings 2.30 and 2.31

present the FOAM code for constructing the domain Dom1.

The first thing to note in line 22 is the declaration of the lexical level associated

with this domain which in this case is the format number 7. Each domain has an

associated lexical level. The declaration of the lexical level for Dom1 is presented in

Listing 2.32. The closure m (on line 34) is the function m implemented in Dom1. The

lexical named % is a reference to the type that contains the definition of the exported

symbol. A similar concept exists in object-oriented programming languages when the

keyword this is used. In object-oriented languages, this represents a reference to the

current object. In Aldor, the type of this is the equivalent of %. The SInt type lexical

is the hash code of the domain. Each domain has its own hash code. The hash code

is the value used to identify the domain at run-time.

In Listings 2.30 and 2.31, lines 25–27 construct three arrays to hold the information

58

Listing 2.29: The first stage of domain construction

1 (Def

2 (Const 2 addLevel0)

3 (Prog

4 (DDecl Params (Decl Word "domain" -1 4))

5 (DDecl Locals)

6 (DFluid)

7 (DEnv 0 14)

8 (Seq

9 (CCall

10 Word

11 (Glo 15 domainAddNameFn!)

12 (Par 0 domain)

13 (CCall Word (Glo 13 rtConstNameFn) (Arr Char 68 111 109 49)))

14 (CCall

15 Word

16 (Glo 16 domainAddHash!)

17 (Par 0 domain)

18 (SInt 285110261))

19 (Return (Clos (Env 0) (Const 3 addLevel1))))))

for retrieving the exports of the domain. In the instruction corresponding to the line

29, a Domain type object is created from the DomainRep. The next step is to populate

the lexical environment of the domain as seen in the lines 32–34. The three arrays

and their sizes are encapsulated in three records in lines 15–25. This encapsulation

is done because the run-time system uses the data type Array which is represented

by such a record. The line 26 uses the run-time system to add the functions to the

domain. The next instruction adds to this domain the defaults that might have been

defined in the category. Finally, all the exports of the domain are added to the three

arrays: the name hash code, the type hash code and the closure.

The hash code of the type is computed by combining the hashes of the domains

that form the signature of the functions. In this case the function m has the signature

SingleInteger -> SingleInteger. The hash code of the type of m is computed

59

Listing 2.30: The second stage of domain construction.

1 (Def

2 (Const 3 addLevel1)

3 (Prog

4 (DDecl

5 Params

6 (Decl Word "domain" -1 4)

7 (Decl Word "hashcode" -1 4))

8 (DDecl

9 Locals

10 (Decl Word "%" -1 4)

11 (Decl SInt "" -1 4)

12 (Decl Arr "" -1 8)

13 (Decl Arr "" -1 5)

14 (Decl Arr "" -1 5)

15 (Decl Word "" -1 4)

16 (Decl Rec "" -1 5)

17 (Decl Rec "" -1 5)

18 (Decl Rec "" -1 5)

19 (Decl Word "" -1 4)

20 (Decl SInt "" -1 4))

21 (DFluid)

22 (DEnv 7 4 14)

23 (Seq

24 (Set (Loc 1) (SInt 1))

25 (Set (Loc 2) (ANew SInt (Loc 1)))

26 (Set (Loc 3) (ANew SInt (Loc 1)))

27 (Set (Loc 4) (ANew Word (Loc 1)))

28 (Set (Loc 5) (ANew Bool (SInt 3)))

29 (Set

30 (Loc 9)

31 (CCall Word (Glo 18 domainMakeDispatch) (Par 0 domain)))

32 (Set (Lex 0 1 %) (Loc 9))

33 (Def (Lex 0 3) (Par 1 hashcode))

34 (Def (Lex 0 0 m) (Clos (Env 0) (Const 4 m)))

35 (Def

36 (Loc 10)

37 (BCall

38 SIntPlusMod

39 (CCall SInt (Glo 7 domainHash!) (Lex 2 3 SingleInteger))

40 (BCall

41 SIntShiftUp

60

Listing 2.31: The second stage of domain construction (Continued).

1 (BCall

2 SIntAnd

3 (BCall

4 SIntPlusMod

5 (CCall SInt (Glo 7 domainHash!) (Lex 2 3 SingleInteger))

6 (BCall

7 SIntShiftUp

8 (BCall SIntAnd (SInt 51489085) (SInt 16777215))

9 (SInt 6))

10 (SInt 1073741789))

11 (SInt 16777215))

12 (SInt 6))

13 (SInt 1073741789)))

14 (Set (Loc 6) (RNew 5))

15 (Set (RElt 5 (Loc 6) 0) (Loc 1))

16 (Set (RElt 5 (Loc 6) 1) (Loc 1))

17 (Set (RElt 5 (Loc 6) 2) (Cast Word (Loc 2)))

18 (Set (Loc 7) (RNew 5))

19 (Set (RElt 5 (Loc 7) 0) (Loc 1))

20 (Set (RElt 5 (Loc 7) 1) (Loc 1))

21 (Set (RElt 5 (Loc 7) 2) (Cast Word (Loc 3)))

22 (Set (Loc 8) (RNew 5))

23 (Set (RElt 5 (Loc 8) 0) (Loc 1))

24 (Set (RElt 5 (Loc 8) 1) (Loc 1))

25 (Set (RElt 5 (Loc 8) 2) (Cast Word (Loc 4)))

26 (CCall NOp

27 (Glo 17 domainAddExports!)

28 (Par 0 domain)

29 (Loc 6)

30 (Loc 7)

31 (Loc 8))

32 (CCall

33 Word

34 (Glo 19 domainAddDefaults!)

35 (Par 0 domain)

36 (Glo 4 phd1_Dom1Cat_735503011)

37 (Loc 9))

38 (Set (AElt SInt (SInt 0) (Loc 2)) (SInt 200150))

39 (Set (AElt SInt (SInt 0) (Loc 3)) (Loc 10))

40 (Set (AElt Word (SInt 0) (Loc 4)) (Cast Word (Lex 0 0 m)))

41 (Return (Par 0 domain)))))

61

Listing 2.32: The declaration of the lexical level associated to Dom1.

1 (DDecl

2 LocalEnv

3 (Decl Clos "m" -1 4)

4 (Decl Word "%" -1 4)

5 (Decl Word "%%" -1 4)

6 (Decl SInt "" -1 4))

Listing 2.33: The algorithm to combine two hashes.

1 CombineHash(h1, h0):

2 (BCall SIntPlusMod

3 h1

4 (BCall SIntShiftUp (BCall SIntAnd h0 16777215) 6)

5 1073741789)

starting at line 35 in Listing 2.30 and continued in Listing 2.31. The constants are

the same for all operations, and the formula to combine two hashes is given in Listing

2.33.

The exported functions are defined next in the list of function definitions.

Every domain has a similar structure. They all contain the addLevel0 and

addLevel1 functions and the list of the exported functions. Some domains will in-

clude some helper functions like function for producing the domain name in case the

domain the more than one argument.

Any function imported from other domains using the import from statement

and used by the program will be included in the lexical environment of the importing

domain.

62

Listing 2.34: The closure of the parametric domain producing function.

1 (Def

2 (Glo 2 phd1_Dom2_635009245)

3 (Clos (Env 0)

4 (Const 5 Dom2)))

Listing 2.35: Instantiating Dom2 by calling Dom2(Dom1).

1 (Def

2 (Lex 0 25 dom)

3 (CCall

4 Word

5 (Glo 2 phd1_Dom2_635009245)

6 (Glo 3 phd1_Dom1_774680846)))

2.6.2 Creating a parametric domain

The Aldor source code presented in Listing 2.27 provides an example of a parametric

domain. A parametric domain is actually a function that produces a non-parametric

domain as a result when called. In order to learn how such domains are created, one

must look to the FOAM code associated with the given file (i.e. the first program

definition.) First, a closure of the domain creating function is produced as seen in

Listing 2.34. Later on, the closure is used to produce new domains by instantiating its

parameters with other domains. For example, the domain Dom2(Dom1) is produced

by the statement import from Dom2(Dom1). The corresponding FOAM code can be

seen in Listing 2.35. The domain-producing function corresponding to Dom2 from the

example can be seen in Listings 2.36 and 2.37.

First thing to note about this function is that it uses a special lexical environment

for the parameters (see line 12 in Listing 2.36). In this case, the lexical environment

is the environment with format number 12. The declaration can be seen in Listing

2.38. Each field corresponds to the parameter with the same index.

63

Listing 2.36: The domain producing function Dom2.

1 (Def

2 (Const 5 Dom2)

3 (Prog

4 (DDecl Params (Decl Word "p" -1 4))

5 (DDecl

6 Locals

7 (Decl Arr "" -1 8)

8 (Decl Rec "" -1 8)

9 (Decl Word "" -1 4)

10 (Decl Word "" -1 4))

11 (DFluid)

12 (DEnv 12 14)

13 (Seq

14 (Set (Lex 0 0 p) (Par 0 p))

15 (Set (Loc 0) (ANew Word (SInt 1)))

16 (Set (Loc 1) (RNew 8))

17 (Set (RElt 8 (Loc 1) 0) (SInt 1))

18 (Set (RElt 8 (Loc 1) 1) (Loc 0))

19 (If (BCall BoolNot (BCall PtrIsNil (Cast Ptr (Lex 1 21)))) 1)

20 (Set

21 (Lex 1 21)

22 (CCall Word (Glo 24 rtCacheExplicitMake) (SInt 15)))

23 (Label 1)

24 (Set (AElt Word (SInt 0) (Loc 0)) (Lex 0 0 p))

64

Listing 2.37: The domain producing function Dom2 (Continued).

1 (Set

2 (Values (Loc 2) (Loc 3))

3 (MFmt

4 9

5 (CCall

6 Word

7 (Glo 25 rtCacheCheck)

8 (Lex 1 21)

9 (Cast Word (Loc 1)))))

10 (If (Loc 3) 0)

11 (Set

12 (Loc 2)

13 (CCall

14 Word

15 (Glo 23 domainMake)

16 (Clos (Env 0) (Const 6 addLevel0))))

17 (Set

18 (Loc 2)

19 (CCall

20 Word

21 (Glo 30 rtCacheAdd)

22 (Lex 1 21)

23 (Cast Word (Loc 1))

24 (Loc 2)))

25 (Label 0)

26 (Return (Loc 2)))))

Listing 2.38: Lexical environment for parameter instances.

1 (DDecl LocalEnv (Decl Word "p" -1 4))

65

The Dom2 program checks for the existence of the domain in the domains cache

and uses it from there if the domain is already created. Otherwise, domainMake is

used to create a new domain, which is placed in the cache.

The lexical environment of the Dom2 is given by format number 11 (see Listing

2.39.) The lexical environment of Dom2 is very similar to the lexical environment of

Dom1, but it also includes the functions and domains imported in lines 9 and 10.

Listing 2.39: The lexical environment corresponding to Dom2.

1 (DFmt

2 ...

3 (DDecl

4 LocalEnv

5 (Decl Clos "m" -1 4)

6 (Decl Word "%" -1 4)

7 (Decl Word "%%" -1 4)

8 (Decl SInt "" -1 4)

9 (Decl Clos "m" -1 4)

10 (Decl Word "dom" -1 4))

The parametric domains are implemented by a function that stores the parameters

into a separate lexical environment and then constructs the resulting domain like any

other regular domain. The presence of the cache is only for optimization reasons and

does not affect in any way the functionality.

2.6.3 How to Use Domain Functions

After constructing the domain, and setting its exports, the exported symbols of the

domain can be used. To be able to use an exported lexical from a domain inside

another domain, it is necessary to get the export from the former domain. The

procedure is presented in Listing 2.40.

To set the lexical variable m, one should make use of the rtDelayedGetExport!

function and to provide it with the exporting domain, the hash code of the name

66

Listing 2.40: Access to domain exports

1 (Def

2 (Lex 0 19 m)

3 (CCall

4 Clos

5 (Glo 10 stdGetWordRetWord0)

6 (CCall

7 Word

8 (Glo 9 rtDelayedGetExport!)

9 (Lex 0 25 dom)

10 (SInt 200150)

11 (BCall

12 SIntPlusMod

13 (CCall

14 SInt

15 (Glo 7 domainHash!)

16 (Lex 0 3 SingleInteger))

17 (BCall

18 SIntShiftUp

19 (BCall

20 SIntAnd

21 (BCall

22 SIntPlusMod

23 (CCall

24 SInt

25 (Glo 7 domainHash!)

26 (Lex 0 3 SingleInteger))

27 (BCall

28 SIntShiftUp

29 (BCall

30 SIntAnd

31 (SInt 51489085)

32 (SInt 16777215))

33 (SInt 6))

34 (SInt 1073741789))

35 (SInt 16777215))

36 (SInt 6))

37 (SInt 1073741789)))))

67

Listing 2.41: Use the domain export after it was imported.

1 (CCall

2 Word

3 (Lex 0 19 m)

4 (Cast

5 Word

6 (CCall

7 Word

8 (Glo 21 lazyForceImport)

9 (Lex 0 12 \0)))))

and the hash code of the type. The returned value of rtDelayedGetExport! is a

closure. Having the closure allows execution of the code in any environment, because

the creation environment of the closure is bound with the code. However, due to the

lazy nature of Aldor, an extra instruction is required to ensure that the environment

of the called function is initialized. The required FOAM instruction is EEnsure.

Once all this is set up, the function can be called in the same way as any other

closure (see Listing 2.41.)

This code is placed in the initialization part of a file and it is executed once

therefore, it should not affect the performance.

2.6.4 Library access from FOAM

The FOAM code is given and compiled in units. Each unit corresponds to the com-

pilation of a file. Using the include directive in Aldor causes code from other files

to be locally expanded and becomes part of the current compilation unit. In some

cases the code is compiled into a library. Every library contains initialization code

In order to initialize the libraries, the corresponding units are initialized before the

initialization of the current unit. The units that should be initialized are flagged with

68

Listing 2.42: Initialization of library units.

1 (GDecl Clos "char" -1 4 1 Init)

2 (GDecl Clos "textwrit" -1 4 1 Init)

3 (GDecl Clos "segment" -1 4 1 Init)

4 (GDecl Clos "sinteger" -1 4 1 Init))

Listing 2.43: Initialization of library units.

1 (Def

2 (Lex 0 3 SingleInteger)

3 (CCall Word (Glo 12 rtLazyDomFrInit) (Loc 0) (SInt 0)))

the Init protocol in the declaration part of the current unit (see Listing 2.42.)

After the initialization, the domains defined in other units can be imported by

using the run-time function rtLazyDomFrInit (see Listing 2.43).

2.7 Benchmarks

A benchmark is a standard program that run on different platforms to measure the

performance. There are two categories of benchmarks with respect to complexity:

microbenchmarks and macrobenchmarks.

Microbenchmarks measure the performance using simple operations and are usu-

ally created to tests only the issue that needs measuring. The macrobenchmarks

are more elaborate programs that solve more complex problems simulating closer the

conditions of a real application.

By using the same program on different, but compatible, platforms allows the com-

parison between the two platforms. For example, there are benchmarks that measure

the floating point performance a CPU (central processing unit), or the input/output

69

performance of a disk drive.

There are also software benchmarks, where programs are compiled with differ-

ent compilers and their performance is evaluated, or same queries are run on same

databases but on different database management systems. These benchmarks mea-

sure the performance of the compilers, or database management systems respectively.

Both current computer architectures and programs generated by compilers are

complex, making performance analysis very difficult by consulting the specification

details and the resulted program. Therefore, standard tests were developed that

can be run on different architectures and have the results compared between them.

For compilers, same or similar programs are run through different compilers and the

performance of the resulted programs allows comparison of the compilers.

For the hardware benchmarks the standard benchmark is SPEC [19]. For the

software benchmarks there is no standard benchmark suite.

Chapter 3

Benchmarking Generic Code

3.1 Introduction

The goal of optimizations is to improve performance of a program. The resulting

program is not usually optimal in a mathematical sense, but merely improved. This

thesis studies improvements that can be made to compilers for languages such as

Aldor with support for generic programming. One important aspect of optimization

is to quantify the effects of the optimization by measuring the speedup of the resulting

code.

Performance can be measured in two ways. One way is to analyze the generated

code and compare it to the original. While this method can show the exact differences

produced by the optimization, it cannot quantify the difference in the execution time.

Understanding the performance difference requires understanding all the interaction

between all the parts of the program and all the interactions between the program

and the underlying architecture that should execute the program.

The second way to measure the performance is to write programs and simply run

them and measure their execution time. With the second approach it is much easier

70

71

to see the results and has the advantage that it takes into account all the variables

that are involved in the execution of the program.

In our specific case, the main problem is the performance of generic code. To our

knowledge, no macro-benchmark existed to test the performance of generic code. To

be able to measure the performance of compilers with respect to generic code, a new

benchmark had to be created that used generic code and this resulted in the creation

of SciGMark a “generic” version of SciMark 2.0 a popular benchmark for numerical

computation.

The results presented here have been published in [23].

3.2 Benchmarks

In computing, benchmarks are tools to evaluate the performance of different systems.

With respect to component being measured, there are two types of benchmarks,

namely hardware and software.

The hardware benchmarks are programs that measure the performance of differ-

ent computer architectures aspects. For example, a benchmark might execute only

floating-point operations to measure the performance of the CPU with respect to

floating-point operations. Other benchmarks might test the performance of the in-

put/output systems or in executing certain applications.

The software benchmarks measure the performance of different software systems.

This is the case for database management systems. Same queries are used for

databases with identical entries in difference database management systems and the

results are compared against each other.

If the same input program can be processed by two different compilers, the resulted

programs can be measured for different parameters like execution time or size and

72

then compared with each other. The comparison will provide a quantification of the

performance difference between the compilers used.

Another popular software benchmarking technique is to implement same algo-

rithms in different programming languages and compare the resulted programs to

measure the performance difference by using a different programming language.

Programs that are used to measure the performance fall into two categories: pro-

grams that only exhibit the characteristics that must be optimized; and programs

that solve real problems. The first kind are called micro-benchmarks and the sec-

ond kind are called macro-benchmarks. The advantage of micro-benchmark is that

they measure only the implemented optimization, showing a possible upper limit of

the strength of the optimization, while the macro-benchmarks show how useful this

optimization can be when linked together with the rest of the optimizations in real-

world scenarios. There are many benchmarks that test the performance of different

compilers, but there is no standard benchmark suite to be used.

Benchmarks are produced in two different ways: by using an existing application

or by creating programs specially designed to measure certain aspects of the system.

There are two different targets for these kinds of benchmarks, application benchmarks

show what to expect from the system under a real load, and the synthetic benchmarks

provide information about different components of the systems.

Real programs can be any program that user wants to run on the system, and this

provides the performance under that type of load. For most applications, it is hard

to measure the difference and some benchmarks suites have been created and these

are used instead of the real applications. The suites use real applications or parts of

them to perform their tests. An example of macro-benchmark is SPEC [19].

The synthetic benchmarks such as Whetstone/Dhrystone are based on statistics

to measure the frequencies of operations and then use the frequency in designing the

73

benchmark. Other micro-benchmarks are created ad-hoc for different purposes. They

are usually small that measure only a single aspect that is interesting for the problem.

A set of micro-benchmarks could give a simple overview of the expected perfor-

mance, but a greater consideration should be given to the application benchmarks.

3.3 Motivation

While there are many aspects of a compiler that are important [55], for scientific

computation one important aspect is the execution speed of the generated program.

This is a function of the programming language and of the quality of the optimiza-

tions performed by the compiler. Performance evaluation is necessary to evaluate the

quality of a compiler.

Due to the complexity of the generated code and the interaction intricacies be-

tween the program and the advanced architectures, it is not feasible to evaluate the

quality of the resulted program by analyzing the generated code. The solution is to

use a suite of benchmarks to compare the performance between the unoptimized and

the optimized code.

Generic code is not usually as fast as hand written specialized code and bench-

marks traditionally tried to offer the best possible implementation for the given pro-

gramming language. Although, in theory, it is possible to optimize generic code, using

different methods for different programming languages implementations, the compil-

ers tested by us did not do a very good job of trying to optimize the generic code. This

means that even if the programming language provides support for parametric poly-

morphism, the benchmark implementation would try to avoid using polymorphism

to produce the fastest possible implementation.

74

To our knowledge, the only previous benchmark that tested parametric polymor-

phism is Stepanov’s abstraction penalty benchmark to measure the performance of

C++ compilers for compiling templated code used in STL [33, 43]. Stepanov’s bench-

mark is very limited in its scope, and a more thorough benchmark is useful to see

how a compiler behaves under a more complex situation than just parametric calls.

Since previous benchmarking suites did not tackle this problem a new benchmark

needed to be created. SciMark 2.0 is a popular benchmark for numerical computa-

tion. The reason for choosing SciMark was the availability of source code and the fact

that it has been ported also to C. We wanted to target more programming languages

to measure their performance under heavy use of generic code, and having the code

for more programming languages helped speedup the development. Due to the pop-

ularity of SciMark, we later found a version for C# which is very similar to the C#

version included in SciGMark. The benchmark was started as a macro-benchmark to

measure the performance of the Aldor compiler. Later on, other popular program-

ming languages with support for parametric polymorphism such as C++, C# and Java

were included in the benchmark suite.

SciGMark implements generic versions of all the tests included in the original

SciMark. Additionally, we implemented some more tests to broaden the spectrum

of possible use of generics. SciGMark benchmark suite contains a slightly modified

and extended version of SciMark, and the generic versions of the tests included in the

extended SciMark, to allow easy comparison between generic and specialized code.

3.4 SciMark

SciMark [29, 51] is a Java benchmark for scientific and numerical computing, which

has later been ported to C and C#. It measures several computational kernels and

75

reports the score in Mflops (Millions of floating point operations per second).

SciMark measures the following computational kernels for floating point perfor-

mance: fast Fourier transform, Jacobi successive over-relaxation, Monte Carlo inte-

gration, sparse matrix multiplication, and dense LU factorization.

3.4.1 Fast Fourier Transform (FFT)

The Fast Fourier transform (FFT) kernel performs a one-dimensional FFT transform.

This kernel exercises double arithmetic, shuffling, non-constant memory references

and trigonometric functions.

The algorithm of the transform is presented as Algorithm 1.

3.4.2 Jacobi Successive Over-Relaxation (SOR)

Jacobi successive over-relaxation (SOR) on a 100x100 grid exercises typical access

patterns in finite difference applications, for example, solving Laplace’s equation in 2D

with Dirichlet boundary conditions. The algorithm exercises basic “grid averaging”

memory patterns, where each A(i,j) is assigned an average weighting of its four

nearest neighbors.

This is presented in Algorithm 2.

3.4.3 Monte Carlo Integration

This Monte Carlo integration approximates the value of π by computing the integral

of the quarter circle y =
√

1 − x2 on [0, 1]. It chooses random points within the unit

square and computes the ratio of those within the circle. The algorithm exercises

random-number generators, synchronized function calls, and function inlining.

This is presented in Algorithm 3.

76

Algorithm 1 The FFT algorithm implemented in SciMark 2.0.

Input: data: array of double values, n: size of data, direction: {−1, 1}
Output: data: array of double values updated inplace

for i := 0 to n - 1 do
ii := 2 * i; jj := 2 * j
k := n / 2
if i < j then

(data[ii], data[ii+1]) ↔ (data[jj], data[jj+1])
end if
while k <= j do

j := j - k
k := k / 2

end while
j := j + k

end for
dual := 1
for bit := 0 to log n do

w := (1, 0)
θ := direction * π / dual
s := sin θ
t := sin(θ/2)
s2 := 2 * t2

for b := 0 to n - 1 by 2 * dual do
i := 2 * b
j := 2 * (b+dual)
wd := (data[i], data[i+1])
(data[j],data[j+1]) := (data[i],data[i+1]) - wd
(data[i],data[i+1]) := (data[i],data[i+1]) + wd

end for
for a := 1 to dual - 1 do

w := (re(w) - s*im(w) - s2*re(w), im(w) + s*re(w) - s2*im(w)) {w = eiθw}
for b := 0 to n - 1 by 2 * dual do

i := 2 * (b + a)
j := 2 * (b + a + dual)
z1 := (data[j], data[j+1])
wd := w * z1
(data[j],data[j+1]) := (data[i],data[i+1]) - wd
(data[i],data[i+1]) := (data[i],data[i+1]) + wd

end for
end for
dual := 2 * dual

end for

77

Algorithm 2 The SOR algorithm implemented in SciMark 2.0.

Input: G: matrix of double values of size M × N, ω: double
Output: G

for i := 1 to M - 2 do
for j := 1 to N - 2 do

G[i,j] := ω / 4 * (G[i-1,j]+G[i+1,j]+G[i,j-1]+G[i,j+1]) + (1 - ω) * G[i,j]
end for

end for

Algorithm 3 The Monte Carlo integration algorithm implemented in SciMark 2.0.

Input: N: number of samples
Output: an approximation of π

inside := 0
for i := 1 to N - 1 do

x := random number
y := random number
if x*x + y*y <= 1 then

inside := inside + 1
end if
return 4 * inside / N

end for

3.4.4 Sparse Matrix Multiplication

Sparse matrix multiplication uses an unstructured sparse matrix stored in compressed-

row format with a prescribed sparsity structure. This kernel exercises indirection

addressing and non-regular memory references.

This is presented in Algorithm 4.

The sparse matrix is represented in compress-row format. If the size of the matrix

is M ×N with nz nonzeros, then the val array contains the nz nonzeros values, with

its i-th entry in the column col[i]. The integer vector row is of size M + 1 and

row[i] points to the beginning of the i-th row in the col array.

78

Algorithm 4 The matrix multiplication algorithm implemented in SciMark 2.0.

Input: val: non-zero values, col: indexes in val, row: indexes where each row starts
in col, x: the vector used for multiplication

Output: y := val * x
M := size(row) - 1 {M is the number of rows in the matrix}
for r := 0 to M - 1 do

sum := 0
for i := row[r] to row[r+1] do

sum := sum + x[col[i]] * val[i];
end for
y[r] := sum

end for

3.4.5 Dense LU Matrix Factorization

Dense LU matrix factorization computes the LU factorization of a dense 100x100

matrix using partial pivoting. This exercises linear algebra kernels (BLAS) and dense

matrix operations. The algorithm is the right-looking version of LU with rank-1

updates.

This is presented in Algorithm 5.

3.4.6 Other Aspects of SciMark 2.0

Stopwatch

There is a stopwatch to measure the execution time. The operations offered by the

stopwatch are start, stop, reset, resume and read.

Random number generator

SciMark 2.0 implements a random number generator to avoid measuring the perfor-

mance of the standard number generator. The initialization algorithm is presented

in Algorithm 6 and the algorithm that generates the random numbers is presented in

Algorithm 7.

79

Algorithm 5 The LU factorization algorithm implemented in SciMark 2.0.

Input: A: matrix of size M × N
Output: A: LU factorized, pivot: pivot vector for reordering of rows

for j := 0 to min(M, N) do
jp := j
for i := j+1 to M-1 do

if ‖A[i, j]‖ > ‖A[j, j]‖ then
jp = i

end if
pivot[j] := jp
if A[jp,j] = 0 then

return error {zero pivot}
end if
if jp <> j then

row(j) ↔ row(jp)
end if
if j < M - 1 then

for k := j + 1 to M - 1 do
A[k,j] := A[k,j] / A[j,j]

end for
end if
if j < min(M, N) - 1 then

for ii := j+1 to M-1 do
for jj := j+1 to N-1 do

A[ii,jj] := A[ii,jj] - A[ii,j]*A[j,jj]
end for

end for
end if

end for
end for

80

Algorithm 6 The random number generator initialization implemented in SciMark
2.0.
Input: seed
Output: initialized random number generator

m2 := 216

jseed := min(‖seed‖, 231 − 1)
if jseed rem 2 == 0 then

jseed := jseed - 1
end if
k0 := 9069 rem m2
k1 := 9069 / m2
j0 := jseed rem m2
j1 := jseed / m2
for iloop := 0 to 16 do

jseed := j0 * k0
j1 := (jseed / m2 + j0 * k1 + j1 * k0) rem (m2 / 2)
j0 :- jseed rem m2
m[iloop] := j0 + m2 * j1

end for
i := 4
j := 16

Algorithm 7 The random number generator implemented in SciMark 2.0.

Input: an intialized random number generator
Output: a pseudo-random number

k := m[i] - m[j]
if k < 0 then

k := k + 231 − 1
end if
if i = 0 then

i := 16
else

i := i - 1
end if
if j = 0 then

j := 16
else

j := j - 1
end if
k / (231 − 1)

81

Kernels Manager

All kernels are controlled by a special manager. For each algorithm there exists a

function that sets up the environment, times the function and runs the kernel in a

tight loop. If the execution time does not exceed a predetermined resolution time (the

value used by SciMark 2.0 is two seconds), the number of iterations is increased and

the kernel is run again for the new number of iterations. When the resolution time

is exceeded, the time is divided by the number of estimated floating point operations

and divided by 106 to report the result in MFlops.

Main Entry Point

The main entry point runs all the kernels with some predefined constants. There

are two sets of constants: a small dataset and a large dataset. The small dataset is

very small so that data should fit into the CPU cache memory to ignore the effects of

main memory access. The large dataset is much larger to include the effects of main

memory as well.

3.5 SciGMark

Although there are many benchmarks for different aspects of programming languages,

to our knowledge, there is no benchmark that tests the performance of generic code

except Stepanov’s abstraction penalty benchmark [33], which is a micro-benchmark.

To be able to measure the performance of optimizations related to generic code, we

needed a benchmark to compare the generic code against the fastest implementation.

We consider SciMark to be a good implementation of several real algorithms spe-

cialized for floating point numbers. So we have created a generic version of the

same algorithms in SciGMark [23] and compared them against the results offered by

82

SciMark. The results are reported in MFlops (millionfloating point operations per

second) so they can be directly comparable with those of SciMark.

3.5.1 New Kernels Included in SciGMark

SciGMark contains also the enhanced version of SciMark to allow easy comparison

between generic and high specialized code. The enhanced version of SciMark added

two kernels (polynomial multiplication with dense representation, and matrix inver-

sion of sparse matrices using “quadtree” representation) to the kernels already present

in SciMark.

Dense Polynomial Multiplication

The algorithm for dense polynomial addition is presented in Algorithm 8, and the

algorithm for dense polynomial multiplication is presented in Algorithm 9.

Besides addition and multiplication, the dense polynomials offer operations for

building new instances of polynomials equivalent to “0” and “1”.

For SmallPrimeField, the algorithms are too simple to be presented here. They

consist of modular operations on integer values. All programming languages used for

SciGMark have built-in support for modular operations.

Recursive Matrix Inversion

Another useful construct in generic programming is recursive types. As an example of

this type of programming recursive matrices were implemented using the a recursive

data structure in the form of “quadtree matrices”. Suppose there is a matrix M :

M =

A B

C D

83

Algorithm 8 The dense polynomial addition algorithm implemented in SciGMark.

Input: a,b: dense polynomials
Output: c := a + b

ac := coefficients(a)
bc := coefficients(b)
rc := new array(max(degree(a), degree(b)) + 1)
i := 0
while i <= degree(c) and i <= degree(b) do

rc[i] := ac[i] + bc[i]
i := i + 1

end while
while i <= degree(a) do

rc[i] := ac[i]
i := i + 1

end while
while i <= degree(b) do

rc[i] := bc[i]
i := i + 1

end while
return new polynomial(rc)

then A, B, C, D are also block matrices. If the size of M is n × m, then size of each

sub-matrix is n/2 × m/2.

The idea behind the quad matrices is to split the matrix in four sub-matrices and

represent the matrix by its four blocks. All block type algorithms work very well with

this representation. An example of such algorithm for a matrix multiplication is the

Strassen matrix multiplication algorithm presented in [2].

The Strassen algorithm presents a way to multiply 2× 2 matrices with only seven

multiplications and 15 additions. An entry in the matrix can be either a number or

another sub-matrix. This algorithm works very nicely on recursive data structures

like “quadtree matrices”. This data representation is good for memory locality, and

provides reasonable memory use for dense and sparse matrices.

84

Algorithm 9 The dense polynomial multiplication implemented in SciGMark.

Input: a,b: dense polynomials
Output: c := a * b

if a or b = 0 then
return polynomial(0)

end if
if a = 1 then

return b
end if
if b = 1 then

return a
end if
ac := coefficients(a)
bc := coefficients(b)
rc := new array(degree(a) + degree(b) + 1)
for i := 0 to degree(c) do

rc[i] := 0
end for
for i := 0 to degree(a) do

t := ac[i]
if t <> 0 then

for j := 0 to degree(b) do
rc[i+j] := rc[i+j] + t * bc[j]

end for
end if

end for
return new polynomial(rc)

85

Using this representation, a new kernel performing matrix inversion was imple-

mented in SciGMark. A simple algorithm for block matrix inversion is given by Aho,

Hopcroft and Ullmann in [2]. The algorithm is recursive and is presented in formula

3.1.

M−1 =

I −A−1B

0 I

A−1 0

0 S−1

A

I 0

−CA−1 I

=

A−1 + A−1BS−1

A CA−1 −A−1BS−1

A

−S−1

A CA−1 S−1

A

(3.1)

where SA = D −CA−1B is the Schur complement of A in M. There is a dual way to

compute the inverse as seen in formula 3.2.

M−1 =

I 0

−D−1C I

S−1

D 0

0 D−1

I −BD−1

0 I

=

S−1

D −S−1

D BD−1

−D−1CS−1

D D−1 + D−1CS−1

D BD−1

(3.2)

Both formulae 3.1 and 3.2 require that sub-matrix A or D be invertible. An

example of invertible matrix where both A and D are non-invertible is presented in

[71]:

86

1 0

0 0

0 0

1 0

0 1

0 0

0 0

0 1

It is clear that a naive matrix inversion, as presented in formula 3.1 or formula 3.2,

cannot be performed in all cases. One solution to this problem is to use pivoting, but

that solution is hard to implement with block matrices since it might require some

data to be moved between blocks. Watt proposed a more elegant solution, in [71],

that only requires block operations. For the real case, the inverse can be computed

as (MT M)−1MT , where MT is the transpose of the matrix, and the meaning of

MT M is computed using 3.1 or 3.2. This method requires two additional matrix

multiplications at top level. However, it is possible to use the regular simple block

matrix inversion as presented in 3.1 or 3.2, and only use the solution proposed in [71]

when a singular block is encountered.

The algorithm for the simple matrix inversion is presented as Algorithm 10. The

safeInvert procedure is the safe matrix inversion algorithm.

The algorithm for the safe matrix inversion is presented in Algorithm 11.

There is also a dual to Algoritm 10, which uses the formula 3.2. The inversion

function tries to apply first the algorithm from 10, if that one fails, tries to apply the

dual and finally, if they don’t work the safe version is applied.

87

Algorithm 10 The invert algorithm for block matrix (as presented in formula 3.1).

Input: m: square matrix represented as a quad-tree
Output: mi := m−1

if m−1
11 = 0 then

return safeInvert(m)
end if
d := m22 − m21m

−1
11 m12

if d = 0 then
return safeInvert(m)

end if
mi11 := m−1

11 + m−1
11 m12d

−1m21m
−1
11

mi12 := −m−1
11 m12d

−1

mi21 := −d−1m21m
−

111
mi22 := d−1

return mi

Algorithm 11 Algorithm safeInvert for safe block matrix inversion.

Input: M : square matrix represented as a quad-tree
Output: Mi := M−1

mtm11 := mT
11m11 + mT

21m21

mtm12 := mT
11m12 + mT

21m22

mtm21 := (mT
11m12 + mT

21m22)
T

mtm11 := mT
12m12 + mT

22m22

mtm := (mtm11, mtm12, mtm21, mtm22)
return mi := mtm−1mT {Invert MT M instead of M}

88

3.5.2 From SciMark 2.0 to SciGMark

When creating SciGMark, two opposite approaches were used. For the algorithms

implemented in SciMark 2.0, a generic version version was created by creating new

interfaces that provided the basic operations required by the algorithms. Then im-

plementations of those types were provided. Finally, a generic form of the kernel was

created that used the same algorithm as the original SciMark algorithm, but using

the operations provided by the generic type.

For most algorithms, it was possible to create types that represent the semantics

of the data. For example, the fast Fourier transform uses complex numbers, but the

algorithm represents a complex number by two double values. The generic form

creates the type Complex. Similarly, the recursive matrix inversion uses a matrix

type.

To separate the types from their implementation, all operations are performed

through interfaces. The UML diagram of the interfaces and their relationship is

presented in Figure 3.1. The interfaces used are described below.

The ICopiable interface ensures that a new instance can be created given an ex-

isting one. This was necessary to overcome the type parameter instantiation problem

which exists in the implementation of generics in the Java programming language.

The IRing interface provides the basic arithmetic operations: addition, subtrac-

tion, multiplication, and division. It also provides operations to create the 0 and 1

elements.

The IInvertible interface offers the invert operation.

The ITrigonometric is a convenience interface that implements trigonometric

operations. The specialized FFT algorithm uses sin and cos to compute the recurrence

ω = eiθω. These operations are grouped in the ITrigonometric interface.

89

IRing
T

ICopiable
T

IInvertible
T T

ITrigonometric

R: IRing<R>
Complex

IComplex
C,E:IRing<E>

E: IRing<E>
SmallPrimeFieldG DoubleRing

M,R:IRing
IMatrix

M: IMatrix<M,R>
RecMat

Figure 3.1: The UML diagram of the interfaces and implementation examples for
Complex and RecMat.

90

The interface IComplex builds on top of IRing with operations specific to com-

plex numbers: create to create new complex numbers given two values of type R, re

extracts the real part of the complex number, setRe sets the real part of the com-

plex number, im extracts the imaginary part of the complex number, setIm sets the

imaginary part of the complex number.

Similarly, the interface IMatrix adds operations specific to matrices: get gets a

value at the coordinates i and j, set sets the values at coordinates i and j, t performs

a transposition of the matrix, getRows retrieves the number of rows and getCols

retrieves the number of columns.

The simplest data type is DoubleRing. As seen in Figure 3.1, DoubleRing im-

plements the IRing, IInvertible and ITrigonometric interfaces. The DoubleRing

type is just a simple wrapper on top of double basic data type used by SciMark 2.0.

We are aware that comparing boxed objects in the form of DoubleRing (which

is nothing more than a wrapper on top of double precision floating point type) with

a primitive type like double introduced a large overhead. However, the current Java

language specification does not allow use of primitive types as type parameters. This is

not the case for C++ or C#, but for the sake of uniformity we used similar approach for

all languages involved in the test. C++ is able to remove the overhead of DoubleRing

when stack allocated objects are used. For C# it is possible to specify primitive types

as type parameters, but it is not possible to describe their operations through our

interfaces, so we define our own data types, which are structures instead of classes

for efficiency reasons.

The next level is the Complex data type, which uses another type parameter,

namely the type of the real and imaginary part. The complex number can use any

of the types that implement the IRing interface. In some cases the use of complex

numbers is implicit in SciMark, as is the practice in much scientific computation. For

91

example, the FFT test uses an array of 2n doubles to represent n complex numbers.

In our generic kernel, we replaced this use with Complex <DoubleRing> class. This

explicit form is more likely to be used in practice with generic codes.

For the generic version of the Monte Carlo algorithm it was only necessary to

replace the double basic type with DoubleRing. There is no other useful change that

can be performed to make it more generic.

To generalize successive over-relaxation, sparse matrix multiplication and LU fac-

torization, the double primitive type was only replaced by the DoubleRing class and

use the operations through the IRing interface. A more complete implementation

for these kernels would have been to provide generic versions of Matrix and Vector

corresponding to sparse and dense cases.

Since generic polynomial arithmetic uses type parameters in another representa-

tive manner, we decided to include polynomial multiplication as a test in SciGMark.

To make comparisons, it was necessary to provide both specialized and generic imple-

mentations. Both versions used a dense polynomial representation with coefficients

from a prime field. For the polynomial multiplication we started with the generic

version and then created the specialized version by inlining the modular operations.

The generic polynomial multiplication test used the generic class DensePolynomial

<R>. The parameter R was instantiated with the SmallPrimeField class, which would

perform the modular calculations within its arithmetic methods. This test made sig-

nificant use of memory allocation to create the polynomial objects.

Another high level data type example is RecMat. It implements the IMatrix and

the IInvertible interfaces. This means any operation available in IMatrix and

invert can be performed in RecMat. It takes as type parameters another IMatrix

for block sub-matrices, and a IRing for the elements of the matrix. The type IRing

is used by the get and set methods that treat the matrix as a non-recursive matrix.

92

Since RecMat implements IMatrix interface it can use itself as a type parameter,

allowing constructions such as:

RecMat<RecMat<...>,DoubleRing>,DoubleRing>

where for each recursive layer added another power of 2 is added to the size of the

matrix. This means that if there are k levels of RecMat, the size of the matrix will be

2k × 2k and for the next layer, the new size will be 2k+1 × 2k+1. Using only RecMat,

the type construction cannot stop, so a new type was created Matrix2x2 which a

2 × 2 matrix. Using Matrix2x2 a 4 × 4 matrix can be constructed using:

RecMat<Matrix2x2<DoubleRing>,DoubleRing>

There is also a Matrix1x1 which extends DoubleRing with matrix type operations,

but the performance using Matrix1x1 is far worse than Matrix2x2. Therefore, only

Matrix2x2 was used in the tests.

3.5.3 SciGMark for Aldor

With the Aldor programming language interfaces are implemented using categories

and classes are implemented using domains. Parametric polymorphism can be ob-

tained in Aldor using functors that produce new domains using type parameters. For

example Complex domain is implemented in Listing 3.1.

All operations used are declared in categories, and the example for the complex

case is presented in Listing 3.2.

In the generic version, the basic arithmetic operations are used from the domain

E, which is of type IRing.

93

Listing 3.1: Implementation of Complex parametric type in Aldor.

1 define MyComplex(E: IRing): IMyComplex(E) == add {

2 Rep == Record(r: E, i: E);

3

4 create(re: E, im: E): % == per [re,im];

5 getRe(t:%): E == rep(t).r;

6 setRe(t:%, re: E): () == rep(t).r := re;

7 getIm(t:%): E == rep(t).i;

8 setIm(t:%, im: E): () == rep(t).i := im;

9 (t:%)+(o:%): % == per [rep(t).r+rep(o).r, rep(t).i+rep(o).i];

10 (t:%)-(o:%): % == per [rep(t).r-rep(o).r, rep(t).i-rep(o).i];

11 (t:%)*(o:%): % == {

12 rt := rep(t); ro := rep(o);

13 per [rt.r*ro.r - rt.i*ro.i, rt.r*ro.i + rt.i*ro.r];

14 }

15 (t:%)/(o:%): % == {

16 rt := rep t; ro := rep o;

17 denom := ro.r*ro.r + ro.i*ro.i;

18 per [rt.r*ro.r+rt.i*ro.i/denom, rt.i*ro.r-rt.r*ro.i/denom];

19 }

20 coerce(t:%): double == rep(t).r::double;

21 (t:TextWriter)<< (d:%): TextWriter == t<<rep(d).r<<"+i*"<<rep(d).i;

22 ...

23 };

Listing 3.2: Implementation of Complex category in Aldor.

1 define IMyComplex(E: IRing): Category == IRing with {

2 create: (E,E) -> %;

3 getRe: (%) -> E;

4 setRe: (%,E) -> ();

5 getIm: (%) -> E;

6 setIm: (%,E) -> ();

7 test : () -> ();

8 };

94

In the specialized version, the standard Aldor library provides DoubleFloat for

double precision floating point numbers. The DoubleFloat type uses a boxed value

to represent floating point values (the actual representation is Record(float:DFlo)).

To achieve maximum performance, in SciGMark, the type used was DFlo which

the representation of an unboxed double precision floating point value.

To be able to work with this type, a specialized version of arrays was implemented

for double values called PAD. There is another version for arrays of integer values,

called EPA. All these implementation use the operations available in the Machine

domain. This was done to achieve the maximum performance possible for specialized

cases.

The kernels were implemented using a domain for each kernel, and also some do-

mains were used for the Stopwatch, Random, kernel manager, and main entry point.

As an example of generic and specialized implementations, the fast Fourier transform

code is included in the appendix A.1 and A.2. While the Aldor programming lan-

guage is not an object-oriented programming language and the implementation could

have been done with top level functions, this approach was used to have an uniform

implementation among all programming languages.

3.5.4 SciGMark for C++

C++ supports object-oriented programming. Classes are supported directly. C++ does

not have the notion of interface, but abstract classes can be used instead of interfaces.

C++ also supports parametric polymorphism with the templates mechanism.

In C++, the use of stack allocated objects is much faster than the heap allocated

objects. Code similar to typical Java, where each object is heap allocated, will some-

times result in worse performance for C++ than Java, because Java has a highly

95

Table 3.1: C++ micro-benchmark: STL vector versus C-style arrays.
Container Parameter Iterator Time (s)

vector double no 9.8
vector double iterator 9.8
array double no 9.9
array double double * 9.9
vector Double no 9.9
vector Double * no 34.4
vector Complex<Double> no 18.5
vector double,double no 17.5

optimized memory allocator. Therefore, stack allocated objects for the C++ version

of SciGMark tests have been used.

To decide which implementation to use for our benchmark, we wrote a micro-

benchmark to check if there is a significant difference between arrays and STL vector

(Table 3.1). The two containers used are vector and primitive arrays. The elements

of the containers are of basic type double, or a wrapper class Double. It can be

observed that the use of iterators makes no difference. The results were obtained

using GNU C++ compiler gcc version 3.3.

Based on the simple tests from Table 3.1, which show that the performance of

std::vector is close to primitive arrays, and because the C++ standard template li-

brary is well supported by most of the C++ compilers, we decided to use the collections

available from C++ instead of basic arrays provided by plain C.

Another optimization problem, worth mentioning, was the use of another file for

the Double class. If Double was defined in a separate file, the C++ optimizer did

not inline the code of Double into the caller. So we had to either put the definition

together with the declaration in the header file, or to define the Double class in the

same file as the caller code.

An implementation example for the IComplex interface is presented in Listing 3.3.

96

Listing 3.3: IComplex interface in C++.

1 template <typename C, typename E>

2 class IComplex : IRing<C> {

3 public:

4 virtual C create(E re, E im) const = 0;

5 virtual E getRe() const = 0;

6 virtual void setRe(E re) = 0;

7 virtual E getIm() const = 0;

8 virtual void setIm(E im) = 0;

9 };

Listing 3.4: Complex class implemented in C++.

1 template<typename R> class Complex : IComplex<Complex<R>,R> {

2 R re, im;

3 public:

4 Complex(R re = 0, R im = 0) {this->re = re; this->im = im;}

5 Complex<R> create(R re, R im) const {return Complex<R>(re,im);}

6 Complex<R> copy() const {return Complex<R>(re.copy(), im.copy());}

7 std::vector<Complex<R> > newArray(int size) const

8 {

9 return std::vector<Complex<R> >(size);

10 }

11 R getRe() const {return re;}

12 void setRe(R re) {this->re = re;}

13 R getIm() const {return im;}

14 void setIm(R im) {this->im = im;}

15 Complex<R> operator+(const Complex<R>& o) const

16 {

17 Complex<R> t;

18 t.re = re + o.getRe(); t.im = im + o.getIm();

19 return t;

20 }

21 Complex<R> operator-(const Complex<R>& o) const

22 {

23 Complex<R> t;

24 t.re = re - o.getRe(); t.im = im - o.getIm();

25 return t;

26 }

97

Listing 3.5: Complex class implemented in C++.

1 Complex<R> operator*(const Complex<R>& o) const

2 {

3 Complex<R> t;

4 t.re = re * o.re - im * o.im; t.im = re * o.im + im * o.re;

5 return t;

6 }

7 Complex<R> operator/(const Complex<R>& o) const

8 {

9 Complex<R> t;

10 R den = o.re*o.re+o.im*o.im;

11 t.re = (re*o.re+im*o.im)/den; t.im = (im*o.re-re*o.im)/den;

12 return t;

13 }

14 double coerce() {return re.coerce();}

15 std::string toString()

16 {

17 std::stringstream str;

18 str<<re.toString()<<"+i*"<<im.toString();

19 return str.str();

20 }

21 ...

22 };

98

C++ templates do not support bounded polymorphism. As a consequence it is not

possible to specify more precisely the type of the parameter. One of the reasons for

having a specified bound on the type parameters is a clearer understanding of the re-

quirements for the implementation of the type parameter. With the current approach

the only way to specify the interface is through human language in documentation.

Another reason for having the bounds specified explicitly would greatly improve the

type checking in the generic type leading to improved error messages. The param-

eter name is replaced in a macro expansion approach in the resulted code after the

instantiation of a parameter with a type value. In Listing 3.3, an instantiation like:

IComplex<Complex, DoubleRing>

would replace all occurrences of C with Complex and all occurrences of E with Double-

Ring. After the substitution the new class is type checked for correctness.

The class Complex which implements the IComplex interface is presented in List-

ings 3.4 and 3.5.

The generic version overloaded the basic arithmetic operators in DoubleRing and

all other classes that implement the IRing interface, hence all operations are generic.

For the specialized case all operations are done on basic type double for maximum

performance.

Classes were created for Stopwatch, Random, kernel manager and main entry point.

C++ supports programming without objects and templates can also be applied to

functions, but for uniformity we used the same approach as in Java and C# that only

allow code to exist in objects.

99

3.5.5 SciGMark for C#

C# has an interesting implementation for generics. It offers both homogeneous and

heterogeneous approach of implementing the generics. For stack allocated types it

uses a heterogeneous implementation like C++ and for heap allocated objects it uses

a homogeneous approach like Java.

The stack allocated objects are basic types and user defined types that are declared

with the keyword struct. In C# instantiations of classes declared with the keyword

class heap allocated. The syntax for struct and class is identical, just as in

C++. One problem with stack allocated objects in C# is that the compiler can decide

to allocate them on heap if they are stored in collections [38]. In particular, if stack

allocated objects are stored in collections that require heap allocated objects, the stack

allocated objects are automatically “boxed”. The boxing procedure transforms stack

allocated into heap allocated objects. Kennedy and Syme [34] propose a mechanism

to specialize the code for reference types as well. Their proposal also shares the

specializations between “compatible” instantiations. It is not clear if this proposal

was implemented in the commercial .NET framework. Generic collections do not box

stack allocated objects.

For Complex interface, the source code is presented in Listing 3.6. The value type

Complex that implements IComplex is presented in Listing 3.7. As seen in Listing 3.7,

struct was used to create value type objects. This was done to use the specialization

of data implemented for value type objects.

The generic version creates corresponding methods for each of the basic arithmetic

operations. Even though the C# programming language allows operator overloading,

the operators cannot be used in interfaces, which means they cannot be called through

an interface. Since SciGMark uses the types through their interface, we had to use

100

Listing 3.6: IComplex interface implemented in C#.

1 public interface IComplex<C, E> : IRing<C> where E: IRing<E> {

2 C create(E re, E im);

3 E getRe();

4 void setRe(E re);

5 E getIm();

6 void setIm(E im);

7 }

usual function names such as: a instead of +, s instead of -, m instead of * and d

instead of /.

For the specialized case all operations are done on basic type double for maximum

performance.

Just as in the original SciMark, classes were created for Stopwatch, Random, kernel

manager and main entry point.

3.5.6 SciGMark for Java

In Java, like in C#, generics are a new addition to the language. Unlike, C#, the imple-

mentation of generics in Java has some problems due to backward/forward compat-

ibility requirements imposed by Sun. Forward compatibility requires that programs

written for current virtual machine to be run on older virtual machines. Due to this

restriction, the virtual machine could not include some extra bytecode instructions

that were required to properly support the generics.

We tried to use different optimization hints for the Java compiler to help it produce

faster code. In our experiments, we discovered that by using the current release of the

server version of the just-in-time compiler from Sun, it is not important to the overall

performance to use modifiers like static, or final. Primitive arrays were used instead

101

Listing 3.7: IComplex interface implemented in C#.

1 public struct Complex <R> : IComplex<Complex<R>,R> where R: IRing<R>

2 {

3 private R re;

4 private R im;

5 public Complex(R re, R im) {this.re = re; this.im = im;}

6 public Complex<R> create(R re, R im) {return new Complex<R>(re,im);}

7 public Complex<R> copy() {return new Complex<R>(re.copy(), im.copy());}

8 public R getRe() {return re;}

9 public void setRe(R re) {this.re = re;}

10 public R getIm() {return im;}

11 public void setIm(R im) {this.im = im;}

12 public Complex<R> a(Complex<R> o) {

13 return new Complex<R>(re.a(o.re), im.a(o.im));

14 }

15 public Complex<R> s(Complex<R> o) {

16 return new Complex<R>(re.s(o.re), im.s(o.im));

17 }

18 public Complex<R> m(Complex<R> o) {

19 return new Complex<R>(re.m(o.getRe()).s(im.m(o.getIm())),

20 re.m(o.getIm()).a(im.m(o.getRe())));

21 }

22 public Complex<R> d(Complex<R> o) {

23 R d = o.re.m(o.re).a(o.im.m(o.im));

24 return new Complex<R>(re.m(o.getRe()).a(im.m(o.getIm())).d(d),

25 im.m(o.getRe()).s(re.m(o.getIm())).d(d));

26 }

27 public double coerce() {return re.coerce();}

28 public override String ToString() {

29 return re+"+i*"+im.ToString();

30 }

31 ...

32 }

102

Container Parameter Time (s)
array double 1
array D 20
Vector D 26

Table 3.2: Java micro-benchmark: Vector versus arrays.

of collection classes such as Vector, because of the performance loss. Vector uses

synchronization mechanism to implement thread safe collections and this is one of

the reasons why Vector is slow compared with primitive arrays. A non-synchronized

version of list collection is ArrayList which performs better than Vector for single

threaded access. One simple test that uses Vector and arrays as containers and

performs an element by element multiplication shows a 25% performance decrease in

performance. Parameter D in table 3.2 is a simple wrapper for double basic type.

The erasure technique used to implement generics in Java created some problems

that complicated the implementation of generic algorithms. In this technique, the

type parameter is replaced with the type bound if it exists, or if there is no type

bound, the parameter is replaced with Object. For example Complex class in Java is

implemented as seen in Listing 3.8. Due to the erasure of the type, the actual type

used to instantiate the type is unknown and this makes it impossible to create new

objects of the type used as parameter.

The IComplex interface is presented in Listing 3.9.

Java does not allow operator overloading, therefore the generic version creates

corresponding methods for each of the basic arithmetic operations: a instead of +, s

instead of -, m instead of * and d instead of /.

For the specialized case all operations are done on basic type double for maxi-

mum performance. Java was the initial implementation for the SciMark, and all the

supporting classes were reused from there.

103

Listing 3.8: Complex implementation in Java.

1 public class Complex <R extends IRing<R>>

2 implements IComplex<Complex<R>,R> {

3 private R re;

4 private R im;

5 public Complex(R re, R im) {this.re = re; this.im = im;}

6 public Complex<R> create(R re, R im) {return new Complex<R>(re,im);}

7 public R re() {return re;}

8 public void setRe(R re) {this.re = re;}

9 public R im() {return im;}

10 public void setIm(R im) {this.im = im;}

11 public Complex<R> a(Complex<R> o) {

12 return new Complex<R>(re.a(o.re()), im.a(o.im()));

13 }

14 public Complex<R> s(Complex<R> o) {

15 return new Complex<R>(re.s(o.re()),im.s(o.im()));

16 }

17 public Complex<R> m(Complex<R> o) {

18 return new Complex<R>(re.m(o.re()).s(im.m(o.im())),

19 re.m(o.im()).a(im.m(o.re())));

20 }

21 public Complex<R> d(Complex<R> o) {

22 R denom = o.re().m(o.re()).a(o.im().m(o.im()));

23 return new Complex<R>(re.m(o.re()).a(im.m(o.im())).d(denom),

24 im.m(o.re()).s(re.m(o.im())).d(denom));

25 }

26 public double coerce() {return re.coerce();}

27 public String toString() {return new String(re + "+i*" + im);}

28 }

Listing 3.9: IComplex interface implementation in Java.

1 interface IComplex<C, E extends IRing<E>> extends IRing<C> {

2 C create(E re, E im);

3 E re();

4 void setRe(E re);

5 E im();

6 void setIm(E im);

7 C fromPolar(E modulus, E exponent);

8 }

104

Listing 3.10: Implementation of a generic type in Maple.

1 MyGenericType := proc(R)

2 module ()

3 export f, g;

4 # Here f and g can use u and v from R.

5 f := proc(a, b) foo(R:-u(a), R:-v(b)) end;

6 g := proc(a, b) goo(R:-u(a), R:-v(b)) end;

7 end module

8 end proc:

3.5.7 SciGMark for Maple

Parametric polymorphism can be achieved in Maple using module-producing func-

tions. The basic mechanism is to write a function that takes one or more modules as

parameters and produces a module as its result. The module produced uses operations

from the parameter modules to provide abstract algorithms in a generic form. An

example can be seen in Listing 3.10. The results obtained here have been presented

in [24].

We investigated two ways to use this basic idea to provide generics in Maple:

• The first method — the “object oriented” (OO) approach — represented each

value as a module. This module had a number of components, including fields

(locals or exports) for the data and for the operations supported. Each value

would be represented by its own constructed module.

• The second method — the “abstract data type” (ADT) approach — represented

each value as some data object, manipulated by operations from some module.

One module was shared by all values belonging to each type, and the module

provided operations only. The data was free-standing.

We produced two Maple versions of SciGMark: one for each of these approaches.

105

Listing 3.11: Implementation of the double wrapper.

1 DoubleRing := proc(val::float)

2 local Me;

3 Me := module()

4 export v, a, s, m, d, gt, zero, one,

5 coerce, absolute, sine, sqroot;

6 v := val;

7 a := (b) -> DoubleRing(Me:-v + b:-v);

8 s := (b) -> DoubleRing(Me:-v - b:-v);

9 m := (b) -> DoubleRing(Me:-v * b:-v);

10 d := (b) -> DoubleRing(Me:-v / b:-v);

11 gt := (b) -> Me:-v > b:-v;

12 zero := () -> DoubleRing(0.0);

13 one := () -> DoubleRing(1.0);

14 coerce := () -> Me:-v;

15 absolute:= () -> DoubleRing(abs(v));

16 sine := () -> DoubleRing(sin(v));

17 sqroot := () -> DoubleRing(sqrt(v));

18 end module:

19 return Me;

20 end proc:

In both the OO and ADT versions, the SciGMark kernels use numerical operations

from a generic parameter type. For the concrete instantiation of this parameter, we

created the module “DoubleRing” as a wrapper for floating point. The code for the

OO version of DoubleRing is presented in Listing 3.11.

This version simulates the object-oriented model by storing the value and the op-

erations in a module. Each call to DoubleRing produces a new module that stores its

own value. The exports a, s, m and d correspond to addition, subtraction, multipli-

cation and division. We chose these names, rather than ‘+‘, ‘-‘, ‘*‘ and ‘/‘, since

Maple’s support for overloading basic operations is rather awkward and we were not

producing a piece of code for general distribution. The last two functions, sine and

106

Listing 3.12: The ADT version of double wrapper.

1 DoubleRing := module()

2 export a, s, m, d, zero, one,

3 coerce, absolute, sine, gt, sqroot;

4 a := (a, b) -> a + b;

5 s := (a, b) -> a - b;

6 m := (a, b) -> a * b;

7 d := (a, b) -> a / b;

8 gt := (a, b) -> a > b;

9 zero := () -> 0.0;

10 one := () -> 1.0;

11 coerce := (a::float) -> a;

12 absolute := (a) -> abs(a);

13 sine := (a) -> sin(a);

14 sqroot := (a) -> sqrt(a);

15 end module:

sqroot, are used only by the FFT kernel to replace complex operations and to test

the correctness of the results.

The code for the ADT version of DoubleRing is given in Listing 3.12.

It can be seen that this approach does not store the data; it provides only the opera-

tions. As a convention, one must coerce the float type to the representation used by

the module. In this case the representation used is exactly float (as can be seen from

the coerce function). The DoubleRing module is created only once when the module

for each kernel is created.

Each SciGMark kernel exports an implementation of its algorithm and a function

to compute the estimated floating point instruction rate. Each of the kernels is

parametrized by a module, R, that abstracts the numerical type. An example of this

structure is presented in Listing 3.13.

The high-level structure of the implementation is the same in both the OO and

ADT generic cases. The detailed implementations of the functions in the module are

107

Listing 3.13: The generic version of the FFT algorithm.

1 gFFT := proc(R)

2

3 module()

4 export num_flops, transform, inverse;

5 local transform_internal, bitreverse;

6

7 num_flops := ...;

8 transform := proc(data::array) ... end proc;

9 inverse := proc(data::array) ... end proc;

10 transform_internal := proc(data, direction) ... end proc;

11 bitreverse := proc(data::array) ... end proc;

12 end module:

13

14 end proc:

Model Code
Specialized x*x + y*y

Object-Oriented (x:-m(x):-a(y:-m(y))):-coerce()

Abstract Data Type R:-coerce(R:-a(R:-m(x,x), R:-m(y,y)))

Table 3.3: Differences in implementation of specialized and generic code

108

different, however. An example of the same piece of code in all three cases is shown

in Table 3.3. One can see that the specialized version makes use of the built-in Maple

operations. In this case, the values use Maple’s native floating point representation.

The other two versions make use of exported operations from R, which in our case is

given by DoubleRing. The object-oriented model uses a module instance to obtain

the operations associated with the data. One can see that in the object-oriented

model the variables are themselves modules and are used to find the operations. On

the other hand, the abstract data type model uses a module for the operations that

is not connected to the data in any explicit way. In the abstract data model, the

parameter passed in to the kernel module is the same for all operations on all data.

We tested the kernels described in Section 3.5. These were implemented in the

same way in Maple as in the other languages. In particular, we did not make use

of Maple’s own arithmetic to treat complex values and matrices as single objects.

By doing this, and by taking tests where the parameter values were relatively light

weight (floating point numbers), we hoped to expose the worst case performance of

generics.

3.6 Results

The following tables show the performance both for generic code, and hand-written

specialized code. The entries in the tables are given in MFlops. The tests were

performed on a Pentium IV 3.2 GHz with 1MB of cache and 2GB RAM. The operating

system was Windows XP SP2. The compilers used were: Cygwin/gcc 3.4.4 for C++,

Sun Java JDK 1.6.0 for Java, Microsoft.NET v2.0.50215 for C#, and version 1.0.3 for

Aldor.

109

For C++, SciGMark was run on other compilers, too. The two compilers tested

were: Microsoft Visual C++ 2005 and Intel C++ compiler version 10. The Intel com-

piler produced a ratio between generic and specialized of approximately 2×, and the

Microsoft compiler obtained a ratio of approximately 4.5× speedup. The results are

consistent with those produced by the GNU compiler. Therefore, the GNU C compiler

was representative.

The results are presented for both small and large datasets for each programming

language individually. In the small dataset, the size of each test is reduced such that

all the data required by each kernel is small enough to fit in the processor’s cache

memory to avoid measuring the cache misses penalty. At the other extreme, the large

dataset has bigger size of working data such that it is very unlikely that all the data

could fit in the processors’s cache, therefore cache misses will occur.

The absolute values of the result for each programming languages are not as

important as the ratio because the goal of this benchmark was to provide a comparison

between code that is specialized by hand and the code produced by the compiler for

the generic case.

The testing procedure ran the benchmark for each compiler three times and re-

ported the average value obtained. The variations between results of each iteration

were less than 2%. The data uses random values and the arrays are filled in a linear

fashion.

It is also outside the scope of this benchmark to compare the languages with each

other since some compilers, such as the one for Java and the one for C++ are able to

use the extended instructions sets and perform automatic vectorization of the code,

while C# and Aldor do not do this.

110

Kernel Generic Specialized Ratio Size

Fast Fourier Transform 5 259 51.8 1024
Successive Over Relaxation 43 488 11.4 100x100

Monte Carlo 85 165 1.9 n × tintegrate ≥ tmin

Sparse Matrix Multiplication 18 295 16.4 N=1000, nz=5000
LU factorization 21 342 16.3 100x100

Polynomial Multiplication 9 81 9.0 N=40
Recursive Matrix Inversion 7 28 4.0 N=16x16

Composite 27 237 8.8

Table 3.4: Performance of generic and specialized code in the Aldor programming
language for the small dataset. The values are presented in MFlops.

Kernel Generic Specialized Ratio Size

Fast Fourier Transform 3 41 13.7 1048576
Successive Over Relaxation 39 446 11.4 1000x1000

Monte Carlo 85 164 1.9 n × tintegrate ≥ tmin

Sparse Matrix Multiplication 16 188 11.8 100000x1000000
LU factorization 23 247 10.7 1000x1000

Polynomial Multiplication 10 87 8.7 100
Recursive Matrix Inversion 7 26 3.7 128x128

Composite 26 171 6.6

Table 3.5: Performance of generic and specialized code in the Aldor programming
language for the large dataset. The values are presented in MFlops.

3.6.1 Results in Aldor

The results obtained for the SciGMark benchmark using the Aldor programming

language on the small dataset is presented in Table 3.4. For the large dataset the

results are presented in Table 3.5.

From Tables 3.4 and 3.5, one can see that the Aldor programming language suffers

from a significant performance penalty when generic code is used. The difference is

smaller for the larger dataset, because the CPU has to spend extra cycles on accessing

the data, which in this case is big enough to cause cache misses. For the large dataset

the useful work is divided between algorithm and memory access and this reduces

the effect of a less than optimal code for the generic case. For the cases where ratios

111

Kernel Generic Specialized Ratio Size

Fast Fourier Transform 247 649 2.6 1024
Successive Over Relaxation 273 558 2.0 100 x 100

Monte Carlo 131 212 1.6 n × tintegrate ≥ tmin

Sparse Matrix Multiplication 453 783 1.7 1000x5000
LU factorization 610 868 1.4 100x100

Polynomial Multiplication 135 649 4.8 40
Recursive Matrix Inversion 130 127 1.0 16x16

Composite 283 478 1.7

Table 3.6: Performance of generic and specialized code in the C++ programming
language using the small dataset. The values are presented in MFlops.

Kernel Generic Specialized Ratio Size

Fast Fourier Transform 72 47 0.7 1048576
Successive Over Relaxation 277 529 1.9 1000 x 1000

Monte Carlo 130 212 1.6 n × tintegrate ≥ tmin

Sparse Matrix Multiplication 249 271 1.1 100000x1000000
LU factorization 266 307 1.2 1000x1000

Polynomial Multiplication 137 47 0.3 100
Recursive Matrix Inversion 129 134 1.0 16x16

Composite 180 235 1.3

Table 3.7: Performance of generic and specialized code in the C++ programming
language using the large dataset. The values are presented in MFlops.

are larger, the algorithms perform more computations in the generic ring R and also

allocate many temporary objects as intermediate values.

3.6.2 Results in C++

The results obtained for the SciGMark benchmark using the C++ programming lan-

guage on the small dataset are presented in Table 3.6. For the large dataset the

results are presented in Table 3.7.

From Tables 3.6 and 3.7, the C++ programming language suffers very little com-

pared to the other languages tested when using generic code. Due to the heteroge-

neous nature of the templates, all code is specialized by the compiler automatically,

112

Kernel Generic Specialized Ratio Size

Fast Fourier Transform 37 240 6.5 1024
Successive Over Relaxation 65 418 6.4 100x100

Monte Carlo 24 62 2.6 n × tintegrate ≥ tmin

Sparse Matrix Multiplication 67 426 6.4 1000x5000
LU factorization 59 395 6.7 100x100

Polynomial Multiplication 43 305 7.1 40
Recursive Matrix Inversion 47 124 2.6 16x16

Composite 49 281 5.7

Table 3.8: Performance of generic and specialized code in the C# programming lan-
guage on the small dataset. The values are presented in MFlops.

Kernel Generic Specialized Ratio Size

Fast Fourier Transform 23 34 1.5 1048576
Successive Over Relaxation 64 400 6.3 1000x1000

Monte Carlo 23 62 2.7 n × tintegrate ≥ tmin

Sparse Matrix Multiplication 73 329 4.5 100000x1000000
LU factorization 60 333 5.6 1000x1000

Polynomial Multiplication 44 421 9.7 100
Recursive Matrix Inversion 46 124 2.7 128x128

Composite 48 244 5.1

Table 3.9: Performance of the generic and specialized code in the C# programming
language using the large dataset. The values are presented in MFlops.

and the expected results are that generic code is closest in performance to the spe-

cialized code when compared with the other languages tested. As in other cases, the

large data set reduces the difference.

3.6.3 Results in C#

The results obtained for the SciGMark benchmark using the C# programming lan-

guage on the small dataset is presented in Table 3.8. For the large dataset the results

are presented in Table 3.9.

From Tables 3.8 and 3.9, the C# programming language suffers more than C++, but

still not as much as the other programming languages included in this test. This might

113

Kernel Generic Specialized Ratio Size

Fast Fourier Transform 38 423 11.0 1024
Successive Over Relaxation 26 788 30.7 100x100

Monte Carlo 14 69 4.9 n × tintegrate ≥ tmin

Sparse Matrix Multiplication 53 307 5.8 1000x5000
LU factorization 34 856 24.9 100x100

Polynomial Multiplication 38 148 3.8 40
Recursive Matrix Inversion 30 36 1.2 16x16

Composite 33 374 11.2

Table 3.10: Performance of generic and specialized code in the Java programming
language using the small dataset. The values are presented in MFlops.

Kernel Generic Specialized Ratio Size

Fast Fourier Transform 3 44 14.2 1048576
Successive Over Relaxation 16 703 45.1 1000x1000

Monte Carlo 13 69 5.2 n × tintegrate ≥ tmin

Sparse Matrix Multiplication 27 208 7.6 100000x1000000
LU factorization 21 228 10.9 1000x1000

Polynomial Multiplication 51 151 3.0 100
Recursive Matrix Inversion 32 31 1.0 128x128

Composite 23 205 8.8

Table 3.11: Performance of generic and specialized code in the Java programming
language using the large dataset. The values are presented in MFlops.

be due to the hybrid approach used in the .NET virtual machine just-in-time compiler

that specializes basic data types and stack allocated types whenever possible. Our

implementation tried to use stack based objects instead of reference objects wherever

possible. As in other cases, the large data set reduces the difference.

3.6.4 Results in Java

The results obtained for the SciGMark benchmark using the Java programming lan-

guage on the small dataset is presented in Table 3.10. For the large dataset the results

are presented in Table 3.11.

114

From Tables 3.10 and 3.11, one can observe that Java also suffers a performance

penalty from the usage of generic code. It is almost comparable with Aldor which also

uses a homogeneous approach to implement parametric polymorphism. The results

show that some specialization should help Java improve the performance. As in other

cases, the large data set reduces the difference.

3.6.5 Results in Maple

The results of running SciGMark in Maple 10 are presented in Table 3.12. The

benchmark was run on a Pentium 4 processor with 3.2 GHz, 1MB cache and 2 GB

RAM. The operating system used was Linux, Fedora Core 4.

The results show that abstract data type model is very close in performance to the

specialized version. The ratio between abstract data type and specialized versions is

roughly 1.3. This means there is not strong justification, based on performance alone,

to avoid writing generic algorithms in Maple. We should point out two situations,

however, that require special consideration: The first is that with several nested levels

of generic construction the compounding of the performance penalty may become

significant. The second consideration is that some Maple procedures obtain their

performance from an evaluation mode, evalhf, that treats hardware floats specially.

Our investigation assumes evalhf is not being used.

The last column of Table 3.12 shows the results for the object-oriented model.

This model tries to simulate as closely as possible the original SciGMark test, given

the language features offered by Maple. This model constructs many modules during

the benchmark, leading to a significant performance degradation. The ratio between

object-oriented and specialized versions is 9.9; that is, the generic OO code is about

one order of magnitude slower than the specialized code. This shows that this ap-

115

Test Specialized Abstract Object
Data Type Oriented

Fast Fourier Transform 0.123 0.088 0.0103
Successive Over Relaxation 0.243 0.166 0.0167
Monte Carlo 0.092 0.069 0.0165
Sparse Matrix Multiplication 0.045 0.041 0.0129
LU factorization 0.162 0.131 0.0111
Composite 0.133 0.099 0.0135
Ratio 1.0 1.3 9.9

Table 3.12: SciGMark MFlops in Maple 10

proach to writing generic code might be avoided in Maple. If generic object-oriented

code is truly required for some application, it would be worthwhile to explicitly sep-

arate the instance-specific data values from a shared-method module. Then values

would be composite objects (e.g. lists) with one component being the shared module.

The performance penalty for generic code should not discourage writing of generic

code, but rather encourage compiler writers to think harder about optimizing generic

code constructs. Generic code is useful, they provide a much needed code reuse that

can simplify the libraries. An example of such optimization has been proposed by

specializing the type according to the particular parameter used when constructing

the type, as mentioned in [22].

3.7 Conclusions and Future Research

As expected, the results show a rather big difference between generic and special-

ized code, showing that there is room for improvement in the way compilers handle

generic code. Before we developed SciGMark, there was no tool to measure how much

slower the code becomes when making heavy use of generics. The good thing about

116

benchmarks is that they generally show the weak points of the compilers motivating

the developers to produce better compilers that generate more efficient code.

There are certain benefits that a generic programming style provides, including im-

proved modularity, improved maintainability and re-use, and decreased duplication.

In a mathematical context, writing programs generically also helps programmers op-

erate at a higher, more appropriate level of abstraction. With these potential benefits,

it is important to understand whether there are opposing reasons that preclude use

of this style. We have made a quantitative assessment of the performance impact of

using a generic programming style in Aldor, C++, C#, Java and Maple.

The use of generic code code impacts differently the performance of the code in

various programming languages. There is a wide range of performance penalties.

C++ produced rather efficient generic code with a ratio of only 1.3 or 1.7 between

generic and specialized. This result was expected due to nature of the implementation

of templates in C++.

The next in the performance list was C# which was showing a ratio of 5.7 for the

small dataset or 2.7 for the large dataset. C# uses a hybrid approach toward generics

implementation, doing specialization for stack allocated objects and code sharing for

reference objects.

The next on the performance gap between generic and specialized code was Aldor.

The Aldor programming language uses a homogeneous approach similar with the one

present in Java. Unlike Java, the parametric polymorphism in Aldor is not converted

to sub-classing polymorphism, but the performance of the memory allocation domain

runtime representation and function lookup in Aldor could be the reasons of the gap

between the two tested cases. One solution to this problem is to avoid heap wherever

possible to close the gap. This contrasts with the results obtained by Stanford bench-

117

mark that showed generic Aldor code runs at similar speeds to specialized C code.

The implementation of the Stanford benchmark did not implement any domains and

did not try to use a generic approach. The difference shows the importance of full

optimization of generics.

The last in order on the performance list was Java which offers only the code

sharing approach, where the polymorphism is actually sub-classing polymorphism.

The results obtained for Java are 11.3 for small dataset and 8.8 for the large one.

We can see here that homogeneous approach chosen for generics implementation in

Java exhibits a large performance gap and we believe that Java could benefit a lot by

specializing the polymorphic code, and not rely on sub-classing polymorphism.

We have found that writing generic code using parametric polymorphism and

abstract data types does not introduce an excessive performance penalty in Maple.

We believe that this is in part due to the fact that Maple is interpreted and there

is little overall optimization. Even specialized code executes function calls for each

operation. Carefully written generic code and code that is not excessively generic can

do well in Maple environment. We suggest that it would be worthwhile to consider

modifications to the Maple programming language to make generic programming

easier.

Writing code in Maple that tries to simulate the sub-classing polymorphism pro-

vided by object-oriented languages such as Java, can be very expensive in Maple.

The code written using this approach can be an order of magnitude slower compared

to the specialized code.

The benchmark in its current state, only measures the speed performance. Most

of the times, and especially for numerically intensive applications this is the most

important variable. However, this is not always the case. Usually, there is a trade-

118

off between code speed and code size when trying to optimize and this might be a

direction for future development. Simple code duplication becomes a problem with

recursive types. For example the recursive matrix representation could produce huge

code increase for larger sizes of the matrix.

Chapter 4

Automatic Domain Code

Specialization

4.1 Introduction

The usual way to enhance the performance of a given program is to profile the code

and then optimize the bottlenecks. The optimization phase is performed by the

programmers taking into account factors such as target architecture, and particular

properties of the problem to be solved. These two factors must be coupled with the

programmer’s skill in both of them. Based on these facts, the resulting final product

may attain the best possible implementation given the circumstances.

Programming languages started with simple instructions and no abstractions of

the hardware, making them very hard to program with. In order to simplify the pro-

gramming task and to increase the productivity of the programmers new abstractions

were introduced. Abstractions such as structure, functions, objects helped producing

more complex programs with reduced programming complexity. However, abstrac-

tions do not come for free. For each abstraction there is a cost associated, which

119

120

can be reduced, or in some cases even removed by using very capable compilers.

Parametric polymorphism is one such abstraction.

This chapter proposes an optimization technique that will alleviate the effects

of generic code use transparently for the programmer. The solution proposed is to

create specialized versions of the domains based on the instantiations discovered by

interpreting the FOAM.

The experimental results show that an increase up to an order of magnitude faster

is possible in some cases. This is possible because in those cases the specialized code

can be reduced to simple basic operations rather than operations on generic data.

The results presented in this chapter have been presented in [22].

4.2 Motivation

The Aldor programming language has very good support for generic programming.

Due to this fact, the libraries provided with Aldor are highly generic and by using

these libraries is possible to create complicated types. Deeply nested types are types

formed by composing several generic type constructors. An example of such deeply

nested type can be obtained with the following construction:

Vector(Matrix(Polynomial(Complex(DoubleFloat))))

The above expression tells us that we have a vector whose elements are matrices,

the elements of the matrix are polynomials with complex coefficients. Also, the real

and imaginary part of complex number are represented by floating-point numbers.

This is a fully defined deeply nested type. Even though Vector, Matrix, Polynomial

and Complex are parametric type constructors, the resulting type is not parametric

anymore. Because in each case, the type parameter has been instantiated by a con-

121

crete type: DoubleFloat for Complex, Complex(DoubleFloat) for Polynomial and

so on.

Constructions such as the one presented above are not very common, but types

with three or four nested levels are commonly encountered. The depth of the nested

type is given by the number of generic type constructors that are used in the con-

struction. The number of type constructors at the same level does not increase the

depth of the type.

Now, let us assume that one would call an operation from the Vector domain.

For example, multiply by a constant. This means each element of the list should

be multiplied by the constant. The elements are matrices, therefore it will call a

function to multiply a matrix by a constant from the Matrix domain. Each element

contained by the matrix is a polynomial, so the matrix multiplication must invoke

the constant multiplication operation from the polynomial domain. All these func-

tion calls require many frame activations and clean up whenever a function from a

domain is called, because for every function call the context has to be switched. This

introduces an overhead that can be avoided by specializing the domain. Furthermore,

after specializing the operations of the domain, it is possible to optimize the resulted

operation using other intra-procedural optimizations which are already implemented

in the compiler.

Because Aldor allows dynamic types, it means that we may not know one domain

constructor from the deeply nested domain tower at compile-time. We may have

situations like these:

Vector(Matrix(Polynomial(Complex(X))))

X (Matrix(Polynomial(Complex(Fraction))))

Vector(Matrix(X (Complex(Fraction))))

122

where X is an unknown domain at the compile-time. In situations like these, the

compiler only specializes the part that is constant. For example in the construction

Vector(Matrix(Polynomial(Complex(X)))), the compiler specializes Vector(

Matrix(Polynomial(Complex))) to a new type. This type will still be paramet-

ric, but the operations from Vector call operations from Matrix directly, instead

of calling operations from a generic type. The specialization is applied recursively

on the resulted type with the Polynomial argument. This happens for all constant

parametric types, and the variable ones are skipped.

We have chosen to implement our optimizations in Aldor because it offers many

benefits such as: excellent support for generic programming, runtime creation of do-

mains, homogeneous implementation of domains, advanced compiler optimizations

useful for our optimization. C++ is already efficient with respect to generics by im-

plementing templates in a similar fashion to macro processors. C# and Java do not

offer a good support for writing generic algorithms in the sense of Standard Template

Library from C++ by separating the data from the generic algorithms.

4.3 Domain Code Specialization

As shown previously, generic functions and functors in Aldor are implemented using

homogeneous approach. What makes this more interesting in the Aldor setting is

that domains may be created at runtime by functions. This means that parametric

domain share the same code among all instances. While this is very flexible, the

performance is not optimal because certain optimizations cannot be performed due

to the requirement that the shared code must be polymorphic, so it cannot take

advantage of any specific properties of the instantiation.

123

Listing 4.1: Ring category

1 Ring: Category == with {

2 +: (%, %) -> %;

3 *: (%, %) -> %;

4 0: %;

5 <<: (TextWriter, %) -> TextWriter;

6 }

4.3.1 Example

To illustrate the homogeneous approach used by the Aldor compiler to implement the

domains, let us start with a simple example of a polynomial multiplication.

First, we define a Ring category that will specify the operations available. The

Ring category declares a type that performs the arithmetic operations: + and *. It

also has a 0 value to produce a new value and an operation to display on screen by

using the operator << (see Listing 4.1.)

Next, we create the domain that defines operations on complex numbers. The

Complex domain is a non-parametric domain of type Ring. It implements all the op-

erations declared in Ring and has some extra operations like the complex constructor,

and two getter functions real and imag to extract the real and imaginary part of the

complex number, respectively.

The representation used by the Complex domain is a pair of integer numbers

enclosed in a record.

This domain would normally be parametrized by the type of the elements con-

tained in the pair, but for simplicity they were set to integer type.

The polynomial domain is a parametrized domain. One can see that it expects a

type parameter of type Ring and produces a domain Polynomial also of type Ring.

Besides the Ring operations, the Polynomial domain provides two constructors.

124

Listing 4.2: Generic version of domain for complex operations

1 MI ==> MachineInteger;

2

3 Complex: Ring with {

4 complex: (MI, MI) -> %;

5 real: % -> MI;

6 imag: % -> MI;

7 } == add {

8 Rep == Record(re: MI, im: MI);

9 import from Rep;

10 complex(r: MI, i: MI): % == per [r, i];

11 real(t: %): MI == rep(t).re;

12 imag(t: %): MI == rep(t).im;

13 (a: %) + (b: %): % == {

14 complex(rep(a).re+rep(b).re, rep(a).im+rep(b).im);

15 }

16 (a: %) * (b: %): % == {

17 ra := rep.a; rb := rep.b;

18 r := ra.re*rb.re-ra.im*rb.im;

19 i := ra.re*rb.im+ra.im*rb.re;

20 complex(r, i);

21 }

22 0: % == complex(0, 0);

23 (w: TextWriter) << (t: %): TextWriter == {

24 w << rep.t.re << "+i*" << rep.t.im;

25 }

26 }

125

Listing 4.3: Generic version of domain for polynomial operations.

1 MI ==> MachineInteger;

2 import from MI;

3

4 Polynomial(C: Ring): Ring with {

5 poly: MachineInteger -> %;

6 poly: Array(C) -> %;

7 } == add {

8 Rep == Array(C);

9 import from Rep;

10 import from C;

11

12 poly(size: MachineInteger): % == {

13 res: Rep := new(size);

14 i:=0@MI;

15 while i < size repeat { res.i := 0@C; i := i + 1; }

16 per res;

17 }

18

19 poly(a: Array(C)): % == {

20 res: Rep := new(#a);

21 i := 0@MI;

22 while i < #a repeat { res.i := a.i; i := i + 1; }

23 per res;

24 }

The internal representation used for the polynomial objects is a dense represen-

tation using an Array.

Using the parametric polynomial domain presented in Listings 4.3 and 4.4 the

complex domain presented in Listing 4.2, one could write a program that performs

an addition between two polynomials as in Listing 4.5.

With the homogeneous approach the code for the Polynomial domain is paramet-

ric and cannot take any advantage of the fact that complex numbers are represented

by a pair of integer numbers. As a consequence the code cannot be optimized in any

way inside the Polynomial domain with respect to particularities of Complex domain.

126

Listing 4.4: Generic version of domain for polynomial operations (Continued).

1 (a: %) + (b: %): % == {

2 c: Rep := new(#rep(a));

3 i := 0@MI;

4 while i < #rep(a) repeat {

5 c.i := rep(a).i + rep(b).i;

6 i := i + 1;

7 }

8

9 per c;

10 }

11

12 (a: %) * (b: %): % == {

13 i := 0@MI;

14 c: Rep := new(#rep(a)+#rep(b)-1);

15 while i < #c repeat { c.i := 0@C; i := i + 1; }

16 i := 0@MI;

17 while i < #rep(a) repeat {

18 j := 0@MI;

19 while j < #rep(b) repeat {

20 c(i+j) := c(i+j) + rep(a).i * rep(b).j;

21 j := j + 1;

22 }

23 i := i + 1;

24 }

25

26 per c;

27 }

28

29 0: % == {poly(1);}

30

31 (w: TextWriter) << (t: %): TextWriter == {

32 w << "[";

33 i := 0@MI;

34 while i < #rep(t) repeat {

35 w << rep(t).i << " ";

36 i := i + 1;

37 }

38 w << "]";

39 }

40 }

127

Listing 4.5: Addition between two polynomials.

1 import from Polynomial(Complex);

2 import from Complex;

3 import from Array Complex;

4 c1 := complex(1,1);

5 c2 := complex(2,2);

6 arr: Array Complex := new(2);

7 arr.0 := c1; arr.1 := c2;

8 a := poly(arr);

9 b := poly(arr);

10 c := a + b;

For the unoptimized case, the function calls to functions defined in domains can

be seen in Figure 4.1. The call to + from Polynomial(Complex) (labeled with (1) in

Figure 4.1) is unknown at compile-time. The closure for + is created in the initializa-

tion part of the program, namely program index 0 in the current unit. The function

call is performed in another function. Since the Aldor compiler only optimizes code

inside functions it will not be able to unfold locally to code of the function from Poly.

Similarly, the call to + performed inside the + function defined in the Poly domain

(labeled with (2) in Figure 4.1) will defer the function discovery to the run-time.

Due to the heavily generic nature of the libraries used by Aldor, this would mean

a poor performance for the Aldor code. Since the Aldor compiler does not perform

interprocedural analysis, the only possible alternative to improve the code is to aggres-

sively unfold the functions at the call site and try to perform the local optimizations

on the local function. This works quite well in some cases. So, the way the current

compiler works is described by Algorithm 12.

The localization of the implementation for a closure is not easy. To be able

to optimize closures, the current optimizer of the Aldor compiler uses information

constructed by the previous stages of the compiler, namely type inference, to find the

128

Runtime +:(%,%)−>%

Complex: Ring

 (1)

(1)

(2)
(2)+:(%,%)−>%

Poly(C: Ring): Ring

(a + b)$Poly(Complex(R))

Figure 4.1: Dynamic dispatch of function calls used by unoptimized code.

Algorithm 12 The inline algorithm used by the Aldor compiler.

Input: : FOAM of the current compilation unit
Output: : FOAM with procedural integration performed

q := create priority queue
inlined := true
for all p ∈ programs(unit) do

while inlined do
inlined := false
for all e ∈ expression(p) do

if type(e) = CCall or OCall then
set priority based on size and number of call sites in current procedure
enqueue(q, e)

end if
end for
while not empty(q) do

c := dequeue(q)
if size(p) < max size then

inline call c
inlined := true

end if
end while

end while
end for

129

actual implementation of the + operator. For every call to closures, the operator of

the function call is annotated with additional information about the call (e.g. the

complete type, if known, and the location of the implementation.) If there is enough

information at compile time to find the implementation, then the code is unfolded

locally at the call site. This local unfolding happens recursively, as long as the target

of the call is known and the local function did not exceed a certain limit.

This approach has the potential to produce an optimal solution for cases when the

whole domain is fully expanded locally. An example of such domain declaration is

Polynomial(Complex). This construction is not parameterized in the function that

contains the code from Listing 4.5. However, the drawback to this approach is that

no optimization is performed on the innermost function calls, should the compiler

decide that the + from Polynomial is not worth inlining. A reason to stop inlining

a function is that the size of the calling function becomes too large. Also, if there

are several calls to a function from parametric domain, the function might not be

deemed worthy to be inlined, and again the whole optimization inside the domain is

impossible.

Yet another case when the existing optimization will not work is in all those cases

when the function cannot be decided at compile time. In these cases, the calling

function cannot unfold the callee locally, and the callee cannot be optimized.

4.3.2 Proposed Optimization for Domain Functions

We see that many opportunities exist for optimization of parametric polymorphism

and that the Aldor compiler seems a suitable test bed for their implementation.

With all these bad cases for the current optimizer, it was clear that a better

130

solution was desirable. The techniques we propose will try to overcome all these

problems and optimize in the different possible cases.

The proposed solution, in its general form, is to use specialization as a technique

to produce versions of the domains that are no longer parametric.

Partial evaluation is program specialization [32]. Program specialization is a very

effective optimization technique. Partial evaluators specialize programs as a whole

rather than functions. They take as input a program and some of the input and

evaluate the parts they can, producing a residual program that takes only the rest of

the input and produces the same result, only faster.

In Aldor, domains are homogeneous, which means that the same domain definition

can be used with different types at runtime. Cooper [17] used a technique called

cloning to improve the interprocedural optimization for functions, by cloning the

body of the function and setting one or more arguments of the function to a constant

value. This allowed a more powerful optimization on the cloned procedure, because

it had some variables replaced by constants. We extend this approach by cloning

the entire domain according to the instantiations used throughout the program. This

allows us to replace the type variables with constants and perform partial evaluation

on the cloned domain.

From an abstract point of view our type specialization is partial evaluation of

type producing functions. In practical terms, we take a FOAM program in the rep-

resentation used by the Aldor compiler and we specialize it according to some type

instantiations. We specialize only those types that can be statically determined i.e.

the types that are constant at compile-time. Whenever a new type is constructed

based on some parametric type, we produce a new specialized type. This optimization

is called type tower optimization.

131

(2)
+:(%,%)−>%

Poly_Complex: Ring

+:(%,%)−>%

Complex: Ring

(a + b)$Poly(Complex(R))

 (1)

Figure 4.2: After domain specialization function calls are not dynamically dispatched.

The technique used is similar to the two-level language used for partial evaluation

that not only specializes the type constructor, but it also specializes all the exports

of that domain, effectively specializing the code of the domain constructed by the

type constructor. This creates operations of that specialized domain as monolithic

operations that are more efficient. Figure 4.2 depicts the new structure of the resulted

code after the specialization. The specialized domain Polynomial Complex is not

parametrized anymore and as a consequence, it does not need the dynamic dispatch

to find the implementation of + from Complex (as it can be seen from the link labeled

(2) in Figure 4.2). Also the + from Polynomial is also directly linked as shown from

link labeled (1) in Figure 4.2.

The overhead of the domain creation is significant, but it only happens once when

the first function exported by the domain is invoked. However, the speedup does not

come from domain creation overhead, rather from the aggressive optimization of the

specialized functions.

132

This kind of optimization is not possible with the optimizations currently present

in the compiler. This optimization requires an interprocedural analysis to pass the

information between callers and domain producing functions.

One problematic point in performing optimizations is the function call. This hap-

pens in our case when domains are created by instantiating parametric domains. The

information about instantiation does not cross the function call boundary. However,

there are two approaches to solve this problem: first is to inline everything into the

caller and optimize everything there, and the second is to perform interprocedural

analysis and send some information across the call boundary.

As we have seen before, the Aldor compiler uses the first approach, but it is limited

to thoses cases where the domain information is complete, or when the procedure

integration is performed.

The disadvantage of data flow analysis from the interprocedural analysis is that

even if the information is sent to the parametric domain the optimization is still lim-

ited. To produce a more powerful optimization, a different technique was proposed by

Cooper, Hall and Kennedy [17]. They propose to create new clones for the functions

based on the data flow analysis. In the cloned functions, one variable is replaced by

a constant and the resulted code is optimized, usually with better results than the

generic form of the function.

The solution proposed here uses a similar approach by creating a clone. Unlike

the simple cloning procedure, our optimizer clones all the operations exported by the

domain. This effectively clones the whole type. The cloning of the type simplifies

the analysis greatly and is able to send the information quicker to all exports of the

parametric domain.

A lot of work has been done to perform type-based optimizations (see section

4.6), which is very useful for object-oriented programming languages where virtual

133

function calls are expensive. Moreover, type specialization optimizations have been

performed for functional programming languages like ML for primitive types. The

optimization proposed for the Aldor compiler is a lot simpler to implement and than

a general interprocedural analysis.

The types are checked by the compiler in the type checking phase, so any type

construction is correct. Therefore, by specializing the type there is no danger to

change the behavior of the program.

The compilation will always terminate, because it does not try to evaluate the

type constructors. For those cases where the complete type cannot be determined

at compile time, only the part that is clearly determined is specialized in a manner

similar to the one described in the section 4.2. The part that cannot be determined

is left in parametric form and no special optimization is performed on it.

This optimization is restricted to those cases where the type is fully or partly

known at compile time. For those types that are dynamically constructed at run-

time, as is the case with some functions able to generate new types at run-time, it is

not possible to optimize in this manner.

4.3.3 Finding Domain Constructing Functions and Getting

Domain Related Information

All Aldor code optimizations are performed by manipulating the FOAM code. An-

alyzing the FOAM code is much simpler than analyzing the Aldor source code. As

mentioned earlier, the domains in Aldor are run-time entities and they have no special

representation in FOAM. Therefore, the first step in the optimization is to reconstruct

partial type information.

134

There are two possible ways to reconstruct that information: use the information

inferred by the type inference phase of the Aldor compiler, or use knowledge about

the runtime implementation and reconstruct the type information from the FOAM

by interpreting it.

At first sight it seems that the first approach might be simpler. Unfortunately,

complete information is not available for compiled modules. The full type infor-

mation can be provided for some variables, but changing code without a thorough

understanding of the operating procedures can lead to subtle errors that very hard

to track. This is not to say that it cannot be used at all. This approach was used to

deal with optimizing code that resides in the already compiled library.

The second approach is a safe alternative. Retrieving the information was done

using a minimal FOAM abstract interpreter. This interpreter detects the run-time

values of the variables and fills the parameters of the functions for function calls.

The execution starts from the program index 0 in the current unit. All the code for

preparing the environment of the file happens inside that program. The code related

to initialization of environments defined in other units from the library happens in

other places and that will be discussed later when dealing with the library code

optimizations.

Domain related operations are performed using run-time function calls such as:

domainMake and rtDelayGetExport. The FOAM interpreter must be able to under-

stand the run-time function call to reconstruct domain related information. So for

every run-time function there is an equivalent in the interpreter. The version from the

interpreter is not always the same with the version from the Aldor run-time system.

135

Listing 4.6: C language representation of important run-time values

1 struct val {

2 enum VTag tag;

3 Foam *orig;

4 Foam foam;

5 union {

6 AInt i;

7 Clos clos;

8 Dom dom;

9 Dtor dtor;

10 String str;

11 Arr arr;

12 Rec rec;

13 Env env;

14 };

15 };

FOAM Values

The first step in implementing the interpreter was to create a representation for im-

portant run-time values produced by the FOAM code. For this reason, the structure

Val was introduced, which can be seen in Listing 4.6. FOAM expressions can have

various values. For a full description of all the possible values please refer to [73].

For the purpose of the domains optimization, a restricted set of supported values was

chosen. The values can be seen in the union part of the data structure. The union

simulates a polymorphic type in C, a much nicer approach is to use sub-classing in

object-oriented programming languages.

The protocol of operation for the Val data structure is to construct a new Val

object with an initial FOAM expression, placed in orig and to try to evaluate the

expression in a given run-time context. Partial values that can be evaluated are placed

in the foam field, while values that can be completely evaluated to one of the known

types is placed in the corresponding value types. Operations on Val type objects

136

Listing 4.7: C language representations of FOAM arrays and records.

1 struct arr {

2 AInt size;

3 Val *v;

4 };

5

6 struct rec {

7 AInt fmt;

8 Val *v;

9 };

should only be performed through the Val interface methods, methods starting with

a twrV... prefix.

Arrays and Records

Arr and Rec have been introduced to deal with FOAM types used in the construction

of the domain. As seen in the domain implementation in FOAM (section 2.6,) all

exports of the domain are represented by the Array domain. The domain is internally

represented by a Rec and an Arr objects.

These types needed support in the interpreter and therefore two data structures

corresponding to each were introduced. The Rec is an exact map of Rec data type

from FOAM, where each Rec has a format declaration, similar to the class declaration,

while the Rec object is an actual instance of that declaration. For the arrays, the

representation contains also the size of the array. This information is not stored in the

FOAM Arr, but it was added in the interpreter to be able to use arrays for functions

parameters list.

137

Listing 4.8: C language representation of closures

1 struct clos {

2 Lib lib;

3 AInt idx;

4 AInt orig_idx;

5 AInt crtLine;

6 Foam prog;

7 Arr loc;

8 Arr par;

9 Env env;

10 Clos caller;

11 Bool evaluated;

12 Val retVal;

13 AIntList jumpedLabel;

14 };

Closures

All domain exports are stored as closures in the domain’s environment. This is one

of the main types handled by the FOAM interpreter. The closure binds together the

code of the function and the execution environment of that function. A special type

was designed to deal with programs related issues. The representation of closures can

be seen in Listing 4.8.

Closures can be defined in different compilation units, therefore the definition

index is not enough to uniquely identify the a closure. The field lib stores the

originating library for non-local closures. For local closures lib is NULL.

The next two fields idx and orig idx identify the definition of the closure. The

second index, orig idx is used when a function is cloned to check if two cloned

functions come from the same origin.

The following set of fields loc and par hold the values of the local variables and

parameters of the closure. They are represented by Arr.

138

The closure’s environment is stored in env, and the lexical level stack is con-

structed by saving the caller closure in caller. The evaluated flag is used to check

if the closure has already been evaluated. The return value of the function is stored

in retVal.

The last field, jumpedLabel is a list of labels that were jumped, as explained below.

This was introduced to allow breaking out of some loops when the loop condition

cannot be evaluated. A simple scanning of the sequence of instructions from the

special functions is not enough to properly determine the value of the variables. This

happens because some values are constructed out of sequence. To solve this problem,

the FOAM interpreter had to jump to different labels based on the condition of some

flags. In some cases, the value of the condition is not known because it requires

the evaluation of all the initialization code from imported library units. If it is not

possible to evaluate a condition, and the condition creates an infinite loop, the jump

is not performed second time. This extra condition for jumping, means the FOAM

interpreter is not a general purpose interpreter. Because of this, code that constructs

domains based on values computed at run-time cannot be properly evaluated. The

code in domain constructing functions does not contain loops, but regular function

can use conditions to select exports from domains. This generates a warning from

the compiler, and will compute the domain information in a regular function instead

of the domain constructing function. This means that the current FOAM interpreter

cannot safely be applied to any FOAM function.

Each closure can be evaluated using twrClosEvalBody. During the evaluation all

FOAM expression that are present in the initialization programs are handled. At the

end of the evaluation, the result is stored in retVal.

Most domain related services are implemented in the runtime system of Aldor.

139

The interpreter should be able to handle those functions to reconstruct domain in-

formation. The functions supported by the FOAM interpreter are:

• rtDelayedGetExport! – this function takes as arguments a domain, the hash

code of the name, and the hash code of the type. If successful, it will return the

closure corresponding to the export from the requested domain. In the run-time

system, this function is a lookup in the lists of exports of the domain. In the

interpreter, it was extended to return the export if and only if there is only one

function with the given name hash. If the function is overloaded and a second

function with the same name hash is found then the function will fail.

• domainAddHash! – this function sets the hash of the domain, and calls the

corresponding function from Dom.

• domainAddNameFn! – this function sets the function that returns the name of

the domain. If the domain is parametric, the name can only be known at run-

time. The name of the domain is not important for domain discovery; it is only

used for debugging information.

• domainAddExports! – this function sets the exports of the domain. First the

three lists (name hashes, type hashes and closures) are created, next they are

stored in the corresponding Dom object.

• domainGetExport! – this is handled by the same function that handles the

delayed exports.

• domainMake – this function creates a run-time Aldor domain, or correspondingly

a Dom object in the FOAM interpreter.

140

• domainFill! – this function does nothing in the interpreter. It should fill the

information in the run-time domain.

• domainHash! – this function retrieves the hash of the domain. It is used

to construct the type hash, when domains are used in the signatures of the

function.

• domainMakeDispatch – this function created the dispatch vector at run-time.

This required due to the two layers of the Aldor domains. It does not affect in

any way the interpreter.

• domainName – retrieves the name of the domain.

• rtSingleParamNameFn – this is a special form of the naming function for domain

that take only one argument as parameter.

• namePartFrString – used when concatenating names to form the domain name

with more than one argument.

• namePartConcat – concatenates the names of the parameters to the name of

the domain.

• rtConstNameFn – constructs a function that returns a constant name for a

domain.

• rtLazyDomFrInit – this function is used to initialize domains from other com-

pilation units.

• rtCacheAdd – this function adds parametric domains to cache to be retrieved

faster. The interpreter needs to handle this function to retrieve the domain that

is being created.

141

Listing 4.9: Unoptimized call

1 (CCall Word (Lex 1 24 *) (Loc 1 a) (Loc 0 b))

• lazyGetExport! – this is used for domains imported from other compilation

units. They are ignored by the interpreter, since the standard Aldor compiler

is able to optimize them.

• rtDelayedInit! – this function is used to initialize domtors imported from

other compilation units.

• stdGet – these are just wrapper functions for closures used by the run-time

system. They are handled only to retrieve the closures called by them.

Function dispatch uses hash code values to identify specific functions. For param-

eteric domains, the hashes are computed at run-time. By specializing the domains,

the hash codes of the domains become known at compile time. As a result, the hashes

of the function can be computed. In order to compute the hashes of the functions,

an evaluator for basic calls (BCall) had to be implemented. The BCall evaluator

only evaluates those basic calls that are used to compute the values of the hashes,

this means only integer values and only the functions described in the algorithm for

combining hashes (see Listing 2.33.)

Another function of the Clos “class” is to optimize the code. The function

twrClosCCallInline optimizes the code by replacing CCall instructions with OCall

instructions. The difference between CCall and OCall is that closure calls perform

calls on already constructed closures, while open calls provide the implementation

details in the call. For example, a call to the multiplication function is invoked; the

corresponding closure call is presented in Listing 4.9.

142

Listing 4.10: Optimized call

1 (EEnsure (CEnv (Lex 1 24 *)))

2 (OCall Word (Const 33 *) (CEnv (Lex 1 24 *)) (Loc 1 a)(Loc 0 b))

The optimized call, obtained by replacing the closed call with an open call, is

presented in Listing 4.10. One can see that the open call provides also the con-

stant (Const 33 *), which is the index in the current unit of the definition. The

environment used for the open call is the same environment as for the closed call.

The open call presented in Listing 4.10 can easily be inlined by the Aldor compiler

optimizer since it provides all the required information to perform the local unfolding.

This method relies on the existing heuristics of the the Aldor compiler to decide if a

function unfolding is worth performing.

Simply replacing the CCall instructions with OCall instructions, is not enough.

It is additionally necessary to make sure the necessary environment has been created.

Normally this is done when the function is obtained dynamically from the domain,

but when it is inlined another step is needed. An extra EEnsure instruction has to be

inserted (see Listing 4.10.) That instruction is necessary because a call to a closure

call will ensure the environment is properly setup before calling the function, while

an open call uses an already setup environment for the call. If the function is called

inside a loop, the EEnsure instruction will slow the execution. To avoid executing

the instruction inside a loop, it is moved outside of the loop.

Domains

Since Aldor domains are run-time objects, their representation in FOAM is Word,

which is the representation for any reference object. But for the actual domain, a

special representation was needed for the domains. Therefore, a new structure was

143

Listing 4.11: C language representation of Aldor domains

1 struct dom {

2 String name;

3 Val vName;

4 Val vHash;

5 Clos al0;

6 Clos al1;

7 Rec expNames;

8 Rec expTypes;

9 Rec expCloses;

10 Syme syme;

11 };

created that represents the Aldor domains, namely Dom (see Listing 4.11.)

The fields vName and vHash are the name and hash of domain as constructed by

the run-time functions. The field name is just a convenience function for debugging

purposes.

The domain constructor functions are stored in the fields al0 and al1. The

addLevel0 function only sets the hash of the domain, the name and the closure

for lazy initialization addLevel1. The second function addLevel1 fills in all the

information for the domain.

Next three fields are the exports of the domain. Each export has an entry in

each list. Here the representation is of type Rec because that is the corresponding

representation for Array. The Array data structure stores the size of the array.

expNames contains the hashes of the names, expTypes contains the hashes of the

types, and expCloses contains the closures of the exports.

The last field is the meaning of the domain. This is used for imported domains,

for which there is no implementation available in the current compilation unit. To

avoid, processing all the compilation units from the libraries, the already constructed

144

information is retrieved from syme. Once the domain is cloned, the local copy is

analyzed just like any local domain.

When a new domain is constructed, the domain constructor functions addLevel0

and addLevel1 are evaluated and domain information is filled in.

The only function of the domain is to optimize the specialized the domain. This is

perfomed by twrDomSpecialize2 function, which calls twrClosOptimize on all the

exports of the domain. The function twrClosOptimize is not an interpreter, it just

scans the regular domain exports and optimizes them by replacing closed calls with

open calls for all calls that have been made constants by the domain specialization.

Domtors

Functions that produce types as values are sometimes called functors. In tower type

optimization implementation, the names we have used is domtors. In this thesis the

two names will be used interchangeably and they mean the same thing.

Another type identified as special was Dtor, the representation for domtors (func-

tors), functions that create Aldor domains. At the FOAM level, they are called getter

functions, and are treated differently by the optimizer. This kind of objects are the

main focus of our optimization.

The structure that offers support for this type is presented in Listing 4.12. Dom-

tors are closures that create parametric domains based on the arguments provided

to them. The domtor stores the parameters used to create a type in a special envi-

ronment which is used by the resulted Aldor domain. After storing the parameters

of the domain, it checks a runtime cache for an already created instance. If an in-

stance is found, the cached values is used, otherwise it creates a new domain by using

the runtime function call domainMake. For a more detailed description of parametric

domains see section 2.6.2.

145

Listing 4.12: C language representation of Domtors.

1 struct dtor {

2 Clos clos;

3 Bool isImp;

4 Dom dom;

5 Syme syme;

6 };

Listing 4.13: Unspecialized domtor

1 (Def (Lex 0 28 dom)

2 (CCall Word

3 (Glo 4 polyg_Poly_300556761)

4 (Glo 5 polyg_Complex_754210471)))

The field clos is the closure corresponding to the domtor. If the domtor is not

local, there is no closure, the field clos has the value NULL, the field isImp has the

value true, and the field syme contains the compiler provided meaning for the domtor.

When a specialization is performed, the code of the domtor from the library is

copied locally. After the copy, a new domtor object is created for the local copy of

the domtor. The new domtor points to the new closure. The local copy is performed

by the extension of the Aldor optimizer.

After the cloning, the cloned domain is specialized by calling twrDomSpecialize2.

In the final step, the original call is replaced by a call to the specialized domtor.

An example of a call to a generic domtor is shown in Listing 4.13.

After the cloning procedure, the call is changed to use the newly cloned domain as

seen in Listing 4.14. In this case a closure is constructed locally with the environment

from the original domtor, and with a new implementation.

146

Listing 4.14: Specialized domtor

1 (Def (Lex 0 28 dom)

2 (CCall Word

3 (Clos (CEnv (Glo 4 polyg_Poly_300556761)) (Const 27 |Poly(Complex)|))

4 (Glo 5 polyg_Complex_754210471)))

Listing 4.15: C language representation of Unit.

1 struct unit {

2 Foam unit; /* the original foam */

3 FoamBox globals; /* globals */

4 Arr glo; /* globals values*/

5 FoamBoxList formats; /* all formats */

6 ClosList clos; /* Assoc list of inlined constants */

7 FoamList exts; /* definitions of externals */

8 DtorList dtors;

9 };

Units

Another data structure is Unit (see Listing 4.15), which corresponds to the entire

FOAM Unit. It is meant to represent the whole compilation unit and to also provide

an interface between the optimization and the FOAM.

At the initialization stage, the FOAM unit is analyzed and broken down into

smaller blocks. The original unit is saved in unit. The global variables are saved into

the fields globals and glo, the first one contains the declarations and the second one

the values.

All declarations are stored in the field formats and the list of programs in the clos

field. These closures cannot be properly evaluated because they contain a NULL envi-

ronment. Clos was used to store the implementation of the local programs without

introducing a new data type for the Prog FOAM instruction.

147

The exts are just the initialization code for the local global variables. They are

restored in the finalization code of the optimization.

The last field dtors is a list of known domtors, and their specialization. This list

is used to check if a specialization exists already. Finding an existing specialization

is done by constructing a new specialization based on some instantiation code, and

checking if an equivalent specialization already exists in dtors. In case such a spe-

cialization is found, the new specialization is dropped and the existing one is used

instead. This is implemented in twrUnitFindSpecialization2.

The unit manages the values of the global variables, and manipulates FOAM code

by adding the code of the functions from the library.

The Code Specialization Algorithm

Algorithm 13 is the top-level code specialization algorithm. The algorithm starts

with program index 0 by evaluating each instruction. For each expression that is

understood by the evaluator, the corresponding action is taken. The runtime calls

supported by the evaluator are presented in Section 4.3.3. For each evaluation a Val

object is created with either the partially evaluated FOAM code, or a special object

for arrays, records, closures, domains and domtors.

Definitions store values. Function calls evaluate the operand and the arguments

and based on the operand, some actions are performed. Builtin calls are evaluated.

The builtin calls present in program 0 or addLevel0 and addLevel1 are used to

compute the hash codes for names and types. Ifs and Gotos are used to evaluate the

code when the code is not in sequence. A list of already jumped labels is stored to

avoid jumping to labels that were already processed. The return statement sets the

value retured by the function. This is important for domtors whose return value is a

domain.

148

The processing of the domain constructor functions addLevel0 and addLevel1 is

done when domains are created by calling domainMake.

Other regular functions are not processed for domain specialization because do-

mains that are constant are created by the compiler in program 0 or addLevel1,

domains that use variables are created inside regular functions, but those domains

cannot be specialized.

Domtor are cloned and then specialized. The details for cloning and specialization

are given in the following sections.

4.3.4 Cloning

While trying to evaluate the special functions, the interpretor looks for domtor (func-

tor) instantiations. Domtor instantiation happens by calling the closure that contains

the code of the domtor with some type arguments.

The interpreter evaluates, first, the values of the arguments and then proceeds to

clone the functor. The cloning is performed with the help of an extension written for

the Aldor inliner. The cloning makes distinction between the code that is local to

the compilation unit, and the code that is imported from the library. The case of the

library domains is explained in Section 4.3.7.

The cloning procedure is performed by the domtor’s function twrDtorClone,

which makes use of the twrUnitAddDtorFrLib.

Cloning domains or functions from the library was not supported by the original

Aldor compiler. To solve this problem, we extended the original inliner module to

allow cloning of domains and functions. twrUnitAddDtorFrLib uses the main entry

149

Algorithm 13 Top level code specialization algorithm

Input: FOAM tree of the current compilation unit
Output: optimized FOAM tree of the current compilation unit

p := prog(0)
for all e ∈ expression(p) do

jumpedLabels := empty list
if tag(e) is Def or Set then

v1 := get reference(lhs)
v2 := evaluate(rhs)
store(v1, v2)

else if tag(e) is CCall then
evaluate(operand(e))
for all a ∈ args(e) do

evaluate(a)
end for
if op is runtime call then

evaluate(e)
else if op is dtor then

nd := clone dtor(op, args(e))
specialize exports of nd

else
ignore call

end if
else if tag(e) is Return then

set the return value
else if tag(e) is If then

evaluate condition and label
if condition true then

jump to label {also adds l to jumped list}
end if

else if tag(e) is Goto then
l := evaluate label(e)
if l 6∈ jumped labels then

jump(l) {also adds l to jumped list}
end if

else if tag(e) is BCall then
evaluate(e)

else
ignore expression

end if
end for

150

point to the inliner extension, namely inlCloneProg. Algorithm 14 shows the steps

taken to clone the whole domain.

Algorithm 14 Domain code cloning.

make a copy of the program
if the program is not local to the unit then

copy the declarations of the non local environments to the local declaration
flag declaration as non local
adjust DEnv to local declaration

end if
for all line of code in the copied program do

if the code creates a closure then
clone the code of the closure
fix lexical references to the local copies

end if
end for

After the cloning procedure is complete, the new domtor is specialized. Then the

call to the old implementation is updated to call the newly created clone.

Preliminary results presented in [22] showed that most of the speedup is obtained

by specializing the innermost domains. For example, let us suppose that we have a

deeply nested type Dom4(Dom3(Dom2(Dom1))), most of the speedup will be obtained

by specializing Dom2(Dom1). On the other hand, specializing Dom4(Dom3(X)) will not

produce a significant speedup. Due to these results, the specialization is done in pairs

of two starting from the innermost to the outermost domain.

4.3.5 Specializing the Functions in the Cloned Domtor

After the clone process is complete the resulted domtor is specialized. Domains are

not specialized in any way since they do not contain any type related variables.

The specialization consists of updating all the exports to perform open calls in-

stead of closed calls. This information will help the standard Aldor compiler inliner

151

to find the code of the target function and to inline it, if it chooses to do so. The

final inline decision is still left to the regular inliner to prevent the code explosion.

This specialization is much better than one performed by the unmodified compiler

because it allows optimizations to be performed even on inner parts of the parametric

domains, which it was not possible before.

The domain constructors are not modified because they construct the domain

environment. The current transformation of a closed call to an open call happens

according to Algorithm 15.

The actual program is more complicated because there can be more closure calls

in the same statement, which means the OCall can replace only an expression of a

statemnt. The EEnsure statement is a statement and cannot be placed inside an

expression evaluation, so it must be inserted before the current instruction.

Algorithm 15 Domain exports specialization.

Input: f: FOAM code, c: CCall to be specialized
Output: f: updated FOAM code

t := type(c)
e := (CEnv c)
for all a ∈ arguments(c) do

na(i) := a
end for
f(i) := (OCall t e na(0) ... na(n-1))
f(i-1) := (EEnsure e)

The insertion of the environment ensure statement (EEnsure) is necessary because

open calls do not make sure the environment is created at the first call. The lack of

these statements leads to hard to track errors when trying to run the generated code.

The introduction of environment ensure statements had an unexpected downside:

bad performance. Even though they are simple checks, they cannot be optimized

away and if they happen inside loops, they can be pretty expensive.

152

The compiler is able to move the loop invariants outside loops, but it does not

move the environments ensure because they have side effects. So for our particular

case, the environments ensure statements were moved as much as possible to the

beginning of the functions. This would affect the laziness of the evaluation for the

environments creation, but this does not affect the output of the program.

The specialized types will preserve the signature of all the exported symbols, so

they can be used instead of the original call without affecting the caller’s code.

4.3.6 Avoiding Multiple Copies of the Same Specialization

It is not uncommon to encounter several equivalent instantiations. While ignoring this

problem would not affect the performance of the resulted program, the performance

of the compiler will be drastically reduced.

The tower types optimization tries to find if an equivalent specialization has al-

ready been constructed. If so, that specialization is used instead of needlessly con-

structing a new one.

The equivalence between specialization is translated into equivalence between

function calls. To test for equivalence between two function calls, one has to make

sure that the original call is performed to the same parametric domain and all the

values of the parameters are the same between an existing specialization and the

intended one.

4.3.7 Specializing the Libraries

Gathering information about the domains is not easy. It requires interpreting the

initialization part of all the units that are referenced in the declaration part. The

units that must be initialized before the current one are declared with a GDecl in the

153

DDecl part of the current unit. The name of the unit is specified as the identifier of

the global declaration and the protocol is set to Init.

Another approach to retrieving the domain information is to use the information

constructed during the type checking phase. As mentioned before, this is possible for

the whole tower type optimization, but code modification which changes type seman-

tics cannot be easily reflected in the existing type information. However, retrieving

type information about the code already compiled in the libraries is possible.

In order to explain how the type information is stored in the compiler a short

overview of the Aldor compiler data structures is required.

The main structures that deal with symbols are: Syme and TForm. Each symbol

used in the Aldor source code has a corresponding Syme after its meaning (syme comes

from symbol meaning) was inferred. The Syme contains all the information about

known symbols. One such piece of information is the type corresponding the symbol.

That piece of information is given by the TForm (or type form).

Tower type optimization does not optimize the domains that are defined in other

compilation units and are referred in the current unit, but it still extracts the name of

the domain to be able to check the equivalence of specializations. The initialization

of library domains happens by using rtLazyDomFrInit. When this happens, the

initialization function is evaluated and the name of the domain is extracted. Then

the symbol table is used to look up the domain and the whole information is retrieved

in the syme field of the dom structure.

For domtors, the problem is different because they are locally copied and spe-

cialized. By not cloning locally the library domtors the resulted optimization will be

weaker, because the code in the library will not be optimized. By performing the local

cloning, the compilation time increases, but only to allow more optimizations to be

performed. The run-time function dealing with library domtors is rtDelayedInit.

154

Listing 4.16: Example showing a domain that is constructed based on run-time values.

1 define Cat: Category == with {m: SI -> SI;}

2 define Dom1: Cat == add {m(i:SI): SI == i+1;}

3 define Dom2(p:Cat): Cat == add {m(i:SI): SI == {...}}

4 ParDom(S: Cat): with {method:() -> Cat;} == add {method():Cat == S;}

5 main(): () == {

6 import from SingleInteger;

7 i := 5;

8 if i = 6 then

9 d == method()$ParDom(Dom1); --$

10 else

11 d == method()$ParDom(Dom2 Dom2 Dom1); --$

12 print << m(1)$d << newline; --$

13 }

The interpreter equivalent of this run-time function will evaluate the code of the

initialization function and retrieve the name of the domtor. The name is used to

construct a partial information domtor that will be completely processed as soon as

it is cloned locally.

4.3.8 Domains Not Known at Compile Time

It is not possible to know the domains at compile time. A simple example when such

a domain is not known at compile time is presented in Listing 4.16. In this example,

if the condition for the if statement cannot be evaluated by the compiler, the code

executed for m is not known, so it will not be optimized.

However, because two constant domain constructors were used ParDom(Dom1) and

ParDom(Dom2 Dom2 Dom1), the tower type optimization can construct two specializa-

tions for ParDom and optimize the code in Dom2 Dom2 Dom1. As a result, the function

m from the parameter d will be optimized. The code cannot be optimized by bringing

the code into main, and it also cannot be optimized inside Dom2.

155

Listing 4.17: Domain instance is constructed in a regular function.

1 ParDom(S: Cat): with {

2 method:() -> Cat;

3 m: SI -> SI;

4 } == add {

5 method():Cat == S;

6 m(i:SI):SI== m(i)$S; --$

7 }

8 main(): () == {

9 import from SingleInteger;

10 i := 6;

11 if i = 5 then

12 d == ParDom(Dom1);

13 else

14 d == ParDom(Dom2 Dom2 Dom1);

15 print << m(1)$d << newline; --$

16 }

Another example is given in Listing 4.17. Notice in this example that d calls

directly the domain constructor. In cases like this, the Aldor compiler would call

the domtor function inside function main instead of the environment setup function

(which in this case would be program index 0). Because of this, the tower type

optimization is not performed. It is possible to deal with this type of code by analyzing

all functions. Domains constructed with parametric values in regular functions cannot

be optimized due to the variable value of the parameter.

4.4 Performance Results

4.4.1 Tests on Different Aspects

We want both to make sure that the implementation works correctly and to measure

the performance of different usage models. For this reason several simple tests were

156

Test1 Original Optimized Ratio
Execution Time (ms) 10484 5234 2.0
Code Size (bytes) 22345 25652 1.2
Compile Time (ms) 703 766 1.1

Table 4.1: The results for Test1.

developed to check the implementation of the automatic code specialization. The

tests also perform some lengthy operations to be able to use them as performance

measurements as well.

A brief description of each test will follow.

Test1

Test1 is a simple test to check the correctness of the tower type optimization. The

test creates two domain A and D, both implementing methodA. A parametric domain

B uses A and D. This example selects a method methodB from B whose signature varies

only in type. This is used by the speculative mechanism of the optimization, to select

a method when only the name is known and there is no overloading. The complete

code is presented in A.3.

The results obtained for this case are presented in Table 4.1.

Test2

Test2 is very similar to test1, except that it tests if including code from another

source will make a difference, and instead of having all the code in a function main,

it puts all the code in outside any function. For this reason, the original optimization

performs very poorly (original optimizer does not inline code into environment setup

functions.) Our optimization does not inline either, but the specialized form of the

code is much faster.

157

Test2 Original Optimized Ratio
Execution Time (ms) 7140 1125 6.4
Code Size (bytes) 21381 24947 1.2
Compile Time (ms) 547 734 1.3

Table 4.2: The results for Test2.

Test3 Original Optimized Ratio
Execution Time (ms) 10375 5234 2.0
Code Size (bytes) 26445 32721 1.2
Compile Time (ms) 657 844 1.3

Table 4.3: The results for Test3.

The results obtained for this case are presented in Table 4.2.

Test3

Test3 follows the structure of test1, but it makes one of the parameters a parametric

domain instead of a regular one.

The results obtained for this case are presented in Table 4.3. The executed code

is identical to Test1, so the timings are similar, the code size is bigger because of the

extra specializations. The compilation time is increased due to code specialization.

Test4

Test4 is different from all previous tests. It tries to deal with deeply nested types.

For this reason, four domains are created, from Dom1 to Dom4. Dom1 in the only

non-parametric domain. The specialization is of the form Dom4(Dom3(Dom2(Dom1))).

Each domain calls the inner domain in a loop. The function m from Dom4 is not placed

in any function, rather it is called from the top level. The complete code is presented

in A.4.

The results obtained for this case are presented in Table 4.4. The performance is

different because the original optimizer is not able to optimize code at the file level,

158

Test4 Original Optimized Ratio
Execution Time (ms) 2438 47 51.9
Code Size (bytes) 15312 18423 1.2
Compile Time (ms) 500 641 1.3

Table 4.4: The results for Test4.

Test5 Original Optimized Ratio
Execution Time (ms) 8375 8375 1.0
Code Size (bytes) 16785 19897 1.2
Compile Time (ms) 485 641 1.3

Table 4.5: The results for Test5.

while the tower type optimizer produces an optimized domain at the file level which

does not need to be optimized at the file level anymore.

Test5

Test5 uses a structure similar to Test4 (see A.4), but the type tower is constructed

inside a function. The results obtained for this case are presented in Table 4.5. Both

cases here show identical result since the original optimizer was able to specialize the

code as well as our tower optimization. The relocation of the code inside a function

allowed the original optimizer to optimize the code as well as tower optimizer.

Test6

Test6 creates a parametric domain Dom3(p), which uses internally type Dom25(p). It

then calls m from Dom25(p). In the main program, p is instantiated with Dom2(Dom1).

The complete code is presented in A.5.

The results obtained for this case are presented in Table 4.6. The difference in

performance is due to the fact that the original optimizer can only inline from Dom3,

but nothing more, while the tower optimizer inlines everything. The parametric type

Dom25(p) is store into a new type Rep. The optimizer is not able to compute the value

159

Test6 Original Optimized Ratio
Execution Time (ms) 26375 63 418.7
Code Size (bytes) 14092 17326 1.2
Compile Time (ms) 484 625 1.3

Table 4.6: The results for Test6.

Test7 Original Optimized Ratio
Execution Time (ms) 5109 1844 2.8
Code Size (bytes) 21904 27997 1.3
Compile Time (ms) 594 844 1.4

Table 4.7: The results for Test7.

of type Rep and it cannot inline from p. For this reason, the resulting code is a chain

of function calls from inner domains that are expensive. The tower type optimization

produces specialized forms of type for each pair of type instantiations which lead to

a fully optimized Dom3 (no function calls) which is used from the main function. A

simple experiment that replaces the type Rep with a macro, immediately resolves the

problem and the original optimizer is able to compute the domain instantiation at

the macro expansion place.

Test7

Test7 is a more complicated version of Test6, where Dom6(d) is parametric and the

internal type used is Dom5(Dom4(d) and the instantiation of d is Dom2(Dom1). The

complete code is presented in A.6.

The results obtained for this case are presented in Table 4.7. The result obtained

for Test7 cannot be improved by replacing a type definition with a macro constructor.

Test8

Test8 is a more complicated version of Test7, where Dom6(d) is parametric and the

internal type used is Dom5(Dom4(d(Dom2(Dom1)))) and the instantiation of d is Dom3.

160

Test8 Original Optimized Ratio
Execution Time (ms) 5329 1891 2.8
Code Size (bytes) 23328 29573 1.3
Compile Time (ms) 594 890 1.5

Table 4.8: The results for Test8.

Polyg Original Optimized Ratio
Execution Time (ms) 16468 8329 2.0
Code Size (bytes) 34671 45585 1.3
Compile Time (ms) 984 1110 1.1

Table 4.9: The results for Polyg.

This time d is a functor, not a domain. The complete code is presented in A.7.

The results obtained for this case are presented in Table 4.8.

Polyg

Polyg is a test that performs polynomial multiplication on polynomials with complex

coefficients.

The results obtained for this case are presented in Table 4.9. The difference comes

from the fact that the original optimizer does not inline the code for the complex

multiplication in main.

4.4.2 Testing with SciGMark

The next step in testing the performance of the tower type optimization is to run

the optimization on the SciGMark benchmark suite. The results for each kernel are

reported separately.

161

FFT Original Optimized Ratio
Operations (MFlops) 3 5 1.7
Code Size (bytes) 148359 191146 1.3
Compile Time (ms) 5130 8531 1.7

Table 4.10: The results for fast Fourier transform.

SOR Original Optimized Ratio
Operations (MFlops) 34 37 1.1
Code Size (bytes) 75229 83807 1.1
Compile Time (ms) 2323 3321 1.4

Table 4.11: The results for successive over-relaxation.

Fast Fourier Transform

In Table 4.10, one can see that an increase of performance of 67% is obtained, with

an increase of 28% in code size. The generic version of FFT algorithm uses two

levels of tower types as it can be seen from the following instantiation used: GenFFT

(DoubleRing, MyComplex (DoubleRing)).

Successive Over Relaxation

In Table 4.11, one can see that a increase of performance is small and also the code

increase is not significant. The generic version of successive over relaxation algorithm

uses only DoubleRing as argument and the code is completely inlined by the original

optimizer.

Monte Carlo Algorithm

In Table 4.12, one can see that a increase of performance is significant while the code

increase is not significant. The generic version of Monte Carlo algorithm does not

use any parameter, however, it uses random numbers that use an array of integers.

162

MC Original Optimized Ratio
Operations (MFlops) 83 175 2.1
Code Size (bytes) 66669 68041 1.0
Compile Time (ms) 1949 2254 1.2

Table 4.12: The results for Monte Carlo.

MM Original Optimized Ratio
Operations (MFlops) 10 10 1.0
Code Size (bytes) 78746 84909 1.1
Compile Time (ms) 2486 3256 1.3

Table 4.13: The results for matrix multiplication.

The code is not completely inlined by the original optimizer, as can be seen from the

difference in performance.

Matrix Multiplication for Sparse Matrices

In Table 4.13, one can see that there is no significant increase in performance and

the code is also only slightly increased. The generic version of matrix multiplication

algorithm uses DoubleRing as parameter. The code is not completely inlined by the

original optimizer, and the code is fully inlined by tower type optimization, yet the

difference in performance is not significant.

LU Factorization for Dense Matrices

In Table 4.14, one can see that there is no significant increase in performance. The

generic version of lu factorization algorithm uses DoubleRing as parameter. The code

is completely inlined by both the original optimizer, and the tower type optimization,

and the difference in performance is small.

163

LU Original Optimized Ratio
Operations (MFlops) 13 14 1.1
Code Size (bytes) 87114 98245 1.1
Compile Time (ms) 2979 4503 1.5

Table 4.14: The results for LU factorization.

PM Original Optimized Ratio
Operations (MFlops) 14 18 1.3
Code Size (bytes) 108048 126050 1.2
Compile Time (ms) 3727 5022 1.4

Table 4.15: The results for polynomial multiplication.

Polynomial Multiplication for Dense Polynomials

In Table 4.15, one can see that there is a significant increase in performance without

too much code expansion. The generic version of polynomial multiplication algorithm

uses SmallPrimeField as a parameter.

Matrix Inversion Using Quad-tree Matrices

In Table 4.16, one can see that there is a significant increase in performance and also

in the code size. The reason for code increase is the recursive nature of the matrix

representation; a new domain is created for each doubling of matrix size. The generic

version of polynomial multiplication algorithm uses itself of Matrix2x2 as parameter.

RM Original Optimized Ratio
Operations (MFlops) 5 11 2.3
Code Size (bytes) 118144 337654 2.7
Compile Time (ms) 4229 18408 4.4

Table 4.16: The results for matrix inversion using quad-tree representation.

164

4.5 Applicability to Other Programming Languages

In this section we discuss the code specialization optimization in the context of other

programming languages such as: C++, C#, and Java. For these programming lan-

guages no modification to the compilers has been performed. All the results are

produced by hand specialized code.

4.5.1 C++

This optimization does not apply to C++, because it already uses heterogeneous ap-

proach to implement templates. In C++, the generic code is only syntactically checked

when a library is compiled. When an instantiation is created, the instantiation value

replaces the formal type parameter similar to the macro expansion procedure and

the code is type checked and compiled. Most compilers will not detect equivalent

instantiations and will produce unnecessary code.

Due to the heterogeneous nature of the implementation, the code can be optimized

in the specialized form. This implementation has also drawbacks because the code

of the template has to be available at compile time, this means that libraries must

supply the generic code.

The C++ programming language also offers the possibility to write specializations

for templates (called “traits”). The specialized templates take precedence over the

normally specialized code. As a consequence of this the templates mechanism pro-

vided by C++ is very powerful leading to the ability to write code that is evaluated by

the compiler at compile time, moving the execution from run-time to compile time.

This has been presented in template meta-programming [66].

An experiment tried on SciGMark shows that simple specialization of the tem-

plates in C++ does not produce any improvement (see Table 4.17.)

165

SciGMark (C++) Generic Specialized Ratio
Fast Fourier Transform 141 141 1.0
Successive Over Relaxation 147 145 1.0
Monte Carlo 45 45 1.0
Sparse Matrix Multiplication 153 152 1.0
LU Factorization 182 182 1.0
Polynomial Multiplication 92 92 1.0
Recursive Matrix Inversion 28 29 1.0
Composite 113 112 1.0

Table 4.17: Comparison between generic and specialized code in C++. The results
are reported in MFlops.

SciGMark (C#) Generic Specialized Ratio
Fast Fourier Transform 37 44 1.2
Successive Over Relaxation 65 67 1.0
Monte Carlo 13 13 1.0
Sparse Matrix Multiplication 67 67 1.0
LU Factorization 59 60 1.0
Polynomial Multiplication 27 30 1.1
Recursive Matrix Inversion 47 44 0.9
Composite 45 47 1.0

Table 4.18: Comparison between generic and specialized code in C#. The results are
reported in MFlops.

4.5.2 C#

C# uses a hybrid approach to generics implementation. In C#, the reference type ob-

jects (class instantiations) are implemented using a homogeneous approach. However,

in C# the type information is not erased like in Java.

The generic code is supported by the CLR virtual machine, which can perform

optimizations that make use of the type information. For the value objects (basic

types, and stack allocated objects), C# uses a heterogeneous approach similar to C++

templates.

As seen in Table 4.18, there is no difference between the generic code and the

specialized code version.

166

4.5.3 Java

Until version 5, Java did not offer any support the generic code. The preferred type

of polymorphism for Java was, like in any object-oriented programming language,

the sub-classing polymorphism. The advantages of a stricter type checking made

possible by parametric polymorphism, recent versions of Java introduced “generics”,

with support for bounded parametric polymorphism.

The erasure technique has some drawbacks that make generic algorithms more

complicated than necessary. One example of such complication is the inability to

construct an instance of an object of the type parameter.

This homogeneous approach makes it interesting for our optimization. In Java,

calls performed through interfaces are more expensive than direct calls to methods

from classes, so will be helpful to specialize the code and see how this code special-

ization optimization helps the Java virtual machine. The code is hand specialized

using the same algorithm as the one presented for code specialization. The results, in

MFlops, of specialized and generic versions of the kernels from SciGMark benchmark

can be seen in Table 4.19. It is interesting to note also that the tests with more

generic code (fast Fourier transform, polynomial multiplication, and recursive matrix

inversion) show a higher difference between the generic and the specialized versions.

The problem of optimizing the generic code in Java is a little more complex than

in the other languages. Java compilers typically do not perform any optimization at

compile time. They only produce bytecode which is later optimized at runtime by the

just-in-time compiler. This approach puts the pressure on code specialization to run

quickly. Another problem is the erasure technique used in Java, which completely

removes the type information for generic types. We believe that both these problems

can be solved. To preserve type information the Java annotation mechanism can be

167

SciGMark (Java) Generic Specialized Ratio
Fast Fourier Transform 38 46 1.2
Successive Over Relaxation 48 46 1.0
Monte Carlo 47 55 1.2
Sparse Matrix Multiplication 70 79 1.1
LU Factorization 51 52 1.0
Polynomial Multiplication 55 89 1.6
Recursive Matrix Inversion 47 58 1.3
Composite 51 61 1.2

Table 4.19: Comparison between generic and specialized code in Java. The results
are reported in MFlops.

used. Annotations can be inserted with in the code for each use of new from a parame-

terized type. When new operation is encountered a new specialization of the class can

be generated if needed by the just-in-time compiler. The just-in-time compiler does

not need to analyze the code to reconstruct the type information because classes are

preserved by the virtual machine. This can improve the code specialization efficiency.

4.6 Related Work

Procedure cloning was used by Cooper [17]. Procedure cloning analyzes the code and

produces a new clone for different values of the arguments of the functions. Finally,

equivalent clones are merged together. The advantage of this method over standard

interprocedural analysis and optimization is that the cloned procedures have some

of the arguments as constants which permits the compiler to better optimize the

code. Our optimization applies the principle of cloning to user defined domains. It

does not require a complete interprocedural analysis to detect possible values. Tower

optimization works with type values and the type is reconstructed using run-time

type information.

168

Similar to procedure cloning, Chambers used the “customization” technique [14]

for SELF, a dynamically typed object-oriented programming language, to create spe-

cialized versions procedures. The compiler predicts some types and creates specialized

versions of the method for each predicted type. At run-time the proper specializa-

tion is selected based on the run-time type information. Customization guesses some

values and compiles specialized version that might not be used, the specialization is

selected at run-time. Tower type optimization reconstructs the run-time type infor-

mation at compile time and specializes only the statically known types.

Type directed procedure cloning was studied by Plevyak in case of dynamic dis-

patch used in the Java programming language [48]. They create clones and use a

selection algorithm similar to customization to select at run-time between the clones.

There has been considerable research done for type specialization in statically

typed functional programming languages like SML, Caml and Haskell. In these pro-

gramming languages, the data is represented using a certain size, usually the word

size, and if the data does not fit in this size, the data is boxed. Operations on boxed

data is more expensive and different optimizations were implemented for Standard

ML compiler [47, 58, 63].

General program specialization through partial evaluation has been studied for

object-oriented languages, such as Java, by Schultz in [56, 57]. He uses two level

languages to formalize the partial evaluation and uses a simplified Java-like language

called Extended Featherweight Java. The partial evaluator specializes only base type

values, while object instantiations are not modified. Tower type optimization tries to

optimize the user defined parametric types, not the base types.

169

4.7 Conclusions and Future Research

This chapter presented an optimization that it is easy to implement and the analysis

can be performed fast. The speedup depends greatly on the code being optimized. A

small part of the speedup comes from the elimination of the function call. Most of the

speedup comes from the ability to locally expand the code in the caller function and

perform more powerful local optimization, which in some cases can be impressive.

We have seen here that improvements of up to several times faster are possible.

The cost paid for this optimization is an increased code size and compilation

time. The increases are big only for many instantiations of the same type. For static

compilers, the increase in compilation should not be a problem.

This optimization is not limited to the Aldor compiler. Any language that uses a

homogeneous approach to implement generic types could benefit from this optimiza-

tion as seen from the Java tests.

This optimization is also necessary to be able to perform other optimizations

related to user defined types. The data representation specialization needs the code

to be specialized first so it could change the code to use the new data representation.

Chapter 5

Automatic Domain Data

Specialization

5.1 Introduction

With the help of SciGMark, we noticed that a significant speedup was obtained by

modifying the data representation. The change consisted of replacing the DoubleRing

wrapper with the basic type double. This modification is called unboxing and it has

been studied for functional languages.

Boxing and unboxing was necessary in functional languages to allow parameter

passing for data types whose representation size is larger than machine word. An

example of boxed data type is the double precision floating point data type which

must be boxed. However, boxing is only limited to replacing the basic types with

corresponding reference objects.

A more general optimization that deals with inlining objects was presented by

Dolby and Chien in [21]. The idea is to fuse two objects together when there is a

one-to-one relationship between them.

170

171

Another optimization that can be performed for objects that do not escape the

scope of a function is to allocate such object on the stack instead of on the heap [16].

This optimization is already implemented in the Aldor compiler as the “environment

merge” optimization. The environment merge optimization replaces all of the fields of

a record with local variables. The advantage of this optimization is that it completely

eliminates the cost of object allocation for objects that are only used inside one

function.

This chapter analyzes an extension of the environment merge optimization. We

show that the representation of the whole domain can be merged in cases of parametric

polymorphism. A high level introduction to this optimization was presented in [23].

5.2 Automatic Domain Data Specialization

5.2.1 Example

To illustrate how data representation specialization works, we shall use the polynomial

multiplication example that was presented in chapter 4.

The implementation of the Ring category and the Complex domain can be seen in

Figure 5.1. The Ring category declares a type that has operations such as addition,

multiplication, the ability to construct a neutral element and the ability to be dis-

played on screen. The Complex domain is an example of a domain that implements

a Ring type by providing implementations for all of the operations declared in Ring.

In Figure 5.1, the Complex domain is not a parametric domain. The data repre-

sentation for the real and imaginary parts is the domain MachineInteger. This is

only due to the fact that we shall perform the code and data specialization by hand,

without any help from an automatic system. In this case, the type of Complex is a

172

Listing 5.1: The Ring type.

1 Ring: Category == with {

2 +: (%, %) -> %;

3 *: (%, %) -> %;

4 0: %;

5 <<: (TextWriter, %) -> TextWriter;

6 }

7

8 MI ==> MachineInteger;

9

10 Complex: Ring with {

11 complex: (MI, MI) -> %;

12 real: % -> MI;

13 imag: % -> MI;

14 } == add {

15 Rep == Record(re: MI, im: MI);

16 import from Rep;

17 complex(r: MI, i: MI): % == per [r, i];

18 real(t: %): MI == rep(t).re;

19 imag(t: %): MI == rep(t).im;

20 (a: %) + (b: %): % ==

21 complex(rep(a).re+rep(b).re,

22 rep(a).im+rep(b).im);

23 (a: %) * (b: %): % == {

24 ra := rep.a; rb := rep.b;

25 r := ra.re*rb.re-ra.im*rb.im;

26 i := ra.re*rb.im+ra.im*rb.re;

27 complex(r, i);

28 }

29 0: % == complex(0, 0);

30 (w: TextWriter) << (t: %): TextWriter == {

31 w << rep.t.re << "+i*" << rep.t.im;

32 }

33 }

173

Listing 5.2: Implementation of a generic polynomial of type Ring.

1 Polynomial(C: Ring): Ring with {

2 poly: Array(C) -> %;

3 } == add {

4 Rep == Array(C);

5 import from Rep; import from C;

6 poly(size: MachineInteger): % == {

7 res: Array(C) := new(size);

8 i:=0@MI;

9 while i < size repeat {

10 res.i := 0@C; i := i + 1;

11 }

12 per res;

13 }

14 (a: %) + (b: %): % == {

15 c: Array(C) := new(#rep(a));

16 i := 0@MI;

17 while i < #rep(a) repeat {

18 c.i := rep(a).i + rep(b).i;

19 i := i + 1;

20 }

21 per c;

22 }

23 0: % == {poly(1);}

24 ...

25 }

Ring extended with some extra operations such as complex, real and imag. This

means that Complex is a sub-type of Ring. Percent (%) is the representation of this

type, similar to this in object-oriented programming languages. The two macros per

and rep are used to convert between the % type (the external type) and the Rep type

(the internal representation). The rest of the code is self explanatory, and the imple-

mentation of the operations is a straight forward implementation of the definition of

addition and multiplication for complex numbers.

The Aldor code for the corresponding Polynomial domain can be seen in Listing

5.2.

174

Listing 5.3: Polynomial multiplication.

1 import from Polynomial(Complex);

2 sz == 10000;

3 a := poly(sz);

4 b := poly(sz);

5 d := a * b;

The Polynomial domain is also a sub-type of Ring. It is formed by augmenting

the Ring type with an operation to construct the object. This time the domain is

parametric, requiring the type of the coefficients of the polynomial. The internal

representation, given by Rep, is Array(C). Here, Array is another parametric do-

main that implements a generic collection similar to arrays in other programming

languages. In the interest of brevity, we only provided the implementation of the

addition between two polynomials here. The multiplication and the display functions

are straightforward to implement.

The Aldor programming language uses type inference to determine the type infor-

mation when it is not provided. However, in some cases the type of the expression is

ambiguous and the disambiguating operator must be used. For example, we specified

that i gets the value 0 from MachineInteger by using 0@MI. Possible candidates were

0 from C or from Polynomial. The rest of the code is easy to understand.

An example usage of the polynomial operations can be seen in Listing 5.3. The

program creates two polynomials with all coefficients 0, of degree 9999 and then it

multiplies them. This example is not interesting from the mathematical point of view,

but it merely tries perform numerous function calls inside the polynomial object and

the most expensive operation provided is multiplication.

The polynomial in Listing 5.2 uses a dense representation, which means it is an

array of size d + 1 where d is the degree of the polynomial. Each entry in the array

175

coeff 0 coeff 1 coeff n−1...

re im re im re im

Figure 5.1: Data representation for polynomial with complex coefficients (before spe-
cialization)

is the coefficient corresponding to each monomial. If the polynomial is a generic type

accepting different algebraic types for its coefficients, complex numbers can be used

as polynomial coefficients. Furthermore, the complex type could be implemented as

a generic type accepting any values that can be added and multiplied. The real and

imaginary part of the complex number could be implemented with integer numbers

or floating point numbers. A domain such as this would be created in Aldor using

Polynomial(Complex(Integer)) and the data representation is an array similar to

that shown in Figure 5.1.

One should note that for each operation on complex numbers, a new object is al-

located on the heap and heap allocation is an expensive operation. The code special-

ization optimization presented in chapter 4 replaces the generic Polynomial domain

with the domain presented in Listings 5.4 and 5.5.

By specializing the code, and unfolding the functions from Complex into Poly-

nomial it was possible to remove the temporary objects created during operations

such as

c(i+j) := c(i+j) + rep(a).i * rep(b).i.

However, the objects that are stored in the array collection, namely c(i), must still

be allocated because the array is an array of references to real complex objects.

A specialized version of the array must be constructed in order to further improve

the data specialization. The specialized version should allocate all of the necessary

176

Listing 5.4: Code specialized polynomial.

1 Polynomial__Complex: Ring with {

2 poly: MachineInteger -> %;

3 poly: Array(C) -> %;

4 } == add {

5 Rep == Array__Complex;

6 import from Rep;

7 import from Complex;

8 poly(size: MachineInteger): % == {

9 res: Rep := new(size);

10 i:=0@MI;

11 while i < size repeat { res.i := 0@C; i := i + 1; }

12 per res;

13 }

14 poly(a: Array(C)): % == {

15 res: Rep := new(#a);

16 i := 0@MI;

17 while i < #a repeat { res.i := a.i; i := i + 1; }

18 per res;

19 }

space at once for all the data. The FOAM intermediate language offers a special data

type to deal with arrays of objects in an efficient manner. The data type is Trailing-

Array. The advantage of trailing arrays is that all the elements are allocated at once

together with the array.

According to the Aldor User Guide [74], trailing arrays are an aggregate data type

consisting of two parts: a header and an array of objects. The type is represented as

a single block of memory.

TrailingArray(size:Integer, (re: Integer, im: Integer))

The representation of the polynomial that results from specializing it for complex

numbers with integer coefficients can be seen in Figure 5.2. This new representation

has much better memory locality, eliminates some indirections and, most importantly,

eliminates the need to allocate objects on the heap one by one.

177

Listing 5.5: Code specialized polynomial (Continued).

1 (a: %) + (b: %): % == {

2 c: Rep := new(#rep(a));

3 i := 0@MI;

4 while i < #rep(a) repeat {

5 c.i := rep(a).i + rep(b).i;

6 i := i + 1;

7 }

8

9 per c;

10 }

11 (a: %) * (b: %): % == {

12 i := 0@MI;

13 c: Rep := new(#rep(a)+#rep(b)-1);

14 while i < #c repeat { c.i := 0@C; i := i + 1; }

15 i := 0@MI;

16 while i < #rep(a) repeat {

17 j := 0@MI;

18 while j < #rep(b) repeat {

19 c(i+j) := c(i+j) + rep(a).i * rep(b).j;

20 j := j + 1;

21 }

22 i := i + 1;

23 }

24

25 per c;

26 }

27 0: % == {poly(1);}

28 (w: TextWriter) << (t: %): TextWriter == {

29 w << "[";

30 i := 0@MI;

31 while i < #rep(t) repeat {

32 w << rep(t).i << " ";

33 i := i + 1;

34 }

35 w << "]";

36 }

37 }

178

re im re im re im...

Figure 5.2: Data representation for polynomial with complex coefficients (after spe-
cialization)

For the specialized version, the generic type C will be replaced with Complex,

according to the instantiation given on the first line of Listing 5.3. The specialized

implementation can be seen in Listings 5.6 and 5.7. One can note that the parametric

domain Polynomial has become Polynomial Complex and the internal representa-

tion has been changed to TrailingArray. In addition, Cross is used instead of

Record for complex numbers. The specialized case presented in Listing 5.6, performs

both specializations: code and data representation. The code is specialized by creat-

ing a new domain Polynomial Complex, copying the operations from Complex into

Polynomial Complex, and finally inlining the code of complex addition and mul-

tiplication into polynomial addition and multiplication. The data representation is

changed from Record to TrailingArray.

ComplexStack, the stack based version of Complex, can be seen in Listing 5.8. The

domain’s exports could also be copied into the parent domain, namely Polynomial.

One may note here that the representation of the domain is no longer necessary. All

of the fields of the complex numbers are passed through the parameter list. While this

seems like an increase in stack use, if the functions from ComplexStack are integrated

into their caller, they can actually use the local variables of the caller instead of

passing them as parameters. In our case the inlined function will actually access the

elements directly from the trailing array.

This example showed us a way to replace the heap allocation of each individual

complex object with only one allocation performed at initialization. This approach

is much faster than allocating each object individually. Moreover, for each updating

179

Listing 5.6: Specialized polynomial representation.

1 Polynomial__Complex: Ring with {

2 poly: MI -> %;

3 poly: Array(Complex) -> %;

4 } == add {

5 T == Cross(re: MI, im: MI);

6 Rep == TrailingArray(MI, (MI, MI));

7 import from Rep, T;

8 poly(size: MI): % == {

9 i:MI := 1;

10 res: TrailingArray(s:MI,(re:MI,im:MI)) := [size, size, (0,0)];

11 while i <= size repeat {

12 res(i, re) := 0;

13 res(i, im) := 0;

14 i := i + 1;

15 }

16 per res;

17 }

18 poly(a: Array(Complex)): % == {

19 import from Array Complex;

20 import from ComplexStack;

21 res: TrailingArray(s:MI,(re:MI,im:MI)) := [#a, #a, (0,0)];

22 i:MI := 1;

23 while i <= #a repeat {

24 res(i, re) := real(a(i-1));

25 res(i, im) := imag(a(i-1));

26 i := i + 1;

27 }

28 per res;

29 }

30 (a: %) + (b: %): % == {

31 local ra: TrailingArray(s:MI,(re:MI,im:MI)) := rep(a);

32 local rb: TrailingArray(s:MI,(re:MI,im:MI)) := rep(b);

33 res: TrailingArray((s:MI),(re:MI,im:MI)) := [ra.s, ra.s, (0,0)];

34 i:MI := 1;

35 while i <= ra.s repeat {

36 (res(i,re),res(i,im)):=(ra(i,re),ra(i,im))+(rb(i,re),rb(i,im));

37 i := i + 1;

38 }

39 return per res;

40 }

180

Listing 5.7: Specialized polynomial representation (Continued).

1 (a: %) * (b: %): % == {

2 local ra: TrailingArray(s:MI,(re:MI,im:MI)) := rep(a);

3 local rb: TrailingArray(s:MI,(re:MI,im:MI)) := rep(b);

4 res: TrailingArray((s:MI),(re:MI,im:MI)) :=

5 [ra.s+rb.s-1, ra.s+rb.s-1, (0,0)];

6 i:MI := 1;

7 while i <= res.s repeat {

8 res(i, re) := 0;

9 res(i, im) := 0;

10 i := i + 1;

11 }

12

13 i := 1;

14 while i <= ra.s repeat {

15 j:MI := 1;

16 while j <= rb.s repeat {

17 c(i+j) := c(i+j) + rep(a).i * rep(b).j;

18 (res(i, re),res(i,im)) := (res(i, re),res(i,im))

19 + (ra(i,re),ra(i,im)) * (rb(j, re),rb(j,im));

20 j := j + 1;

21 }

22 i := i + 1;

23 }

24 return per res;

25 }

26 0: % == poly(1);

27 (w: TextWriter) << (t: %): TextWriter == {

28 import from C;

29 w << "[";

30 i:MI := 1;

31 local r: TrailingArray(s:MI, (re:MI, im:MI)) := rep(t);

32 while i <= r.s repeat {

33 w << (r(i, re), r(i,im)) << " ";

34 i := i + 1;

35 }

36 w << "]";

37 }

38

39 }

181

Listing 5.8: Complex domain using stack based allocation instead of heap.

1 ComplexStack: Ring with {

2 complex: (MI, MI) -> %;

3 real: (MI,MI) -> MI;

4 imag: (MI,MI) -> MI;

5 } == add {

6 T == Cross(MI, MI);

7 --Rep == Record(re: MI, im: MI);

8 import from Rep;

9 complex(r: MI, i: MI): T == (r, i);

10 (a: T) + (b: T): T == {

11 --These two lines work around a bug in the compiler when

12 --a new type is declared as Cross. Macros can be used

13 --but they crash the compiler.

14 aa: Cross(MI, MI) := a;

15 bb: Cross(MI, MI) := b;

16 (ar, ai) := aa;

17 (br, bi) := bb;

18 complex(ar+br, ai+bi);

19 }

20 (a: T) * (b: T): T == {

21 aa: Cross(MI, MI) := a; bb: Cross(MI, MI) := b;

22 (rar, rai) := aa; (rbr, rbi) := bb;

23 r := rar*rbr-rai*rbi;

24 i := rar*rbi+rai*rbr;

25 complex(r, i);

26 }

27 zero: T == complex(0, 0);

28 (w: TextWriter) << (t: T): TextWriter == {

29 tt: Cross(MI, MI) := t;

30 (r, i) := tt;

31 w << r << "+i*" << i;

32 w

33 }

34 }

182

of the elements contained in the array a new memory allocation must be performed,

which is an unwanted overhead.

5.2.2 Data Representation Change Problems

Data specialization cannot be performed in all the cases. When dealing with data

representation modification, it is critical to make sure that all accesses to the original

data are handled properly.

The access to the data can be done in two different ways: use of the interface

functions (functions exported by the domain) or accessing the data directly through

the domain representation.

If only the interface functions are used to manipulate objects of that domain, then

data layout changes will be handled by the functions exported by the domain. Even if

the domain representation is not exported, it is still possible to construct other data

structures equivalent to the representation of the current domain and then use the

pretend keyword to access the data. In these cases, the behaviour of the program will

be different in its unoptimized and optimized forms. Therefore the optimization will

not preserve the semantics of the program. In such improbable cases, there are two

possible solutions: either do not perform the optimization, or change the code in every

location in the program that access the data directly. Another, not very good, option

is to reconstruct the data layout when such accesses are detected. Unfortunately,

both solutions that were proposed require a complete analysis of the whole program.

Therefore, the simple analysis performed for code specialization is not enough and

the partial evaluator should be extended to deal with the entire program.

Aliasing happens when two different variables point to the same memory location.

In this case, any modification to one of the variables will also modify the value of the

183

other. Aldor uses pass-by-value semantics for basic data types and pass-by-reference

semantics for records and arrays (or pass-by-value of the pointer to the object). This

means that aliases are created when simple assignments are used for values of type

Rec or Arr. In these cases, replacing the reference objects by their fields and passing

them as parameters will not make the changes visible in the aliased variable. The

only way to solve this problem is to detect all aliases and change the code according

to the data representation transformation. This analysis is complex and would slow

the compiler considerably. As a result, the data specialization optimization will only

be applied to objects that are either immutable, meaning that their state does not

change, or if the objects are mutable (i.e. they contain functions that alter some of

the fields of the domain representation), no mutating function is called on the objects

stored in the specialized data type. For immutable objects creating a new instance

of the contained objects does not affect the result in any way, since the data is just a

copy used for reading.

5.2.3 Domain Interface Preservation

Data specialization optimization is performed at the domain level. The changes are

performed in the domain, but the interface of the domain must be preserved. The

interface preservation, means that the operations exported by the domain must be

the same.

Interface preservation, for the operations that do not contain object belonging to

the type parameter, is not a problem. The % type does not impose any problems either

because it will always be treated by the current domain which can handle the new

representation. The only type that should be handled different is the type parameter.

All the operations that use as argument or as return value object of the type pa-

184

rameter must reconstruct the expected type. The reconstruction consists of allocating

a new object and copying the corresponding fields from the specialized representation

into the newly allocated object.

To avoid allocation and copying we propose an extension to FOAM. The extension

consists of introducing the concept of a value record. In the existing FOAM spec-

ification, the records are represented as references. The C programming language,

offers structures which can contain other structures. It would be useful to have some-

thing similar in FOAM instead of only structures containing references to structures.

For more details please see section 5.2.4. This solution allows us to return the inner

structure corresponding to the type parameter without memory allocation and copy.

However, this approach still does not solve the problem of aliased mutable objects.

It does not create aliases for type parameter, but aliases already created outside the

generic type cannot be detected only from analyzing the current domain.

Another approach to solving the problem of accessing the type parameter in

the new representation is to replace the type parameter by another type called

Reference(T) where T is the type parameter. This new type would provide two op-

erations: value to extract the object of type T and set to set the value of the object

of type T. The type Reference(T) has a similar behavior to pointers. The advantage

of this approach is that the Aldor compiler could specialize the type Reference(T)

and its operations such that they reflect the new data layout. The disadvantage is

that it still does not solve the aliasing problem for objects that are updated from

outside the domain and it requires a whole program change to replace the use of

T with Reference(T). For different data specializations the operations value and

set must have different implementation to reflect the different layout of T in each

specialization.

185

None of the solutions presented here solve the problem of aliasing. They deal

with the interface between domains, one with extra allocation and copy, other by

changing the intermediate language, and the final one with a simple whole program

transformation. We have chosen to implement the first solution since it is the easiest

to implement and even if performs extra object allocation, this should not occur very

often.

5.2.4 Data Representation Change in Cloned Types

A significant increase of performance can be obtained by replacing heap allocated

objects with stack allocated objects. There are difficulties with applying this opti-

mization because of the object aliasing that can occur. However, in some cases (when

the objects are immutable) the problem of aliasing does not exist and objects can

safely be replaced with local objects on the stack. This is the type of optimization

that we performed when we specialized the polynomial multiplication test.

The Aldor compiler already offers an optimization called environment merging

which replaces the heap allocated objects with local variables if the objects do not

escape the scope of the function. This optimization removes the heap allocation. Our

proposed specialization goes a step further by merging not only environments that are

local to a function but also merging environments for the whole specialized domain.

Environment Merge Optimization

This optimization replaces heap allocated objects with local variables for those records

that do not escape the scope of the function.

An example of this optimization is presented in Listing 5.9. The listing presents an

addition between two floating point numbers. In Aldor, all double precision floating

186

Listing 5.9: Addition between two floating point numbers in Aldor.

1 (Set (Loc 1) (RNew 8))

2 (Set (Relt 8 (Loc 1) 0) (DFlo 2.5))

3 (Set (Loc 0) (RNew 8))

4 (Set (Relt 8 (Loc 1) 0) (DFlo 3.5))

5 (Set (Loc 2) (RNew 8))

6 (Set (Relt 8 (Loc 1) 0)

7 (BCall DFloPlus

8 (RElt 8 (Loc 1) 0)

9 (RElt 8 (Loc 0) 0)))

point numbers are boxed because the arguments of the domain parameters cannot

exceed the size used for the Word data type. Any boxing requires construction of

a heap allocated object that stores one field of DFlo type. In Listing 5.9, three

local variables are created that must be allocated on heap. All RNew operations are

expensive and should be avoided.

Since the floating point values are store in local variables, they cannot be seen from

anywhere else in the program except the current function. Therefore, it is possible

to replace the fields of the record with index 8 with local scalars. The result can be

seen in Listing 5.10, where local variables Loc 3, Loc 4, and Loc 5 replace the only

field of the record with index 8 for the different instances of variables Loc 0, Loc 1,

and Loc 2 respectively.

Listing 5.11 presents the final form of the FOAM code for the addition of two

double precision floating point numbers after dead code elimination and constant

propagation have been performed.

The code presented in Listing 5.11 is much faster than the code from Listing 5.9.

Unfortunately, if (Loc 2) is replaced by (Lex 2 0) the variable escapes the local

function and the last memory allocation cannot be removed.

187

Listing 5.10: Addition between two floating point numbers in Aldor with local ex-
pansion of the fields from record 8.

1 (Set (Loc 1) (RNew 8))

2 (Set (Loc 4) (DFlo 2.5)

3 (Set (Loc 0) (RNew 8))

4 (Set (Loc 3) (DFlo 3.5)

5 (Set (Loc 2) (RNew 8))

6 (Set (Loc 5)

7 (BCall DFloPlus

8 (Loc 3)

9 (Loc 4)))

Listing 5.11: Optimized version of floating point addition in Aldor.

1 (Set (Loc 2)

2 (BCall DFloPlus

3 (DFlo 2.5)

4 (DFlo 3.5)))

Domain Representation Optimization

The idea behind this optimization is to incorporate the data structure associated with

the inner domain into the data structure of the outer domain. All values produced

by the inner domains are copied into the already allocated space of the outer domain.

If operations from the inner domain are unfolded into operations from the outer

domain, then the emerge optimization will detect that the memory allocation is only

used to store temporary values before copying them into memory allocated by the

outer domain. As a result, it is not necessary to allocate memory for the inner domain.

The purpose of this optimization is to reduce the number of memory allocations

or remove them for objects belonging to the inner domain type. A direct consequence

of reducing the number of allocations is reduced stress on the garbage collector. In

188

addition, overall memory usage is decreased by removing the pointers to the reference

objects.

In FOAM, every domain is represented by a lexical environment. The lexical envi-

ronment contains all of the symbols defined inside the domain. If the domain contains

a representation, then the Rep keyword is be used to define the representation. Ac-

cording to the Aldor User’s Guide Rep is the internal/private view of the domain,

while % represents the public view of the domain. According to these definitions, it

should not be possible to modify the representation of the domain from the outside,

but as mentioned before, pretend can be used to bypass the type checking system.

Domain representation specialization requires changing the format of the internal

representation. Similar to environment merging for functions, we propose to replace

the representation of the inner domains (which are represented as type Word in the

Rep of the outer domain) with all of the fields of the Rep of the inner domain. If any

of the fields is of type Arr, which is a generic array, it will be replaced by a trailing

array, type TR, whose trailing part is formed from the fields of the Rep of the inner

domain.

It should be noted here that a more elegant solution to this problem is to have

support at the FOAM level of value-typed records. This can be achieved easily by ex-

tending the current FOAM language to support “inlinable” structures. The proposed

change is to use one of the unused fields of the Decl instruction, namely symeIndex,

and use it as a flag to specify which values of type Rec should be stored inline. This

solution simplifies the process of accessing some fields of the outer domain as a repre-

sentation of the inner domain. Without making changes to the FOAM intermediate

language, memory must be allocated first and then fields must be copied one-by-one

in the newly allocated space. After modifying the FOAM, the RElt instruction can

directly return the subtype, with a simple change to the FOAM implementation.

189

Unoptimized Optimized
ANew type size TRNew fmt size
AElt type arr index TRElt fmt tr index field1,...,n

RNew child NOp

RElt child field RElt parent record offset + field
RElt child field RElt parent trarray offset + field

Table 5.1: Translation between unoptimized to optimized code for statements inside
functions.

Similarly, the trailing array element TRElt can be changed to return the whole record

as the stored type instead of accessing the data field by field. This new inlined record

can be implemented in all of the back-ends supported by the Aldor compiler as well

as in the interpreter.

In FOAM the instructions which deal with arrays and records are:

• for arrays: ANew (to create new arrays) and AElt (to access elements of the

arrays)

• for records: RNew (to create new records) and RElt (to access fields of the record)

Transformation Algorithm

The proposed translation scheme is presented in Table 5.1. One can see that the

arrays are replaced by their specialized form using trailing arrays, and the fields of

the child domain are integrated into the parent domain. This translation must only

be applied to the inner domains. The topmost domain must still use a reference type

for its representation.

To preserve the interface of the functions, the returned values are reconstructed

from the locally stored fields. This reconstruction requires allocation of new objects

and copying the data into the new memory location. This method fails when the

returned object is used to modify the state of the object stored in the specialized

190

domain. The solution works only for immutable cases, where in order to change the

value of a domain, a new instance is created with the new values. If already created

objects are modified instead of creating new ones, this optimization will not improve

anything and it is not compatible with mutable objects, so it should not be attempted.

Using the modified FOAM language, instead of creating a new instance, a set of fields

can be returned as a record using the inlined Decl extension.

Algorithm 16 is used to optimize the code. This algorithm is called from the

code specialization algorithm which recursively applies the specialization from the

innermost to the outermost domain parameters.

Algorithm 16 The data specialization algorithm.

Input: domain object after code specialization
Output: updated domain object and translation table computed

tr := construct translation table based on % and Rep of child (Table 5.1)
for all e ∈ exports(dom) do

locally unfold the code of the export with code from inner domain
for all i ∈ instructions(e) do

for all exp ∈ expression(i) do
if any of the exp ∈ tr then

if exp is used for writing then
replace with optimized form

else
r := construct an object of the type required by the call
copy from outer Rep into r

end if
end if

end for
end for

end for

For immutable objects, fields are only written to when newly allocated objects

have their initial values set before they are returned.

Algorithm 16 can be integrated with the code specialization algorithm and data

191

specialization can be performed together with code specialization rather than as a

separate phase.

The outer domains and other programs should be checked to ensure that they do

not use any expressions with data that points to the domain that was specialized. If

such expressions are detected, a translation can be attempted using the translation

table computed. If it is not possible to then translate the whole domain, the data

representation should be reverted to code specialization only.

Record Specialization

An example of a representation which uses a record is the Complex domain:

Rep == Record(re: MachineInteger, im: MachineInteger)

The Aldor compiler generates the FOAM code presented in Listing 5.12 in the

domain’s initialization function addLevel1.

The operations that work with the representation of the domain use a record which

is declared in the format declaration section. The corresponding declaration of the

Rep is given in Listing 5.13. In the record declaration, the fields are stored as values

of type Word, which is the type corresponding to a domain object and represents a

reference to a domain object. From this record declaration alone, it is not possible

to extract the actual types used as fields of the array. This is where the domain

initialization function proves useful. The type Record is treated specially by the

Aldor compiler. The code presented in Listing 5.12 shows that the type information

of the fields of a record are stored at run-time. This allows the data specialization

optimization to retrieve the domain used as the type for the fields of the record.

In the domain initialization function, addLevel1, there is no correlation between

the record used to store the values and the domain constructor function Record

192

Listing 5.12: FOAM code for domain representation.

1 (Set (Lex 0 2 Rep) (CCall Word (Glo 23 domainMakeDummy)))

2 (Def (Loc 7) (Lex 0 2 Rep))

3 (Set (Loc 8) (ANew Word (SInt 2)))

4 (Set (Loc 9) (RNew 8))

5 (Set (RElt 8 (Loc 9) 0) (SInt 2))

6 (Set (RElt 8 (Loc 9) 1) (Loc 8))

7 (Set (AElt Word (SInt 0) (Loc 8)) (Lex 2 1 MachineInteger))

8 (Set (AElt Word (SInt 1) (Loc 8)) (Lex 2 1 MachineInteger))

9 (Def

10 (Lex 0 2 Rep)

11 (CCall

12 Word

13 (Clos

14 (CEnv (Lex 2 0 Record))

15 (Const 33 |Record(MachineInteger,MachineInteger))|))

16 (Cast Word (Loc 9))))

17 (CCall NOp (Glo 24 domainFill!) (Loc 7) (Lex 0 2 Rep))

18 (Set (Lex 0 2 Rep) (Loc 7))

19 (Set (AElt SInt (SInt 0) (Loc 0)) (SInt 316169058))

20 (Set (AElt SInt (SInt 0) (Loc 1)) (SInt 850925108))

21 (Set (AElt Word (SInt 0) (Loc 2)) (Lex 0 2 Rep))

Listing 5.13: The record declaration corresponding to Rep.

1 (DDecl

2 Records

3 (Decl Word "re" -1 4)

4 (Decl Word "im" -1 4))

193

Listing 5.14: The Pair domain.

1 Pair(d: ComplexType): with {

2 pair: (SI, SI) -> %;

3 first: %-> d;

4 second: %-> d;

5 } == add {

6 Rep == Record(f: d, s: d);

7 import from Rep;

8 pair(p:SI, q:SI):% == per [complex(p,q),complex(q,p)];

9 first(t:%): d == rep(t).f;

10 second(t:%): d == rep(t).s;

11 }

Listing 5.15: The record declaration of the representation of Pair.

1 (DDecl

2 Records

3 (Decl Word "f" -1 4)

4 (Decl Word "s" -1 4))

(MachineInteger, MachineInteger). A special function was created to compute

the format of the record used to store the representation of the domain. The function

investigates the functions that return the type % and finds the FOAM type corre-

sponding to that returned value.

In order to explain how record specialization works, we need to extend the ex-

ample with a new parametric domain Pair. The Aldor code for the Pair domain is

presented in Listing 5.14. The domain accepts a parameter d representing the type of

the stored elements. In this case, the type of the parameter d is ComplexType. The

representation of the Pair domain is a record with two fields of type d. A posible in-

stantiation of Pair type would be Pair(Complex). The corresponding representation

declaration of the Pair(Complex) is presented in Listing 5.15.

194

Listing 5.16: The specialized record declaration of the representation of Pair.

1 (DDecl

2 Records

3 (Decl Word "re" -1 4)

4 (Decl Word "im" -1 4)

5 (Decl Word "re" -1 4)

6 (Decl Word "im" -1 4)))

Listing 5.17: The record declaration of the representation of Pair.

1 (DDecl

2 Records

3 (Decl Rec "f" 1 9)

4 (Decl Rec "s" 1 9))

The specialized representation will replace the declaration presented in Listing

5.15 with the representation presented in Listing 5.16.

Listing 5.17 shows the specialized representation when the extended Decl instruc-

tion is used. The changes begin with the type of each field from a generic domain

reference Word to a Rec which represents the representation of the domain correspond-

ing to that field. In addition, a flag’s value has changed from value -1 to 1 to signal

that the record should be inlined. Finally, a format is specified which represents the

format of the record to be inlined.

After the new representation is constructed, a mapping scheme from the old type

to the new type is constructed as well. The mapping scheme translates a field from

the original record into a field and a format in the target format. For example, the

translation map for our pair example is presented in Table 5.2. The format corre-

sponding to the representation of the complex domain is format number nine. Using

this translation scheme, a record access instruction (RElt 12 (Loc 0) 0) will be

translated into (RElt 50 (Loc 0) 0) and (RElt 50 (Loc 0) 1). Format number

195

Field Index Target Field Target Format
0 0 9
1 2 9

Table 5.2: Mapping scheme for fields of the old format into the new format of Pair.

Assignee Container Format Field Index
(Loc 2) (Loc 0) 12 0
(Loc 1) (Loc 0) 12 1

Table 5.3: Connection between fields of the container and variables containing the
record to be inlined.

12 is the original representation of the Pair while format number 50 is the new special-

ized representation. The target format is used to know the target record from which

the original field was expanded. By convention, if the value of the target format is 0,

the field has not been expanded. This is useful because the instruction that stores the

inner domain value into the outer should be completely removed, since all its fields

have been copied into the expanded fields of the outer domain representation.

Before proceeding with the translation some new information must be gathered

from the function that will be changed. A new table is constructed which connects

expressions of the inner domain type to the fields of the outer domain fields. The

code for the pair function is presented in Listing 5.18. This code checks to see which

variables are stored in which fields of the specialized domain. For Listing 5.18, local

variable (Loc 2) is stored in field index 0 of (Loc 0) and local variable (Loc 1) is

stored in field index 1 of (Loc 0). The complete analysis table is presented in Table

5.3.

With all the above information constructed, the exported function of the special-

ized domain is translated according to the following rules:

• any RNew with a format corresponding to the old domain representation will be

changed to have the format corresponding to the new representation.

196

Listing 5.18: The pair function.

1 (Def

2 (Const 23 pair)

3 (Prog

4 0

5 1

6 Word

7 4

8 1155

9 36

10 1

11 0

12 (DDecl Params (Decl Word "p" -1 4) (Decl Word "q" -1 4))

13 (DDecl

14 Locals

15 (Decl Rec "" -1 12)

16 (Decl Rec "" -1 9)

17 (Decl Rec "" -1 9))

18 (DFluid)

19 (DEnv 4 13 4 4 4)

20 (Seq

21 (Set (Loc 0) (RNew 12))

22 (Set (Loc 2) (RNew 9))

23 (Set (RElt 9 (Loc 2) 0) (Par 0 p))

24 (Set (RElt 9 (Loc 2) 1) (Par 1 q))

25 (Set (RElt 12 (Loc 0) 0) (Loc 2))

26 (Set (Loc 1) (RNew 9))

27 (Set (RElt 9 (Loc 1) 0) (Par 1 q))

28 (Set (RElt 9 (Loc 1) 1) (Par 0 p))

29 (Set (RElt 12 (Loc 0) 1) (Loc 1))

30 (Return (Loc 0)))))

197

• any RElt, with a format corresponding to the inner domain representation,

will be changed to have a format of the new container, the expression of the

new container and the field computed as an offset in the new container. This

translation uses information from Tables 5.2 and 5.3.

• any RElt, on the left hand side of an assignment, with a format corresponding

to the specialized domain, is replace by a (Nil) statement.

• any RElt, on the right hand side of an assignment statement, with a format

corresponding to the specialized domain, is replace by constructing a new el-

ement of the original field type. Then the values from the specialized domain

representation are copied into the newly allocated object. The allocation is not

necessary if the extended Decl instruction is implemented in FOAM.

Once the transformations presented previously are performed, the compiler’s op-

timizer can eliminate all of the unnecessary instructions producing the final code for

the pair function presented in Listing 5.19. One can see that the resulting pair

function eliminated the allocation of the contained objects.

Array Specialization

Arrays are similar to records. They both require memory allocation, and any update

to their fields requires the creation of a new object and storage of the new value in

the corresponding position, while the old value will be freed by the garbage collector.

This is the only way to update values stored in an array of immutable objects. If

the objects are mutable, the object could be retrieved from the array, and its state

could be changed. For mutable objects. This optimization does not apply to mutable

objects.

198

Listing 5.19: The specialized version of the pair function.

1 (Def

2 (Const 23 pair)

3 (Prog

4 0

5 1

6 Word

7 4

8 1155

9 22

10 1

11 0

12 (DDecl Params (Decl Word "p" -1 4) (Decl Word "q" -1 4))

13 (DDecl Locals (Decl Rec "" -1 12))

14 (DFluid)

15 (DEnv 4 13 4 4 4)

16 (Seq

17 (Set (Loc 0) (RNew 50))

18 (Set (RElt 50 (Loc 0) 0) (Par 0 p))

19 (Set (RElt 50 (Loc 0) 1) (Par 1 q))

20 (Set (RElt 50 (Loc 0) 2) (Par 1 q))

21 (Set (RElt 50 (Loc 0) 3) (Par 0 p))

22 (Return (Loc 0)))))

199

Listing 5.20: Polynomial of complex coefficients.

1 Polynomial(d: ComplexType): with {

2 poly: SI -> %;

3 get: (%,SI) -> d;

4 set: (%,SI,d) -> d;

5 } == add {

6 Rep == PA(d);

7 import from Rep;

8 poly(size:SI):% == per new(size);

9 get(t:%,i:SI):d == rep(t).i;

10 set(t:%,i:SI,v:d):d == set!(rep(t), i, v);

11 }

Changing the representation of arrays requires the use of another data structure

offered by the Aldor programming language, namely TrailingArray. This data

structure does exactly what we need: it creates an array where each entry in the

array is a sequence of fields from the record, and then retrieves the fields one by one.

In trailing arrays, there is no need to allocate the memory for each element, rather

the elements are stored inside the trailing array.

An example of a domain which uses an array of complex numbers for the coeffi-

cients of a polynomial is presented in Listing 5.20. The representation of Polynomial

is PA(d). The parametric domain PA is a simple primitive array whose representation

is Arr (Arr is the FOAM type used for arrays).

The FOAM code for the initialization of the representation of the Polynomial

domain is presented in Listing 5.21. One can see that the representation is just

the domain Arr and that there is no specification of the real type used to store the

elements.

To find the actual domain used to store the elements of the array, the exported

functions of the Polynomial domain are searched for FOAM array access instructions,

200

Listing 5.21: Representation of Polynomial domain.

1 (Set (Lex 0 6 Rep) (CCall Word (Glo 17 domainMakeDummy)))

2 (Def (Loc 6) (Lex 0 6 Rep))

3 (Def (Lex 0 6 Rep) (Lex 3 8 Arr))

4 (CCall NOp (Glo 18 domainFill!) (Loc 6) (Lex 0 6 Rep))

5 (Set (Lex 0 6 Rep) (Loc 6))

6 (Set (AElt SInt (SInt 0) (Loc 0)) (SInt 316169058))

7 (Set (AElt SInt (SInt 0) (Loc 1)) (SInt 547382598))

8 (Set (AElt Word (SInt 0) (Loc 2)) (Lex 0 6 Rep))

AElt. For those values that are linked to the function parameters or the return type,

the symbol meaning of the function is checked and the meaning of the array elements

is extracted. That is compared with the meaning of the domain parameters. If a

match is found, the domain parameter instance is returned.

Before starting the transformation, the TrailingArray domain constructing func-

tion must be retrieved from the library. In order to achieve this, a new global variable

is created:

(GDecl Clos "sal lang TrailingArray 283473430" -1 4 1 Foam)

next, a lexical variable at the file level is introduced:

(Decl Word "TrailingArray" -1 4)

In the file initialization function (constant index 0), the lexical and global variables

are initialized by the introduction of a new library initialization function, namely

sal lang-init, as seen in Listings 5.22 and 5.23. If the function sal lang-init

exists due to other domains from the same library being used in the current file, the

existing version is modified so that is also initializes the value of the global introduced.

The final step is to initialize the lexical variable introduced at the file level. All these

changes are presented in the FOAM code extract presented in Listings 5.22 and 5.23.

201

Listing 5.22: Initializing TrailingArray from library.

1 (Unit

2 (DFmt

3 (DDecl

4 Globals

5 ...

6 (GDecl Clos "sal_lang_TrailingArray_283473430" -1 4 1 Foam)

7 (DDecl

8 Consts

9 ...

10 (Decl Prog "sal_lang-init" -1 4)

11 (DDecl

12 LocalEnv

13 ...

14 (Decl Word "TrailingArray" -1 4))

15 (DDef

16 (Def

17 (Const 0 t3)

18 (Prog

19 ...

20 (DDecl Params)

21 (DDecl

22 Locals

23 (Decl Clos "" -1 4)

24 (Decl Clos "" -1 4)

25 (Decl Clos "" -1 4)

26 (Decl Arr "" -1 5)

27 (Decl Arr "" -1 8)

28 (Decl Rec "" -1 8)

29 (Decl Rec "" -1 8))

30 (DFluid)

31 (DEnv 20)

32 (Seq

33 (CCall NOp (Glo 8 runtime))

34 (Set (Glo 0 t3) (Glo 1 noOperation))

35 (Def (Loc 0) (Clos (Env 0) (Const 26 sal_lang-init)))

202

Listing 5.23: Initializing TrailingArray from library.

1 (Def

2 (Lex 0 17 TrailingArray)

3 (CCall

4 Clos

5 (Glo 29 stdGetWordWordRetWord0)

6 (CCall Word (Glo 35 rtDelayedInit!) (Loc 0) (SInt 1))))

7 (Def

8 (Const 26 sal_lang-init)

9 (Prog

10 0

11 2

12 Word

13 0

14 1154

15 18

16 25

17 0

18 (DDecl Params (Decl SInt "idx" -1 4))

19 (DDecl Locals)

20 (DFluid)

21 (DEnv 4 20)

22 (Seq

23 (If (Lex 1 14) 0)

24 (Set (Lex 1 14) (Bool 1))

25 (CCall NOp (Glo 39 sal_lang))

26 (Label 0)

27 (If (BCall SIntNE (Par 0 idx) (SInt 1)) 1)

28 (Return (Glo 42 sal_lang_TrailingArray_283473430))

29 (Label 1)

30 (Return (Glo 19 sal_lang_Machine_915715331)))))

203

Listing 5.24: The specialized version of the representation of the Polynomial domain.

1 (Set (Lex 0 6 Rep) (CCall Word (Glo 17 domainMakeDummy)))

2 (Def (Loc 6) (Lex 0 6 Rep))

3 (Set (Loc 11) (ANew Word (SInt 1)))

4 (Set (Loc 12) (RNew 38))

5 (Set (RElt 38 (Loc 12) 0) (SInt 1))

6 (Set (RElt 38 (Loc 12) 1) (Loc 11))

7 (Set (AElt Word (SInt 0) (Loc 11)) (Lex 3 2 MachineInteger))

8 (Set (Loc 13) (ANew Word (SInt 2)))

9 (Set (Loc 14) (Cast Arr (RNew 38)))

10 (Set (RElt 38 (Loc 14) 0) (SInt 2))

11 (Set (RElt 38 (Loc 14) 1) (Loc 13))

12 (Set (AElt Word (SInt 0) (Loc 13)) (Lex 3 2 MachineInteger))

13 (Set (AElt Word (SInt 1) (Loc 13)) (Lex 3 2 MachineInteger))

14 (Def

15 (Lex 0 6 Rep)

16 (CCall

17 Word

18 (Lex 3 17 TrailingArray)

19 (Cast Word (Loc 12))

20 (Cast Word (Loc 14))))

21 (CCall NOp (Glo 18 domainFill!) (Loc 6) (Lex 0 6 Rep))

22 (Set (Lex 0 6 Rep) (Loc 6))

23 (Set (AElt SInt (SInt 0) (Loc 0)) (SInt 316169058))

24 (Set (AElt SInt (SInt 0) (Loc 1)) (SInt 547382598))

25 (Set (AElt Word (SInt 0) (Loc 2)) (Lex 0 6 Rep))

Once the initialization code is in place, the representation of the specialized do-

main must be changed. The changed representation is presented in Listing 5.24. This

code creates a representation which uses a trailing array of the form:

Rep == TrailingArray(MI, (re:MI, im:MI))

where the types of the trailing part of the trailing array are copied from the represen-

tation of the domain used to instantiate the domain, which is also used as the type

of the elements stored in the array.

Each trailing array uses values of type TR. Each TR type must be declared in the

204

Listing 5.25: The trailing array declaration.

1 (DDecl

2 TrailingArray

3 (Decl NOp "" -1 1)

4 (Decl Word "" -1 4)

5 (Decl Word "re" -1 4)

6 (Decl Word "im" -1 4))

declaration part of the unit. For our example, the declaration can be seen in Listing

5.25.

The final step in the translation between arrays and trailing arrays is to translate

all of the exports of the specialized domain to the new representation. The change

rules are:

• any ANew corresponding to type % is replaced by TRNew with a format index of

the declaration presented in Listing 5.25

• any AElt used for storing elements of same type as the the type parameter will

be replaced by the equivalent TRElt for each of the fields of the type parameter

• any AElt used for reading elements of same type as the the type parameter will

be replaced by an allocation of the type parameter value followed by a copy of

all the fields from the trailing array into the newly allocated memory

The get function for our example is presented in Listing 5.26. The specialized

form of the get function is presented in Listing 5.27. This code introduces an extra

memory allocation because it has to return an object of the type of its inner domain.

The operations of the specialized domain which use internal objects belonging to

the inner domain do not allocate a new variable for each operation that updates the

values of the outer domain.

205

Listing 5.26: The FOAM code of get function from Polynomial(Complex).

1 (Def

2 (Const 33 get)

3 (Prog

4 0

5 1

6 Word

7 4

8 3203

9 7

10 1

11 0

12 (DDecl Params (Decl Word "t" -1 4) (Decl Word "i" -1 4))

13 (DDecl Locals)

14 (DFluid)

15 (DEnv 4 16 4 4 4)

16 (Seq

17 (Return (AElt Word (Cast SInt (Par 1 i)) (Cast Arr (Par 0 t)))))))

Test Original Optimized Ratio

Time (s) 119 8 15.0
Space (MB) 80 4 22.1

Table 5.4: Time and run-time memory improvement after hand specialization of
polynomial multiplication.

5.3 Performance Results

The results of applying data specialization to the polynomial multiplication problem

can be seen in Table 5.4. The results from Table 5.4 have been obtained by hand

specializing the code. For the data representation optimization, objects created on the

heap (mostly temporary objects resulting from arithmetic operations) are replaced by

stack allocated objects or updating of the already allocated objects. This produces a

decrease in memory usage.

All of the tests were performed using Aldor compiler version 1.0.3 under Fedora

Core 5. The back-end C compiler used by the Aldor compiler was gcc 4.1.1. The

206

Listing 5.27: The specialized version of get function.

1 (Def

2 (Const 33 get)

3 (Prog

4 0

5 1

6 Word

7 4

8 1155

9 22

10 1

11 0

12 (DDecl Params (Decl Word "t" -1 4) (Decl Word "i" -1 4))

13 (DDecl Locals (Decl Rec "" -1 14))

14 (DFluid)

15 (DEnv 4 16 4 4 4)

16 (Seq

17 (Set (Loc 0) (RNew 14))

18 (Set

19 (RElt 14 (Loc 0) 0)

20 (TRElt 37 (Cast Arr (Par 0 t)) (Cast SInt (Par 1 i)) 0))

21 (Set

22 (RElt 14 (Loc 0) 1)

23 (TRElt 37 (Cast Arr (Par 0 t)) (Cast SInt (Par 1 i)) 1))

24 (Return (Loc 0)))))

207

CPU was a Pentium 4 with a clock rate of 3.2 GHz, 1 MB cache and 2 GB of RAM.

The actual hardware specification is not very important since we are only interested

in the relative values presented in the ratio columns.

The specialized versions of the kernels from the SciGMark are good examples

gains that can be obtained with data specialization. The data representation for the

specialized versions of SciGMark use arrays of data that contain values unwrapped

from DoubleRing. The data is only accessed through the class, so the optimization

as the one presented in this chapter should be possible.

5.4 Applicability to Other Programming Languages

The compilers that we have tested for C++, C#, and Java do not perform the kind of

optimization presented in this chapter.

For C++, we have seen the difference between a std::vector containing Double,

a wrapper for the type double, and the same std::vector containing a pointer, e.g.

Double*. In C++, the decision between these types is left to the programmer. There

are some algorithms that perform more poorly after transforming heap allocated

data into stack allocated data. This is mainly true for algorithms that rearrange data

(sorting algorithms, matrix pivoting in jagged arrays). If the data size to be moved

is large, it is much faster to rearrange the references to the objects than the whole

objects.

C# offers the struct keyword that constructs a stack allocated object, rather

than a heap allocated one. It is up to the programmer to choose between struct and

class. As was the case for C++, replacing the data could be bad for some classes of

algorithms without proper whole program analysis.

208

Java does not offer any way to distinguish between stack and heap allocation. All

objects are allocated on the heap while all values of the basic types are allocated

on the stack. To save values of the basic types inside collections, a wrapper has

to be constructed for each value. This wrapping, called boxing, is performed auto-

matically. However, operating on these collections requires boxing and unboxing the

data which is time consuming. Work is in progress for the Java compiler to optimize

away the allocations for temporary objects that do not escape the local scope of a

function [16]. As of version 6.0, Sun’s Java implementation still does not perform

this optimization. It is also worth noting that this optimization will not optimize the

representation of the objects that use collections. It will still be necessary to perform

the boxing/unboxing operations for those cases.

5.5 Related Work

Object inlining has been presented by Julian Dolby and Andrew A. Chien in [21]. In

their work they used the Concert compiler that performs extensive interprocedural

analysis. The proposed optimization only fuses the objects that have a one-to-one

relationship. This means that only objects that are created together and deleted

together are fused. An example of such an object is a linked list that contains elements

of a different class type. In this case, the elements are fused in the list.

A structure unfolding optimization was presented by Chen et al [15]. Several

optimizations for C++ are described starting with agressive function inlining, indi-

rect memory access folding using SSA based scalar optimizations for structures, and

finally, structure folding. The final step replaces structures with their fields. This

work performs some of the optimizations that we propose, by specializing the code

locally in the function. This optimization is similar to the environment merge opti-

209

mization already present in the Aldor compiler. The difference is that a global SSA

representation is necessary to track aliased variables.

A type-based compiler for standard ML used type information to optimize the

code. In a usual Standard ML compiler, type information constructed by the front end

of the compiler is used to verify the correctness of the program and then discarded. In

the extension proposed by Zhong Shao and Andrew W. Appel in [58], their proposed

type specialization refers to unboxing types and creating monomorphic functions.

Another ML compiler framework TIL presented in [63] proposed a typed inter-

mediate language (TIL) with support for intensional polymorphism (the ability to

dispatch to different routines based on the types of variables at runtime). The opti-

mization does not eliminate the polymorphism at compile-time, leaving the functions

polymorphic and selecting specialized behaviors based on the runtime time of the

arguments. One interesting optimization, is the argument passing optimization. This

optimization replaces the function arguments represented as records as multiple ar-

guments containing the fields of the records. In contrast the optimization presented

in this thesis, the specialization is not completed at compile-time, requiring the avail-

ability of an expressive type information representation of the data.

A more general framework for storing information about types which could later

be used to produce efficient code for polymorphic labeled records was presented in

[47]. The framework presented was only theoretical and there was no implementation

mentioned.

Program specialization in Java using partial evaluation was presented Schultz in

[56, 57]. He presented a two level language based on an extension of Featherweight

Java (a simple object-oriented language based on Java), but in that language the

author only specializes the base types. Also, the specialization does not deal with

generic programming.

210

Virtual function calls, in C++, are very expensive. Object specialization is a way

to replace virtual function calls with regular function calls. Porat et al [50] propose a

code analysis technique to find possible types used as targets for the virtual call and

then specialize according to this types. The complete analysis is NP-Hard so they

approximate the set of types that are targets for a virtual a call. In particular, they

restrict themselves to unique name (when there is only one target for the virtual call)

and single type prediction (by predicting a most used type, specializing based on that

type and leaving the virtual call for the rest of the types). Similar type specialization

based on the most probable code execution path was proposed by Dean and al in

[20]. This work applies to virtual call specialization, but not to generic programming.

The type specialization method guesses some types and specializes for them while the

optimization presented in this chapter that does the optimization based on the exact

type constructor.

In C#, access to object fields is performed transparently through get/set methods

[30]. This inspired the idea to use Reference(T) as a possible solution in section 5.2.3.

The access to T can be transparently changed by the compiler with access through

Reference(T), where the operations to set and get the values can be different on a

case by case basis.

5.6 Conclusions and Future Research

We have presented an optimization that can produce impressive speedups in particular

cases, especially for algorithms that manipulate many small objects.

The optimization presented in this chapter is not as straightforward as the code

specialization presented in chapter 4. A more complex framework had to be developed

and it cannot be applied in all the cases. Some problems and their possible solutions

211

were discussed and an algorithm for implementing the optimization was presented.

The limitation of the data specialization optimization is that it only works with im-

mutable objects. This restriction was necessary to avoid the problems imposed by

the aliasing of data. We also propose a simple extension to the Aldor intermedi-

ate language, FOAM, to allow records to be represented as inlined data instead of

references to pointers to heap allocated objects. This extension would permit us to

give access to the data contained in the specialized type, without reconstructing the

original object. This is possible because the data representation of the types used to

instantiate the generic type is not changed, it is only allocated inside the container

type.

The results obtained for a hand optimized example were presented. They showed

a dramatic increase in performance of up to 15 times execution time speedup and

20 times less memory use. This was expected since the number of allocations for

temporary objects has been reduced dramatically.

The compiler implementation still needs improving to be able to handle more

complex cases such as the ones seen in SciGMark.

We claim that this optimization could produce similar performance results in the

specialized version of SciGMark due to the fact that SciGMark does not perform any

special data accesses outside of the classes that implement the algorithms, and the

difference in data representation between the generic and specialized versions is the

wrapped data used to permit generic collections.

Chapter 6

Conclusions

The first objective of this thesis has been to develop a suitable framework to evaluate

the performance of generic code. Such a framework must measure programs using

parametric polymorphism in different ways as well as in combinations with various

coding styles. This was achieved with SciGMark and comparing the timings of the

generic code and the specialized code. To our knowledge, there was no benchmark

available that evaluated a broad range of use of generics, so we created our own

SciGMark.

SciGMark was an important tool in measuring the performance of the compilers

with respect to the tower type optimization. Moreover, it helped in finding ways to

improve the tower type optimization by changing the type representation together

with the code specialization.

SciGMark is the first macro benchmark that uses generic code extensively and it

is a very useful tool for measuring the compilers performance with respect to generic

code.

The results provided by the benchmark have shown us that there is considerable

room for improvement from the compiler optimization viewpoint. By examining

212

213

the generic and specialized code, we have found that type specialization helps in

producing better code. Scientific code relies on rich mathematical models that are

very well suited to generic model of programming. Extensive use of generic libraries

can lead to type constructs that contain more levels of parametric types. We call

these “deeply nested” parametric types. With the help of SciGMark, we have seen

performance degradation of the generic code even when the type towers constructed

are not deeper than two levels. We expect that deeply nested types will only increase

the performance gap.

Another objective of the thesis was to present some of the proposed optimizations

and to analyze their effect and limitations. Two optimizations methods were pre-

sented in the thesis. The code specialization optimizations was implemented for the

Aldor programming language. A thorough analysis was performed on this optimiza-

tion with different use cases. The results have shown that even with the powerful

optimizations already implemented by the Aldor compiler, the generic code is still

not close to its optimal performance.

Aldor programming language libraries are heavily generic and it is easy to create

“deeply nested” types. Therefore, we have implemented an automatic code special-

izer to optimize the “deeply nested” generics for the Aldor programming language.

The results obtained by the automatic code specializer are encouraging showing im-

provements between 1.05 and 3 times faster with cases where an order of magnitude

faster was possible.

There is one disadvantage to code specialization, namely object code explosion. As

a direct consequence of increased code size the compilation time will also be increase

accordingly. This is the trade-off that has to be paid to increase the time performance.

Another important factor of the code specialization is that the optimization itself

is very simple to implement and rather efficient.

214

The results produced by running SciGMark on code specialization optimization

showed that there is still room for improvement. By examining the hand specialized

code from the SciGMark, it was clear that the memory behavior needs to be improved.

Therefore, we decided to extend the code specialization optimization with another

optimization, namely data specialization.

The data specialization rearranges the data in the specialized domain to avoid al-

location of intermediate values. We provided an implementation and showed results

on some simple cases, but the implementation of the data specialization optimization

could still be improved to handle more complex cases such as the SciGMark bench-

mark. The drawback of the data specialization optimization is that it only works

with immutable objects. It can be extended to work on some mutable cases, but only

with complex whole program analysis which complicates the compiler.

For the data specialization a speedup of 15 times was obtained for the polynomial

multiplication. This result contains also the improvement resulted from code special-

ization. The most improvement is due to the reduced number of temporary objects

created as a result of the use of trailing arrays and procedure integration that led to

a 22 times decrease in memory consumption.

With the increased popularity of object-oriented programming languages we have

seen an increased interest in optimizing subclassing polymorphism to the level where

it is very easy to use virtual methods with very little performance penalty. However,

for scientific algorithms parametric polymorphism seems more appealing because of

the possibility to statically type check the type parameters making the code safer.

The possibility to perform static type checking on type parameters offers better op-

portunities for compile-time optimizations, and we would like to contribute to the

advancement of compiler technology in this area.

Appendix A

A.1 SciGMark Example

A complete listing of the SciGMark benchmark suite is available at http://www.

orcca.on.ca/benchmarks.

This appendix lists the code for the fast Fourier transform kernel as implemented

in Aldor. The generic and specialized forms of fast Fourier transform are presented

in Listing A.1 and Listing A.2 respectively.

215

216

Listing A.1: Generic version of fast Fourier transform.

1

2 define GenFFTCat(R: Join(IRing, ITrigonometric), C: IMyComplex(R)):Category

3 == with {

4 constr : (R, C) -> %;

5 numFlops : int -> double;

6 transform : (%,Array C) -> ();

7 inverse : (%,Array C) -> ();

8 test : (%, Array C) -> R;

9 makeRandom: (%, int) -> Array C;

10 main : () -> ();

11 };

12

13 define GenFFT(R:Join(IRing,ITrigonometric),C:IMyComplex(R)): GenFFTCat(R,C)

14 == add {

15 Rep == Record(num: R, c: C);

16 import from Rep, R, C, Array(C), String, int, double;

17 constr(n: R, c: C): % == {per [n, c];}

18 numFlops(n: int): double == {

19 Nd := n::double;

20 logN := log2(n)::double;

21 return (5.0 * Nd - 2.0) * logN + 2.0 * (Nd + 1.0);

22 }

23 transform(t:%,data: Array C): () == {transform__internal(t, data, -1);}

24 inverse(t:%,data: Array C): () == {

25 transform__internal(t, data, 1);

26 nd := #data;

27 norm := coerce(rep(t).c, 1.0 / nd::double);

28 for i in 0..nd-1 repeat data.i := data.i*norm;

29 }

30 test(this: %, data: Array C): R == {

31 import from Array C;

32 nd := #data;

33 cpy: Array C := newArray(nd)$C; --$

34 for i in 0..nd-1 repeat cpy(i) := copy(data(i));

35 transform(this,data);

36 inverse(this,data);

37 diff := coerce(rep(this).num, 0.0);

38 for i in 0..nd-1 repeat {

39 d := data.i; d := d-cpy(i);

40 setRe(d, getRe(d)*getRe(d));

41 setIm(d, getIm(d)*getIm(d));

42 diff := +(diff,getRe(d));

43 diff := +(diff,getIm(d));

44 }

45 diff := diff / coerce(rep(this).num, nd);

46 diff := sqrt(diff);

47 dispose(cpy);

48 diff;

49 }

217

50 makeRandom(t: %, n: int): Array C == {

51 data: Array C := newArray(n);

52 r: Random := Random(1);

53 for i in 0..n-1 repeat

54 data.i := create(coerce(rep(t).num, nextDouble(r)),

55 coerce(rep(t).num, nextDouble(r)));

56 data;

57 }

58 main(): () == {

59 import from DoubleRing;

60 c:MyComplex(DoubleRing) := create(DoubleRing(0.0), DoubleRing(0.0));

61 num := DoubleRing(0.0);

62 T == GenFFT(DoubleRing, MyComplex(DoubleRing));

63 import from T;

64 fft: T := constr(num, c);

65 n:int := 1024;

66 stdout << "n= " << n << " => RMS Error=" <<

67 test(fft,makeRandom(fft, n))::double << newline;

68 }

69 -- private

70 log2(n: int): int == {

71 log: int := 0;

72 k: int := 1;

73 while k < n repeat {log := log + 1; k := k * 2;}

74 if n ~= (shift(1,log)) then {

75 stdout << "FFT: Data length is not a power of 2!:"

76 << n << newline;

77 error("Exit");

78 }

79 log;

80 }

81 transform__internal(this:%, data: Array C, direction: int): () == {

82 if #data = 0 then return;

83 n := #data;

84 if n = 1 then return; -- Identity operation!

85 logn := log2(n);

86 bitreverse(data);

87 n1 := coerce(rep(this).num, 1.0);

88 n0 := coerce(rep(this).num, 0.0);

89 n2 := coerce(rep(this).num, 2.0);

90 w := create(n1,n0);

91 theta__ := coerce(rep(this).num, 2.0 * direction::double * PI / 2.0);

92 dual := copy(n1);

93 FOR(bit:int:=0,bit<logn,{bit:=bit+1;me(dual,n2)}) {

94 setRe(w, n1); setIm(w, n0);

95 theta := theta__ / dual;

96 s := sin(theta);

97 t := sin(theta / 2.0::R);

98 s2 := t * t * 2.0::R;

99 FOR(b:int:=0,b<n,b:=b+2*integer(dual::double)::int) {

100 i := b; j := (b + integer(dual::double)::int);

218

101 wd := data.j; tmp := data.i; tmp := tmp-wd;

102 data.i := data.i+wd;

103 }

104 FOR(a:int:=1,a<integer(dual::double)::int,a:=a+1) {

105 nn := 1.0::R; nn := nn - s2;

106 tmp := create(nn, s);

107 w := w * tmp;

108 FOR(b:int:=0,b<n,b:=b+2*integer(dual::double)::int) {

109 i := b+a; j := b+a+integer(dual::double)::int;

110 z1 := data.j; wd := copy(w); wd := wd * z1;

111 data.j := data.i - wd; data.i := data.i + wd;

112 }

113 }

114 }

115 }

116 bitreverse(data: Array C):() == {

117 -- This is the Goldrader bit-reversal algorithm */

118 n: int := #data; nm1:int := n - 1; j: int := 0;

119 FOR(i: int := 0,i < nm1,i:=i+1) {

120 ii := shift (i, 1);

121 jj := shift (j, 1);

122 k := shift (n, -1);

123 if i < j then {tmp := data.i; data.i := data.j; data.j := tmp;}

124 while k <= j repeat {j := j - k; k := shift(k, -1);}

125 j := j + k;

126 }

127 }

128 };

219

Listing A.2: Specialized version of fast Fourier transform.

1 define FFT: with {

2 num__flops: int -> double;

3 transform : AD -> ();

4 inverse : AD -> ();

5 test : AD -> double;

6 } == add {

7 import from AD;

8 num__flops(n: int): double == {

9 Nd := n::double; logN := log2(n)::double;

10 return (5.0 * Nd - 2.0) * logN + 2.0 * (Nd + 1.0);

11 }

12 transform(data: AD): () == {transform__internal(data, -1);}

13 inverse(data: AD): () == {

14 transform__internal(data, 1);

15 -- Normalize

16 nd := #data;

17 n := nd quo 2;

18 norm := 1.0 / (n::double);

19 FOR(i:int:=0,i<nd,i:=i+1) {data.i := data.i*norm}

20 }

21 test(data: AD): double == {

22 nd := #data;

23 copy: AD := new(nd);

24 FOR(i:int:=0,i<nd,i:=i+1) {copy(i) := data(i)}

25 -- Transform & invert

26 transform(data);

27 inverse(data);

28 -- Compute RMS difference.

29 diff := 0.0;

30 FOR(i:int:=0,i<nd,i:=i+1){d := data(i)-copy(i);diff := diff+d*d}

31 diff := diff/nd::double;

32 diff

33 }

34 makeRandom(n: int): AD == {

35 import from Random;

36 nd := 2*n;

37 data: AD := new(n);

38 r := Random(1);

39 FOR(i:int:=0,i<n,i:=i+1) {data.i := nextDouble(r)}

40 data

41 }

42 -- private

43 log2(n: int): int == {

44 log:int := 0;

45 k:int := 1;

46 while k < n repeat { k := k * 2; log := log + 1; }

47 if n ~= (shiftUp(1,log)) then {

48 print << "FFT: Data length is not a power of 2!:" << n << newline;

49 --flush!(print);

220

50 error("Exit");

51 }

52 log

53 }

54 transform__internal(data: AD, direction: int): () == {

55 if #data = 0 then return;

56 n := #data quo 2;

57 if n = 1 then return; -- Identity operation!

58 logn := log2(n);

59 -- bit reverse the input data for decimation in time algorithm

60 bitreverse(data);

61 -- apply fft recursion

62 -- this loop executed log2(N) times

63 FOR({dual:int:=1;bit:int:=0},bit<logn,{bit:=bit+1;dual:=dual*2}){

64 wReal := 1.0;

65 wImag := 0.0;

66 theta := 2.0 * direction::double * PI / (2.0 * dual::double);

67 s := sin(theta);

68 t := sin(theta/2.0);

69 s2 := 2.0*t*t;

70 -- a := 0

71 FOR(b: int := 0, b < n, b := b + 2 * dual) {

72 i := 2*b;

73 j := 2*(b + dual);

74 wdReal := data(j);

75 wdImag := data(j+1);

76 data(j) := data(i) - wdReal;

77 data(j+1) := data(i+1) - wdImag;

78 data(i) := data(i) + wdReal;

79 data(i+1) := data(i+1) + wdReal;

80 }

81 -- a := 1 .. (dual-1)

82 FOR(a:int:= 1,a<dual,a:=a+1) {

83 {

84 tmpReal := wReal - s*wImag - s2*wReal;

85 tmpImag := wImag + s*wReal - s2*wImag;

86 wReal := tmpReal;

87 wImag := tmpImag;

88 }

89

90 FOR(b: int := 0, b < n, b := b + 2 * dual) {

91 i := 2*(b + a);

92 j := 2*(b + a + dual);

93 z1Real := data(j);

94 z1Imag := data(j+1);

95 wdReal := wReal*z1Real - wImag*z1Imag;

96 wdImag := wReal*z1Imag + wImag*z1Real;

97 data(j) := data(i) - wdReal;

98 data(j+1) := data(i+1) - wdImag;

99 data(i) := data(i) + wdReal;

100 data(i+1) := data(i+1) + wdImag;

221

101 }

102 }

103 }

104 }

105 bitreverse(data: AD):() == {

106 -- This is the Goldrader bit-reversal algorithm */

107 n := #data quo 2;

108 nm1 := n - 1;

109 i:int := 0;

110 j:int := 0;

111 while i < nm1 repeat {

112 ii := shiftUp (i, 1);

113 jj := shiftUp (j, 1);

114 k := shiftDown (n, 1);

115 if i < j then {

116 tmpReal := data(ii);

117 tmpImag := data(ii+1);

118 data(ii) := data(jj);

119 data(ii+1) := data(jj+1);

120 data(jj) := tmpReal;

121 data(jj+1) := tmpImag;

122 }

123 while k <= j repeat {j := j - k;k := shiftDown(k, 1);}

124 j := j + k; i := i + 1;

125 }

126 }

127 }

222

A.2 Examples of Simple Tests for Code

Specialization

This appendix contains the code for the simple tests presented in 4.4.1.

The first three tests: test1, test2 and test3 are based on the code presented in

Listing A.3.

Listing A.3: Test4 implementation.

1 #include "axllib.as"

2 SI ==> SingleInteger; LOOP ==> 3000000;

3 define Base: Category == with {methodA: % -> ();methodA: (SI, SI, %) -> ();};

4 A: Base with {

5 newA: SI -> %;

6 coerce: SI -> %;

7 coerce: % -> SI;

8 mA: % -> ();

9 } == add {

10 Rep ==> SI;

11 import from Rep;

12 newA(i: SI): % == per i;

13 coerce(i: SI): % == per i;

14 coerce(a: %): SI == rep a;

15 methodA(a: %):() == {

16 if (rep a) = 0 then {print << "A::methodA1" << newline;}

17 }

18 methodA(a: SI, b: SI, c: %):() == {

19 if a = 0 then {print << "A::methodA2" << newline;}

20 }

21 mA(a: %): () == {print << "A::mA" << newline;}

22 }

23 D: Base with {

24 newD: SI -> %;

25 coerce: SI -> %;

26 coerce: % -> SI;

27 mD: % -> ();

28 } == add {

29 Rep ==> SI;

30 local l:SI := 1;

31 newD(i: SI): % == per i;

32 coerce(i: SI): % == per i;

33 coerce(a: %): SI == rep a;

34 methodA(a: %):() == {

35 if (rep a)=0 then print << "D::methodA1 (" <<l<< ")" << newline;

36 }

223

37 methodA(a: SI, b: SI, c: %):() == {

38 if a = 0 then print << "D::methodA2" << newline;

39 }

40 mD(a: %): () == {print << "D::mD" << newline;}

41 }

42 B (V: Base, W: Base): with {

43 newB: V -> %;

44 methodB: V -> ();

45 methodB: W -> ();

46 methodB: (SI, W) -> ();

47 coerce: % -> V;

48 } == add {

49 import from V,W,SingleInteger;

50 Rep ==> V;

51 newB(i:V): % == per i;

52 coerce(c:%): V == rep c;

53 methodB(c: V): () == {for ii in 1..9*LOOP repeat {methodA(c)$V;}}

54 methodB(c: SI, x: W): () == {

55 for ii in 1..9*LOOP repeat {methodA(c, c, x)$W;}

56 }

57 methodB(c: W): () == {for ii in 1..9*LOOP repeat {ttt(c);}}

58 ttt(p: W): () == {

59 for ii in 1..9*LOOP repeat {methodA(p)$W;} print << newline;

60 }

61 }

62 main():() == {

63 default i: SI := 1;

64 default a: A;

65 default d: D;

66 default ba: B (A, D);

67 import from B(A,D);

68 a := newA(i);

69 d := newD(i);

70 ba := newB(a);

71 methodB(a);

72 methodB(d);

73 methodB(5, d);

74 }

75 main();

224

An interesting case is encountered in test4 and test5. The code implementation

for test4 is given in Listing A.4. The only difference in test5 is that the last two lines

from Listing A.4 are contained inside a funtion main. In test4, the call m(1) is not

optimized at all, and Dom4 cannot be optimized in generic form. In test5, the code

was optimized in the context of function main.

Listing A.4: Test4 implementation.

1 #include "axllib.as"

2 int ==> SingleInteger;

3 out ==> print;

4 import from int;

5 define Dom1Cat: Category == with {m: int -> int;};

6 define Dom2Cat: Category == with {m: int -> int;};

7 define Dom3Cat: Category == with {m: int -> int;};

8 define Dom4Cat: Category == with {m: int -> int;};

9 define Dom1: Dom1Cat == add {m(g: int): int == g := g + 1;}

10 define Dom2(p: Dom1Cat): Dom1Cat == add {

11 m(x: int) : (int) == {

12 import from p;

13 for i in 1..3000 repeat x := m(x)$p + 1;--$

14 x;

15 }

16 }

17 define Dom3(p: Dom1Cat): Dom1Cat == add {

18 m(x: int) : (int) == {

19 import from p;

20 for i in 1..600 repeat x := m(x)$p + 1;--$

21 x;

22 }

23 }

24 define Dom4(p: Dom1Cat): Dom1Cat == add {

25 m(x: int) : (int) == {

26 import from p;

27 for i in 1..500 repeat x := m(x)$p + 1;--$

28 x;

29 }

30 }

31 import from Dom4 Dom3 Dom2 Dom1;

32 out << m(1) << newline;

225

The example from Listing A.5 presents an exceptional speedup due to the fact

that in Dom3 the representation is a new type. If one would use a macro instead Rep

==> Dom25 p, both execution times become identical.

Listing A.5: Test6 implementation.

1 #include "axllib.as"

2 import from SingleInteger;

3 define DomCat: Category == with {m: (SingleInteger) -> (SingleInteger);};

4 define Dom1: DomCat == add {

5 m (g: SingleInteger) : (SingleInteger) == {

6 import from SingleInteger;

7 g := next(g);

8 }

9 next (g: SingleInteger) : (SingleInteger) == g + 1;

10 }

11 define Dom2(p: DomCat): DomCat == add {

12 m (x: SingleInteger) : (SingleInteger) == {

13 import from SingleInteger, p;

14 for i in 1..3000 repeat x := m(x)$p; --$

15 x;

16 }

17 }

18 define Dom25(p: DomCat): DomCat == add {

19 m (x: SingleInteger) : (SingleInteger) == {

20 import from SingleInteger,p;

21 for i in 1..3000 repeat {x := m(x)$p;} -- $

22 x;

23 }

24 }

25 define Dom3(p: DomCat): DomCat == add {

26 Rep == Dom25 p;

27 import from Rep;

28 m (x: SingleInteger) : (SingleInteger) == {

29 import from SingleInteger;

30 for i in 1..1000 repeat {x := m(x)$Rep;} --$

31 x;

32 }

33 }

34 main() :() == {import from Dom3 Dom2 Dom1;print << m(1) << newline;}

35 main();

226

Although the code from Test7 (Listing A.6) is similar to the one in Test6, the

speedup is moderate. In this case the replacement of the type BB with a macro did

not improve anything.

Listing A.6: Test7 implementation.

1 #include "axllib"

2 macro {SI == SingleInteger;}

3 define Dom1Cat: Category == with {m11: SI -> SI;}

4 define Dom1: Dom1Cat == add {

5 m11(p:SI): SI == {for i in 1..100 repeat {p := p + 1;} p;}

6 }

7 define Dom2Cat: Category == with {m21: SI -> SI;}

8 define Dom2(d: Dom1Cat): Dom2Cat == add {

9 import from d;

10 m21(p:SI): SI == {for i in 1..1000 repeat {p := p + m11(p);} p;}

11 }

12 define Dom3Cat: Category == with {m31: SI -> SI;}

13 define Dom3(d: Dom2Cat): Dom3Cat == add {

14 import from d;

15 m31(p:SI): SI == {for i in 1..100 repeat {p := p + m21(p);} p;}

16 }

17 define Dom4Cat: Category == with {m41: SI -> SI;}

18 define Dom4(d: Dom3Cat): Dom4Cat == add {

19 import from d;

20 m41(p:SI): SI == {for i in 1..100 repeat {p := p + m31(p);} p;}

21 }

22 define Dom5Cat: Category == with {m51: SI -> SI;}

23 define Dom5(d: Dom4Cat): Dom5Cat == add {

24 import from d;

25 m51(p:SI): SI == {for i in 1..100 repeat {p := p + m41(p);} p;}

26 }

27 define Dom6(d: Dom3Cat): with {m61: SI -> SI;} == add {

28 BB == Dom5 Dom4 d;

29 import from BB;

30 m61(p:SI): SI == m51(p+10) + m51(p+20);

31 }

32 main ():() == {import from SI, Dom6 Dom3 Dom2 Dom1; print << m61(100) << newline;}

33 main();

227

Listing A.7 presents the complete implementation if Test8.

Listing A.7: Test8 implementation.

1 #include "axllib"

2 macro {SI == SingleInteger;}

3 define Dom1Cat: Category == with {m11: SI -> SI;}

4 define Dom1: Dom1Cat == add {

5 m11(p:SI): SI == {for i in 1..100 repeat {p := p + 1;} p;}

6 }

7 define Dom2Cat: Category == with {m21: SI -> SI;}

8 define Dom2(d: Dom1Cat): Dom2Cat == add {

9 import from d;

10 m21(p:SI): SI == {for i in 1..100 repeat {p := p + m11(p);} p;}

11 }

12 define Dom3Cat: Category == with {m31: SI -> SI;}

13 define Dom3(d: Dom2Cat): Dom3Cat == add {

14 import from d;

15 m31(p:SI): SI == {for i in 1..100 repeat {p := p + m21(p);} p;}

16 }

17 define Dom4Cat: Category == with {m41: SI -> SI;}

18 define Dom4(d: Dom3Cat): Dom4Cat == add {

19 import from d;

20 m41(p:SI): SI == {for i in 1..100 repeat {p := p + m31(p);} p;}

21 }

22 define Dom5Cat: Category == with {m51: SI -> SI;}

23 define Dom5(d: Dom4Cat): Dom5Cat == add {

24 import from d;

25 m51(p:SI): SI == {for i in 1..1000 repeat {p := p + m41(p);} p;}

26 }

27 define Dom6(d: (Dom2Cat) -> Dom3Cat): with {m61: SI -> SI;} == add {

28 BB == Dom5 (Dom4 (d (Dom2 (Dom1))));

29 import from BB;

30 m61(p:SI): SI == m51(p+10) + m51(p+20);

31 }

32 main ():() == {

33 import from SI;

34 BB == Dom3;

35 import from Dom6(Dom3);

36 print << m61(100) << newline;

37 }

38 main();

Bibliography

[1] Dave Abrahams, Carl Daniel, Beman Dawes, Jeff Garland, Doug Gregor, and
John Maddock. Boost C++ libraries. http://www.boost.org/, Valid on
2007/07/23.

[2] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The design and analysis
of computer algorithms. Addison-Wesley, 1974.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers principles, tech-
niques, and tools. Addison-Wesley, 2007.

[4] Joseph A. Bank, Andrew C. Myers, and Barbara Liskov. Parameterized types
for Java. In POPL ’97: Proceedings of the 24th ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, pages 132–145, New York, NY,
USA, 1997. ACM Press.

[5] Lennart Beckman, Anders Haraldsson, Östen Oskarsson, and Erik Sandewall.
A partial evaluator, and its use as a programming tool. Artificial Intelligence,
7:319–357, 1976.

[6] Gilad Bracha. Generics in the Java programming language. http://java.sun.
com/j2se/1.5.0/docs/guide/language/generics.html, Valid on 2007/07/23.

[7] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making
the future safe for the past: Adding genericity to the Java programming language.
In Craig Chambers, editor, ACM Symposium on Object Oriented Programming:
Systems, Languages, and Applications (OOPSLA), pages 183–200, Vancouver,
BC, 1998.

[8] Gary Bray. Sharing code among instances of Ada generics. In SIGPLAN ’84:
Proceedings of the 1984 SIGPLAN symposium on Compiler construction, pages
276–284, New York, NY, USA, 1984. ACM Press.

[9] Manuel Bronstein. SUM-IT: A strongly-typed embeddable computer algebra
library. In Proceedings of DISCO’96, Karlsruhe, pages 22–33. Springer LNCS
1128, 1996.

228

229

[10] David Callahan. The program summary graph and flow-sensitive interproced-
ual data flow analysis. In PLDI ’88: Proceedings of the ACM SIGPLAN 1988
conference on Programming Language design and Implementation, pages 47–56,
New York, NY, USA, 1988. ACM Press.

[11] Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John C. Mitchell.
F-bounded polymorphism for object-oriented programming. In FPCA ’89: Pro-
ceedings of the fourth international conference on Functional programming lan-
guages and computer architecture, pages 273–280, New York, NY, USA, 1989.
ACM Press.

[12] Luca Cardelli and Peter Wegner. On understanding types, data abstraction and
polymorphism. Computing Surveys, 17(4):471–522, 1985.

[13] Robert Cartwright and Jr. Guy L. Steele. Compatible genericity with run-time
types for the Java programming language. In OOPSLA ’98: Proceedings of the
13th ACM SIGPLAN Conference On Object-Oriented Programming, Systems,
Languages, And Applications, pages 201–215, New York, NY, USA, 1998. ACM
Press.

[14] Craig Chambers and David Ungar. Customization: optimizing compiler technol-
ogy for SELF, a dynamically-typed object-oriented programming language. In
PLDI ’89: Proceedings of the ACM SIGPLAN 1989 Conference on Programming
language design and implementation, pages 146–160, New York, NY, USA, 1989.
ACM Press.

[15] Kaiyu Chen, Sun Chan, Roy Dz-Ching Ju, and Peng Tu. Optimizing structures
in object oriented programs. Interact, 00:94–103, 2005.

[16] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and
Sam Midkiff. Escape analysis for Java. In OOPSLA ’99: Proceedings Of The
14th ACM SIGPLAN Conference On Object-Oriented Programming, Systems,
Languages, And Applications, pages 1–19, New York, NY, USA, 1999. ACM
Press.

[17] Keith D. Cooper, Mary W. Hall, and Ken Kennedy. Procedure cloning. In
Proceedings of the 1992 IEEE International Conference on Computer Language,
Oakland, CA, 1992.

[18] Keith D. Cooper, Mary W. Hall, and Linda Torczon. An experiment with inline
substitution. Software - Practice and Experience, 21(6):581–601, 1991.

[19] The Standard Performance Evaluation Corporation. SPEC benchmark. http:

//www.spec.org/, Valid on 2007/07/23.

230

[20] Jeffrey Dean, Craig Chambers, and David Grove. Selective specialization for
object-oriented languages. In SIGPLAN Conference on Programming Language
Design and Implementation, pages 93–102, 1995.

[21] Julian Dolby and Andrew Chien. An automatic object inlining optimization and
its evaluation. In PLDI ’00: Proceedings of the ACM SIGPLAN 2000 conference
on Programming language design and implementation, pages 345–357, New York,
NY, USA, 2000. ACM Press.

[22] Laurentiu Dragan and Stephen M. Watt. Parametric polymorphism optimization
for deeply nested types. In Proceedings of Maple Conference 2005, pages 243–259.
Maplesoft, 2005.

[23] Laurentiu Dragan and Stephen M. Watt. Performance analysis of generics in
scientific computing. In Daniela Zaharie, Dana Petcu, Viorel Negru, Tudor
Jebelean, Gabriel Ciobanu, Alexandru Circotas, Ajith Abraham, and Marcin
Paprzycki, editors, Proceedings Of Seventh International Symposium On Sym-
bolic And Numeric Algorithms For Scientific Computing, pages 90–100. IEEE
Computer Society, 2005.

[24] Laurentiu Dragan and Stephen M. Watt. On the performance of parametric
polymorphism in Maple. In Ilias S. Kotsireas, editor, Proceedings of Maple Con-
ference 2006, pages 35–42. Maplesoft, 2006.

[25] J.-G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi, B. Hovinen, E. Kaltofen,
B. D. Saunders, W. J. Turner, and G. Villard. LinBox: A generic library for
exact linear algebra.

[26] Martin Dunstan. Aldor compiler internals II. http://www.aldor.org/docs/

reports/ukqcd-2000/compiler2-ukqcd00.pdf, Valid on 2007/07/23.

[27] Ontario Research Centre for Computer Algebra. Aldor programming language
project web page. http://www.aldor.org/, Valid on 2007/07/23.

[28] Jens Gerlach and Joachim Kneis. Generic programming for scientific comput-
ing in C++, Java, and C#. In Xingming Zhou, Stefan Jähnichen, Ming Xu,
and Jiannong Cao, editors, APPT, volume 2834 of Lecture Notes in Computer
Science, pages 301–310. Springer, 2003.

[29] Java Grande Forum Numerics Working Group. JavaNumerics. http://math.

nist.gov/javanumerics/#benchmarks, Valid on 2007/07/23.

[30] Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. The C# Programming
Language, pages 317–326. Addison-Wesley, 2003.

231

[31] Richard D. Jenks and Robert S. Sutor. Axiom The Scientific Computation Sys-
tem. Springer-Verlag, 1992.

[32] Neil Jones, Carsten Gomard, and Peter Sestoft. Partial Evaluation And Auto-
matic Program Generation, chapter 1 and 11. Prentice Hall, 1993.

[33] ISO/IEC JTC1/SC22/WG21. Technical report iso/iec 18015:2006 on C++ per-
formance. Technical report, ISO/IEC PDTR 18015, August 2003.

[34] Andrew Kennedy and Don Syme. Design and implementation of generics for the
.NET common language runtime. In PLDI ’01: Proceedings Of The ACM SIG-
PLAN 2001 Conference On Programming language Design And Implementation,
pages 1–12, New York, NY, USA, 2001. ACM Press.

[35] Angelika Lagner. Java generics FAQs. http://www.angelikalanger.com/

GenericsFAQ/JavaGenericsFAQ.html, Valid on 2007/07/23.

[36] Microsoft MSDN Library. Valuetype class. http://msdn2.microsoft.com/

en-us/library/system.valuetype.aspx, Valid on 2007/07/23.

[37] Barbara Liskov. A history of CLU. http://www.lcs.mit.edu/publications/

pubs/pdf/MIT-LCS-TR-561.pdf, Valid on 2007/07/23.

[38] E. Meijer and J. Gough. Technical overview of the common language runtime,
2000.

[39] Robin Milner. How ML evolved. In Polymorphism (The ML/LCF/Hope Newslet-
ter) 1, 1, 1983.

[40] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition
of Standard ML (Revised), pages 73–74. The MIT Press, 1997.

[41] Marc Moreno-Maza. The BasicMath Aldor library. http://www.nag.co.uk/

projects/FRISCO.html, Valid on 2007/07/23.

[42] Steven S. Muchnick. Advanced compiler design and implementation. Morgan
Kaufmann, 1997.

[43] Matthias Müller. Abstraction benchmarks and performance of C++ applications.

[44] Cosmin E. Oancea and Stephen M. Watt. Domains and expressions: An interface
between two approaches to computer algebra. In ACM International Symposium
on Symbolic and Algebraic Computation ISSAC’05, pages 261 – 269, 2005.

[45] Martin Odersky, Enno Runne, and Philip Wadler. Two ways to bake your Pizza
- Translating parameterised types into Java. In Generic Programming, pages
114–132, 1998.

232

[46] Martin Odersky and Philip Wadler. Pizza into Java: Translating theory into
practice. In Proceedings of the 24th ACM Symposium on Principles of Program-
ming Languages (POPL’97), Paris, France, pages 146–159. ACM Press, New
York (NY), USA, 1997.

[47] Atsushi Ohori. Type-directed specialization of polymorphism. Information and
Computation, 155(1–2):64–107, 1999.

[48] John Plevyak and Andrew A. Chien. Type directed cloning for object-oriented
programs. In Languages and Compilers for Parallel Computing, pages 566–580,
1995.

[49] Erik Poll and Simon Thompson. The type system of Aldor. Technical Report 11-
99, Computing Laboratory, University of Kent at Canterbury, Kent CT2 7NF,
UK, July 1999.

[50] Sara Porat, David Bernstein, Yaroslav Fedorov, Joseph Rodrigue, and Eran Ya-
hav. Compiler optimization of C++ virtual function calls. In Proceedings of
the 2 nd Conference on Object-Oriented Technologies and Systems, (Toronto,
Canada), pages 3–14, 1996.

[51] Roldan Pozo and Bruce Miller. SciMark2. http://math.nist.gov/scimark2,
Valid on 2007/07/23.

[52] Stephen Richardson and Mahadevan Ganapathi. Interprocedural analysis vs.
procedure integration. Inf. Process. Lett., 32(3):137–142, 1989.

[53] Stephen Richardson and Mahadevan Ganapathi. Interprocedural optimization:
Experimental results. Software: Practice and Experience, 19(2):149–169, 1989.

[54] Stephen E. Richardson. Evaluating interprocedural code optimization techniques.
PhD thesis, Stanford University, Stanford, CA, USA, 1991.

[55] Arch D. Robison. Impact of economics on compiler optimization. In JGI ’01:
Proceedings of the 2001 joint ACM-ISCOPE conference on Java Grande, pages
1–10, New York, NY, USA, 2001. ACM Press.

[56] Ulrik P. Schultz. Partial evaluation for class-based object-oriented languages.
Lecture Notes in Computer Science, 2053:173–198, 2001.

[57] Ulrik Pagh Schultz, Julia L. Lawall, Charles Consel, and Gilles Muller. Towards
automatic specialization of Java programs. Lecture Notes in Computer Science,
1628:367–391, 1999.

[58] Zhong Shao and Andrew W. Appel. A type-based compiler for standard ML.
SIGPLAN Not., 30(6):116–129, 1995.

233

[59] Victor Shoup. NTL: A library for doing number theory. http://www.shoup.

net/ntl/doc/tour.html, Valid on 2007/07/23.

[60] Christopher Strachey. Fundamental concepts in programming languages. Higher-
Order and Symbolic Computation, 13(1–2):11–49, 2000.

[61] Bjarne Stroustrup. A history of C++: 1979–1991. ACM SIGPLAN Notices,
28(3):271–297, 1993.

[62] Bjarne Stroustrup. C++ Programming Language. Addison-Wesley, 3rd edition,
1999.

[63] David Tarditi, Greg Morrisett, Perry Cheng, Chris Stone, Robert Harper, and
Peter Lee. TIL: A type-directed optimizing compiler for ML. In Proc. ACM SIG-
PLAN ’96 Conference on Programming Language Design and Implementation,
pages 181–192, 1996.

[64] Kresten Krab Thorup. Genericity in Java with virtual types. Lecture Notes In
Computer Science, 1241:444–461, 1997.

[65] Todd Veldhuizen. Using C++ template metaprograms. C++ Report Vol. 7 No.
4 (May 1995), pp. 36-43.

[66] Todd L. Veldhuizen. C++ templates as partial evaluation, 1998.

[67] Todd L. Veldhuizen and M. E. Jernigan. Will C++ be faster than For-
tran? In Proceedings of the 1st International Scientific Computing In Object-
Oriented Parallel Environments (ISCOPE’97), Lecture Notes In Computer Sci-
ence. Springer-Verlag, 1997.

[68] Mirko Viroli. Parametric polymorphism in Java: an efficient implementation for
parametric methods. In SAC ’01: Proceedings of the 2001 ACM symposium on
Applied computing, pages 610–619, New York, NY, USA, 2001. ACM Press.

[69] Mirko Viroli and Antonio Natali. Parametric polymorphism in Java: An ap-
proach to translation based on reflective features. In OOPSLA ’00: Proceedings
Of The 15th ACM SIGPLAN Conference On Object-Oriented Programming, Sys-
tems, Languages, And Applications, pages 146–165, New York, NY, USA, 2000.
ACM Press.

[70] Stephen M. Watt. Handbook Of Computer Algebra, chapter Aldor, pages 265–
270. Springer Verlag, 2003.

[71] Stephen M. Watt. Pivot-free block matrix inversion. In Proc. 8th Interna-
tional Symposium on Symbolic and Numeric Algorithms for Scientific Comput-
ing, (SYNASC 2006), pages 151–155, 2006.

234

[72] Stephen M. Watt. Aldor compiler internals I. http://www.aldor.org/docs/

reports/ukqcd-2000/compiler1-ukqcd00.pdf, Valid on 2007/07/23.

[73] Stephen M. Watt, Peter A. Broadbery, Pietro Iglio, Scott C. Morrison, and
Jonathan M. Steinbach. Foam: A first order abstract machine version 0.35.
http://www.aldor.org/docs/foam.pdf, Valid on 2007/07/23.

[74] Stephen M. Watt, Peter A. Broadbery, Pietro Iglio, Scott C. Morrison,
Jonathan M. Steinbach, and Robert S. Sutor. Aldor user guide. http:

//www.aldor.org/, Valid on 2007/07/23.

[75] Dachuan Yu, Andrew Kennedy, and Don Syme. Formalization of generics for the
.NET common language runtime. SIGPLAN Not., 39(1):39–51, 2004.

VITA

Name: Laurentiu Dragan

Born: Bucharest, Romania, 1975

Education:

• 2000 Master of Science in Electrical Engineering and Computer Science, “Po-

litehnica” University of Bucharest, Romania.

• 1999 Bachelor with honors in Electrical Engineering and Computer Science,

“Politehnica” University of Bucharest, Romania.

Awards:

• Western Graduate Research Scholarship (WGRS). The University of Western

Ontario, 2005-2006

• Special University Scholarship (SUS). The University of Western Ontario, 2003-

2005

• International Graduate Student Scholarship (IGSS). The University of Western

Ontario, 2001-2004

• Presidential Scholarship for Graduate Studies (PSGS) The University of West-

ern Ontario, 2001-2002

• Presidential Scholarship, “Politehnica” University of Bucharest, Romania, 1994-

2000

235

List of Publications:

[1] L. Dragan and S. M. Watt. On the performance of parametric polymorphism

in maple. In Ilias S. Kotsireas, editor, Proceedings of Maple Conference 2006, pages

35–42 Maplesoft, 2006.

[2] L. Dragan and S. M. Watt. Performance analysis of generics in scientific

computing. In Daniela Zaharie, Dana Petcu, Viorel Negru, Tudor Jebelean, Gabriel

Ciobanu, Alexandru Circotas, Ajith Abraham, and Marcin Paprzycki, editors, Pro-

ceedings Of Seventh International Symposium On Symbolic And Numeric Algorithms

For Scientific Computing, pages 90–100. IEEE Computer Society, 2005.

[3] L. Dragan and S. M. Watt. Parametric polymorphism optimization for deeply

nested types. In Proceedings of Maple Conference 2005, pages 243–259. Maplesoft,

2005.

236

