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Abstract 

Recently parametric polymorphism has been recognized as an important tool for 

modern programming languages. Languages which lack such a mechanism are 

considered for extension to support it. The current Java is one such language. In order 

to keep the Java language as simple as possible when introduced, it was designed 

without support for many features including the parametric polymorphism paradigm. 

During the past several years, a large number of research projects have proposed 

to extend the Java programming language with parametric types. Some of them 

require modification of the Java Virtual Machine for support, but most attempt to 

avoid this. Two prominent proposals are GJ and NextGen, supporting a simple static 

mechanism and richer models of parametric polymorphism respectively. 

The goal of this thesis was to explore the possibility of relying on an enhanced 

type erasure technique to achieve the run time parameterized classes, where a 

combination of homogeneous and heterogeneous translation is employed. We have 

developed an experimental Java compiler, based on GJ, supporting the run time 

parametric type information in Java. The Java Virtual Machine need not be changed to 

support this. To our knowledge, this has resulted in the first NextGen compiler 

implementation. 

Keywords: Compilers, parametric polymorphism, parameterized types, Java, GJ, 

NextGen 
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Chapter 1 

Introduction 

1.1 Motivation and Thesis Outline 

The word "polymorphism" in computer science can be explained as the ability to 

abstract code to work with different concrete types. For a programming language, 

there are generally two ways to achieve polymorphism [ 1]: 

1. Parametric polymorphism, where polymorphism is accomplished through 

parameterizing components. For example, one can implement a List 

abstraction, standing for a list of various objects, with a parameter representing 

the types of objects contained in the list. Later, by specifying a concrete type 

for the parameter, the abstraction can be used as a generic module to provide 

some specific List types such as a List of Integers, or a List of Strings, etc. 

I I 

I 

ii: 
i ,I 

11 

' 

I

' 

'Ii 

ii 
ii 

I' 
! 



2 

2. Subtype polymorphism, which uses the top of a type hierarchy in place of 

variable types to simulate type parameterization. With subtype polymorphism, 

the programmers can 

• write code for objects of a type A 

• and have the code work for objects of type B where Bis a subtype of A 

For example, the code for the Vehicle objects works for Car objects 

Among the two approaches, parametric polymorphism is a widely adopted 

powerful form of generic programming. By abstracting the common behaviors from 

one or more types, it allows the programmers to write generic programs parameterized 

by the different types, which can later be instantiated variously according to different 

contexts to meet specific requirements. Through parametric polymorphism, 

programmers can greatly benefit from the enhanced flexibility, reusability, and 

expressive power of the programming environment. Recently parametric 

polymorphism has been recognized as an integral part of modem programming 

languages. Languages which lack such a mechanism are considered good targets for 

extension to support it. 

Besides the above two common kinds of polymorphism, there is another new form 

of polymorphism called correspondence polymorphism for object-oriented languages. 

In correspondence polymorphism, polymorphism is accomplished by declaring a 

correspondence relation between methods. Therefore, the programmers need not write 
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m advance code to be used universally. For example, in the toy language LCP 

(Language with Correspondence Polymorphism ) (23], T. m.~_co_r_r~s. n means 

the method named as m relative to type T is similar to the method named n relative to 

type S. To our knowledge, the correspondence has not been adopted by any popular 

programming language. 

The remainder of this thesis is organized as follows: 

Chapter 2 covers the background material needed to understand the thesis. Chapter 

2 starts out by introducing the concepts of unconstrained parametric polymorphism, 

bounded parametric polymorphism, and F-bounded parametric polymorphism. The 

bounded parametric polymorphism is essential in understanding the extensions to 

Java. Chapter 2 also discusses genericity in conventional Java. The subtype 

polymorphism used in conventional Java and its inadequacies are examined. The three 

approaches to implement generic classes in Java: virtual types, approaches with 

modifying the Java Virtual Machine, and translation are discussed in Chapter 2. 

Chapter 3 gives a rather valuable solution Java parametric polymorphism, based 

on the NextGen proposal. This solution belongs to the type erasure approach and 

carries type information at run time. Within the enhanced type erasure model, each 

parameterized class is type-erased into a non-generic base class, and for each 

instantiation 'of the parameterized class, a light-weighted wrapper class and wrapper 

interface is generated. The wrapper classes and wrapper interfaces carry the run time 
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1. 

I, 
ii 

I 

I I· 

!ii 

I' 

I 
I 

i1 

I 



4 

information for the parameterized class instantiation. The enhanced type erasure 

model is discussed in detail in Chapter 3. 

In Chapter 4, the implementation details of our experimental NextGen compiler are 

discussed. Finally, Chapter 5 reviews the work of the thesis, and suggests some areas 

for the further work on this topic. 

1.2 Java and Parametric Polymorphism 

After its initial commercial release by Sun Microsystems in 1995, the Java 

programming language attracted many programmers. The original goal of the Java 

programming language design was to develop advanced software for consumer 

electronics. These devices are small, reliable, portable, distributed, real-time 

embedded systems. Java embodies several features that have allowed it to become a 

mainstream general purpose language with a widespread commercial acceptance. It is 

used not only to develop advanced software for a wide variety of network devices and 

embedded systems, but also large-scale software projects in various application areas. 

From Gosling and McGilton's [6] discussion, these features include: 

• a simple and familiar syntax similar to that of C++, which makes it possible 

that the fundamental concepts of Java technology can be grasped quickly and 

programmers can migrate easily to Java and be productive promptly, because 

many programmers working at the time were using C and C++. 
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• an automatic memory management model, which completely removes the 

memory management load from the programmer. Thus, the Java language not 

only makes the programming task easier, it also dramatically reduces the 

number of bugs. 

• support for a portable object-oriented programming model with safe 

program execution, making it possible to meet the challenges of 

application development in a wide variety settings, including network-

wide distributed environments. 

Today talk about Java seems to be everywhere. The currently defined Java language, 

even though it has gained some extensions, especially in the security area, remains the 

simple original version that has intended to be extended later [7]. The Java language 

has become a standard language for Internet programming and has been adopted by a 

large number of organizations. Nevertheless, it has some significant limitations from 

the perspective of software engineering, and recently it has been suggested that it is 

reaching the stage where some of these limitations should be eliminated by judicious 

language modifications and additions. 

As we mentioned at the outset, parametric polymorphism mechanism is now 

recoguized as an essential feature of modem programming languages, and has 

common use in mainstream applications. However, in order to keep the initial 

language as simple as possible, the current Java language did not provide support for 
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the paranietric polymorphism paradigm [8]. Java does allow generic coding with 

subtype polymorphism, where generic types are simulated through the most general 

type of a type hierarchy (typically type Object) and the use of much down-casting and 

up-casting. As an example, in Java, a data structure such as a list of objects can be 

written by writing a List class to hold objects of a common super-type of all the 

objects that the programmers may want to store in the list. Typically, this is a list of 

Objects. When the data structure is used to hold objects of a specific type, type casts 

need to be done when retrieving objects from the list. This is due to the fact that the 

data structure does not store the types of the objects. Unfortunately, the required casts 

are tedious to write and error-prone. Furthermore, the type casts largely defeat the 

error-detection properties of Java's static typing discipline. Lack of a parametric 

polymorphism mechanism is considered to be a serious obstruction in implementing 

substantial programs in the Java programming language. We shall discuss the 

genericity of the conventional Java language in detail in Chapter 2. 

Over the past several years, a number of research projects have attempted to 

extend the Java programming language with parameterized types. Some of these 

projects also suggest to integrate ''virtual types" into Java. Virtual typing is a 

programming language mechanism in which a base class definition can be augmented 

with virtual type declarations. Class specializations narrow those virtual type members 

[ 1 O]. This way the functionality of the parameterized classes can be achieved. The 

details of the virtual type proposals remain to be worked out. Virtual types are 

discussed in section 2.3. 
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In one of the first proposals for parametric polymorphism, Myers, Bank, and 

Liskov (13] have designed and implemented an extension of Java called PolyJ. That 

extension implements constrained genericity through parameterized classes. A 

modification of the Java Virtual Machine was required in this proposal. In their paper 

(15], Agesen, Freund, and Mitchell have proposed a suggestion to extend Java with 

parametric types, where an extension to the byte code format and a revision of the 

class loader are assumed. However, the modification of the Java Virtual Machine is a 

considerable challenge to Java's machine-independence feature. At present, extending 

Java with modifications to the Java Virtual Machine is still considered to be an 

unjustified direction. 

Other very interesting research projects are from Odersky and Wadler. They 

designed and implemented an extension to Java with an explicit goal: to be very 

conservative so that no changes to the existing Java Virtual Machine are required. 

Their earlier work Pizza [5] supports F-bounded parametric polymorphism (see 

chapter 2), as well as higher-order functions and algebraic data types. Later they 

collaborated with Gilad Bracha and David Stoutamire from JavaSoft and produced GJ 

[ 4] which is a successor of Pizza. Both Pizza and GJ were implemented by translation 

into current Java, and both the Pizza and GJ compilers can also be used as Java 

compilers. 
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1.3 GJ 

Among these projects outlined in the above section, only GJ is designed to be fully 

backwards compatible with the conventional Java. This is useful for a software 

developer to evolve smoothly from the non-parametric Java programming to the 

parametric Java programming. In May 2001, Sun released a prototype for adding the 

parametric types to Java based on GJ. 

GJ is translated into the conventional Java with a type erasure technique, where 

all type parameters are erased, all the type variables are replaced by their upper 

bounding types (typically Object), and suitable casts are added. We give a more 

detailed discussion on the type erasure technique in Chapter 2. A given GJ 

parameterized class is translated into an ordinary Java class which is similar to what 

one would write if the parametric polymorphism were not available in Java and the 

subtype polymorphism were used (i.e. the Java generic coding idiom with casts). In 

this implementation, all the instantiations of the parameterized class share the single 

type-erased class at runtime. The main problem with GJ is run time type information 

about the parametric types cannot be correctly maintained. Consequently, the type 

dependent primitive operations such as: 

new A( ... ) 

new A[ ••• ] 

instanceof GeneralCollect<X> 
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where A is a type parameter and X represents a specific type such as Integer, are not 

allowed in GJ. We say GJ lacks the integration between the parametric types and the 

conventional Java type system. 

1.4 Objectives 

The main object of this thesis is to create an extended Java compiler that supports 

run time parametric types. Through our experimental compiler application, we are 

trying to determine whether it is feasible to rely on the type erasure technique to 

achieve the run time parameterized classes is. The specification of our experimental 

compiler is based on the NextGen proposal [20]. NextGen is an extension of Java 

intended to address the problems of GJ described above. In NextGen, the objects of 

parametric types need to carry their type information at run time. This is impossible 

simply using the type erasure mechanism used in GJ. An enhanced type erasure 

translation model has been introduced for NextGen and this requires generation of 

stubs for each instance of the parameterized class. The details of the translation 

technique are discussed in Chapter 3. 
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Chapter 2 

Background and Related Work 

2.1 Notions of Parametric Polymorphism 

2.1.1 Unbounded Parametric Polymorphism 

In some languages, such as C++, there is no way to explicitly specify the constraints a 

type must have in order to be used in place of a type parameter. This feature is referred 

to as unbounded parametric polymorphism (unconstrained genericity). In Figure 2-1, a 

parametric class GeneralCollection is defined with one formal type parameter T, 

which represents any type (Universal type). 

In the unbounded form of parametric polymorphism, any type may be provided as 

an actual parameter and therefore no special properties can be assumed about the 

operations of the type parameter. This implies that only the operations that apply to all 
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types can be allowed in the unbounded parametric class. In C++, this simple form of 

parametric polymorphism is supported through templates. When the template 

instantiation is done during compile or link time, the compiler or the linker can check 

if an actual parameter provides the required operations or not. This effectively means 

that generic programs based on C++ templates cannot be checked at compile time. 

class GeneralCollection <T>{ 

public void addElement ( T elem){ 

I/ ... statements of the method body 

} 

} 

Figure 2-1 A example of unbounded parametric class definition 

2.1.2 Bounded Parametric Polymorphism 

In many cases parametric polymorphism with constraints on the type parameters is 

more appropriate. For an example, we consider a parameterized class 

GeneralCollection<T> with a method min (), which compares the values of 

the elements within a "GeneralCollection" and returns the smallest one. Thus, the 
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parameterized class can only work properly with types T that provide a comparison 

operation. Here, we need to explicitly restrict the allowed actual type to types having 

some specific properties. This feature is referred to as bounded parametric 

polymorphism (constrained genericity) [3]. There have been two different forms 

suggested to provide constraints on type parameters when extending Java. The first 

form [5] [18] can be illustrated in Figure 2-2. Here the class GeneralCollection 

has a formal type parameter T whose upper bound is Smaller and the interface Smaller 

is defined elsewhere. 

public interface Smaller { 

public boolean lessthan (Object operand); 

} 

public class GeneralCollection<T implements Smaller> { 

public T min( ) { 

//a statement calling the method lessthan; 

} 

Figure 2-2 A bounded parametric class specifying constraints 

with an interface 
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In the other form, all the required operations must be listed in the appropriate 

position of the defined class [3]. A corresponding example of the above would be 

ClassGeneralCollection [T] 

where T{boolean lessthan(T operand ) } 

{ 

I/ ... 

} 

Here the required operation "lessthan" is listed within the class's signature. 

2.1.3 F-bounded Parametric Polymorphism 

In Figure 2-2, the method "lessthan" takes a value of type Object as an argument, 

which is inexact and leads to efficiency problems and errors. It is often convenient to 

allow the bounding type itself to take generic parameters. Thus, the upper bound type 

of a type parameter can be specified by a recursively bounded type limitation. This 

sophisticated form of bounded parametric polymorphism is referred as F-bounded 

parametric polymorphism. As shown in Figure 2-3, the bounded parametric class 
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GeneralCollection takes one formal type parameter whose upper bound types are also 

expressed as a bounded parametric interface. 

public interface Smaller<T> 

{ 

public boolean lessthan ( T operand); 

} 

public class GeneralCollection <T implements Smaller<T>> 

{ 

//implement the behaviors for the GeneralCollection 

} 

Figure 2-3 F-bounded polymorphism 

In both bounded and F-bounded parametric polymorphism, an actual type parameter 

can be accepted only if it is explicitly declared to extend or implement the parameter 

bound. 
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2.2 Genericity in Java 

As described in Chapter 1, abstracting from concrete types (i.e. polymorphism or 

genericity) can be achieved using parametric or subtype polymorphism. Java is 

designed to support subtypes directly, where class Object is the root of the class 

hierarchy and therefore all the reference types in Java are subtypes of type Object. In 

Java, a new type can be defined by either a class or by an interface. A class can extend 

from only one other class, but can implement many interfaces. An interface can be 

implemented by more than one class. As determined by the these features, parametric 

polymorphism may be simulated in Java by using either the universal reference type 

Object or an abstract type (i.e. an interface) in place of the type parameters and 

explicitly casting values of type Object into their intended types. 

As an example, consider a generic class Pair which has two instance variables 

and a method min(), and compares the values of the two instance variables and returns 

the smaller one. A possible Java code is in Figure 2-4. A corresponding client class is 

illustrated in Figure 2-5. 

In Figure 2-4, the required types that should work properly with Pair are defined 

by interface PairNode. This implies that in any class who implements PairNode 

(subtype of PairNode) is suitable for to use in the Pair class. Note that the definition of 

the constructor Pair always treats the objects passed in as the parameters as if they 

have the type PairNode, and the operation min() always treats the returned object as if 
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it is of the type PairNode. Yet the code in Figure 2-5 takes the type ofMyType as the 

actual parameter type when using the Pair constructor. In Figure 2-5, because the 

return type of min( ) is always PairNode, if we need to perform some operations on the 

result of minO, we must cast it to its original type MyType first. 

public interface PairNode{ 

public boolean lt(Object operand); 

} 

public class Pair{ 

} 

PairNode first_p; PairNode second_p; 

public Pair (PairNode pl, PairNode p2) { 

if ( pl.getClass() != p2.getClass()) 

throw new IlleagalArgumentException( 

"The two nodes of the Pair must be of the same type !"); 

first_p = pl; 

second_p ::: p2; 

} 

public PairNode min ( ) { 

return first_p.lt(second__p) ? first__p second_p; 

} 

Figure 2-4 A geueric class Pair implemented with an interface 
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public class MyType implements PairNode { 

int MyTypeValue; 

public MyType( int vl) { MyTypeValue vl; } 

public boolean lt(Object o)throws illegalArgumentException 

{ 

if (this.getClass() != O.getClass() ) 

throw new illegalArgumentException( 

\\the type of the operand does not match 11
); 

return this.MyTypeValue < ((MyType)o).getValue(); 

public int getValue( ){ return MyTypeValue; } 

} 

public class PairTest { 

public static void main (String[] args) { 

MyType ml= new MyType(l); 

MyType m2 =new MyType(2); 

Pair p = new Pair( ml, m2); 

System.out.println(" The samller one is " 

+((MyType)p.min( )) .getValue( ); 

} 

Figure 2-5 A client class of the Pair class in Figure 2-4 

The most frequent example of polymorphism is the implementation of collection 

data types, whose behavior and features are independent from the type of the elements 

:i 
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of the collection. Collection classes, such as lists, sets, vectors, and so on, are 

fundamental data structures in a programming language which need to work with 

different element types. The common solution with the Java programming language is 

to declare a collection class with Object as its element's type. Thus the elements in the 

collection may have any reference type. However, as a programmer, when 

programming with such a collection class, one is forced to do extra work: one must 

keep track of the actual type one is working with in the collection. Whenever one 

extracts an element from the collection and does further processing on it, one must 

manually cast it back to its original type. The mechanism, using the universal 

reference type Object as the element type of collections to simulate type 

parameterization, is referred to as the Java generic coding idiom [20]. 

On the whole, the Java generic coding idiom has the following consequences for 

the Java programs: 

1. Program coding is clumsy and error-prone because the required casts are 

tedious to write. 

2. Down-casting and up-casting largely defeat the error detection properties 

of static type checking rules. For example, when programming with a 

Vector data structure, an Integer can be inserted into it first, and may be 

subsequently extracted and down-cast to an String object, this error will not 

be caught until run time. 
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3. The required casts give an extra a run-time cost. To illustrate this, consider 

the following: In the Java API Vector class the insertion operations such as 

"add" and "addElement" take an argument of type Object. No matter 

what an element's type is, the element will be up-casted to type Object to 

be inserted. The element's original type is completely lost. When an 

element is extracted from a vector at a later time, it is always treated as of 

type Object. Therefore, the extracted element must be explicitly down-cast 

to its original type before further processing. On the other hand, if the Java 

API Vector class were implemented as a parametric class which is 

parameterized by the vector's element type, the element type information 

would be reflected in the insertion and extraction operations, so no up-

casting and down-casting would be needed. 

Because of the problems with subtype polymorphism previously outlined, in the past 

few years there has been much done on extensions of Java for parametric 

polymorphism. In the following sections, we view of these research results. 

Generally, the works for parametric polymorphism extensions of Java can be 

divided into two groups: 

I. Approaches requiring extension of the Java Virtual Machine (JVM) or of 

parts of it. 
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2. Translation approaches without changing the JVM. 

In the former case, compatibility with the existing Java Virtual Machine is lost, but 

this may lead to more flexibility and power. The second approach does not have any 

effect on the existing Java standard platforms but may introduce a significant overhead 

in both space and time. 

In addition to the above solutions, virtual types have also been suggested as a way 

to implement parametric types. In this case, a generic class contains one or more type 

members that are virtual in the sense of a C++ virtual member; the derived classes are 

obtained by extending the base class in the usual way, and the extensions redefine the 

virtual type members to their specialized values. 

In the remainder of this chapter, we will discuss these solutions in more detail. We 

shall concentrate on the implementation of translation approach, which we are more 

interested in. 

2.3 Virtual Types for Java 

Virtual types are a programming language mechanism which have evolved from the 

Beta programming language, and have been suggested by Thorup [10] as a means to 

provide the functionality of parameterized classes in the Java programming language. 

Virtual types are quite different from parametric types because they have no 
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parameters. However, virtual types and parametric types are both proposed as 

extensions to Java to address similar issues. When we discuss parametric 

polymorphism for Java, we should also describe some of the research work that is 

related to the extension of Java with virtual types. 

In the extended language of [10], the definitions of classes and interfaces are 

made generic with virtual type declarations, Each declaration introduces a new type 

name that is associated with some existing type. In their subclasses, a virtual type may 

be extended to have subtype of the type that it had originally. 

With virtual types, genericity is still accomplished via subtyping. As an example, 

consider a generic class Pair which has two instance variables, with methods for 

setting and getting the components of the Pair. The corresponding Java code is in 

Figure 2-6. 

Figure 2-7 gives a roughly equivalent program using virtual types. The Pair class 

declares a virtual type named Ptype. Then the subclass PointPair of Pair extends the 

virtual type Ptype to be the type Point rather than Object. The class PointPair defines a 

Pair, within which the two instance variables hold the instances of type Point or its 

subtypes. Thus, the conventional Java code of the Pair test class pairTes t in Figure 

2-6 is implemented with virtual types in Figure 2-7, where the explicit downcastings 

are removed from the program text. 



class Pair { 

} 

Object p_first; 

Object p_second; 

public void set_first (Object x) { p_first = x; 

public Object get_first ( ) { return p_first; } 

public void set_second (Object y) {p_second=y; } 

public Object get_second ( ) {return p_second; } 

public class PairTest { 

} 

public static void main (String[] args) { 

Pair p = new Pair; 

} 

p.set_first (new Point (0, 0) ); 

p.set_second (new Point (2, 2); 

Point 

Point 

pl = (Point) p.get_first( ); 

p2 = (Point) p.get_second( ); 

Figure 2-6 Definition of class Pair in conventional Java 

22 

} 



class Pair { 

typedef Ptype as Object; 

Ptype p_first; 

Ptype p_second; 

public void set_first (Ptype x) { p_first = x; } 

public Ptype get_f irst ( ) { return p_first; } 

public void set_second (Ptype y){p_second = y; } 

public Ptype get_second ( ) {return p_second; } 

} 

public class PointPair extends Pair { 

typedef Ptype as Point; 

Figure 2-7 Definition of class Pair in extended Java 

using virtual types 
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public class PairTest { 

} 

public static void main (String[] args) { 

PointPair p = new PointPair( ); 

p.set_first (new Point (0, 0) ); 

p.set_second (new Point (2, 2); 

} 

Point 

Point 

Figure 2-8 

pl = p.get_first( ); 

p2 = p.get_second( ); 

A test class for the Pair class 

using virtual types 
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Generally speaking, in integrating virtual types into Java, a generic class contains 

one or more type members that are virtual in the sense of a C++ virtual member. The 

derived classes are obtained by extending the class and narrowing those virtual type 

members. Thus, the functionality of parameterized classes is achieved. However, with 

virtual types the genericity is still accomplished via subtyping. The relations between 

types are required to be carefully set in advance. For families of related types, the 

virtual types are especially useful. But, for a collection class that is generic across 

types that have no real family relationship, parametric types are more useful. 

Furthermore, the' details of the virtual type proposals remain to be fully implemented. 

Therefore, we have taken more seriously extending Java to support parametric types. 
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A quite complete comparison of the relative strengths of parametric and virtual 

types has been made in [ 11]. That article also suggested that it is possible to merge 

virtual and parametric types, but the design and implementation complexity increased 

substantially. The ultimate solution of this combination remains to be worked out [ 11]. 

The remainder of this chapter will focus on the discussions of parameterized types 

for Java. 

2.4 A Extension of Java Modifying JVM 

If we had the possibility to completely redesign the JVM, we would have plenty of 

freedom in the implementation of parameterized types. For example, we could modify 

the run time representation of classes (the class "Class") and let it support 

parameterized classes just as NM supports arrays. In reality, it is important that the 

extensions to the Java language be implemented without requiring a replacement of all 

the current NM installations. Nevertheless, over the past several years, some research 

groups extended Java by relying on an enhanced NM. A typical product of this 

approach is PolyJ. 

PolyJ was designed and implemented by Myers, Bank, and Liskov at MIT to 

support parameterized classes, and relies on a modification of the Java Virtual 

Machine. PolyJ supports constrained parametric polymorphism, where a new keyword 

I 
I 
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where is introduced in to specify the bounds of the type parameters which will be 

instantiated by the actual types. This is very similar to Liskov's previous endeavor, 

CLU. For example, Figure 2-9 is a PolyJ code for the Pair class, where the where 

clause specifies that the type represented by the type parameter T must implement a 

method with the signature: boolean gt (T t). Otherwise, there will be a compile-time 

error. 

The designers of PolyJ recommend some extensions to the bytecodes of the Java 

Virtual Machine to support parameterized class files, as well as some corresponding 

effects of these extensions on both the bytecode verifier and interpreter. The format of 

a .class file is specified in the JVM specification [14]. PolyJ modifies the JVM by 

adding two opcodes: invokewhere and invokestaticwhere which support 

invocation of the methods that correspond to the where clause. PolyJ also made 

changes to the format of the . class file by adding information to be supplied to the 

bytecode verifier to directly verify the parameterized code. PolyJ also provided an 

extended bytecode interpreter which is designed to duplicate very little information 

when the generic class is instantiated. 



public class Pair(T] where T {boolean gt ( T t); } 

{ 

} 

private T p_first; 

private T p_second; 

public Pair(T tl,T t2) {p_first=tl; p_second=t2; } 

public void set_first (T x) {p_first = x;} 

public T get_first ( ){return p_first; } 

public void set_second (T y) { p_second = y;} 

public T get_second ( ) {return p_second;} 

public T max( ) { 

} 

return p_first.gt (p_second)? 

p_first : p_second; 

Figure 2-9 A implementation of Pair class in PolyJ 

Another frequently mentioned research project was by Agesen, Freund, and 

Mitchell [15]. They designed and implemented an extension to the Java language 

based on the idea that the instantiation of parameterized classes can be delayed until 



28 

load time. In their work the NM is modified by a revision of the class loader, and the 

. class file format is extended to support parametric classes. Here, the parameterized 

classes have the following general form: 

class C <parameters> 

where parameters represent a list of type variables. 

It appears to be a common opinion that extensions to the NM can express 

parameterization more directly. The parametric polymorphism solutions based on an 

extended NM should therefore be expected to be more elegant. Nevertheless, 

modification to the NM is a considerable challenge to Java's machine-independence. 

Because Java has an established user base, it is essential that any changes to the 

language specification are devised with mature reflections, so that there is no doubt as 

to the functionality of the extension, and all other relevant parts of the Java system are 

able to modify their products relatively easily. If the Java byte code is to be changed, 

many compatibility issues come into existence. A separate issue is that the Java 

platform was designed to run programs securely on networks. This means that the Java 

platform integrates safely with the existing systems on the network. In the base Java 

security model the three parts of Java's security defense include the Byte-code 

Verifier, the Applet Class Loader, and the Java Security Manager [17]. Whenever we 

are talking about JVM extension, it is important to consider the effect on the Java 

security model whether the extensions are for the byte code verifier or for the class 

loader. For wide deployment, these kinds of modifications to the JVM are still 
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considered to be an unjustified risk. On the other hand, the solutions which translate 

the extended Java to the existing JVM bytecode have obtained more acceptance. 

2.5 Translation Without JVM Extensions 

As discussed above, the extensions to conventional Java should preferentially be 

implemented in a manner which does not require JVM extensions. This is the major 

reason for the methods of the translation approach. 

Initially investigators in the Pizza project intended to translate the extended Java 

directly into the Java Virtual Machine [5]. They made such a decision based on the 

reality that the JVM is available across a wide variety of platforms, including different 

kinds of computers, consumer electronics, and other devices. Furthermore, it was 

important that the existing code compiled from conventional Java could smoothly 

inter-operate with new code compiled from extended Java. This would let the 

extended Java programms access the extensive Java libraries for graphics, networking, 

etc. However, as research progressed, it became apparent that "the JVM and Java were 

tightly coupled, and translating the extended Java into conventional Java as an 

intermediate stage would gain much in clarity" [5]. 

The translation approach is used in Pizza, GJ and NextGen implementation, where 

the semantics of the extended Java is given by a translation into the conventional Java 

code. 
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Homogeneous Translation and Heterogeneous 

Translation 

A parameterized definition is used by providing actual types for each of its 

parameters. We call this an instantiation. Basically there are two forms of 

implementation techniques for parametric polymorphism: homogeneous and 

heterogeneous translation. These techniques are based on whether a single or many 

generated codes, respectively, for the multiple instantiations of a parameterized class. 

Heterogeneous Translation 

A straightforward heterogeneous translation maps a parameterized class into a 

separate specialized class whenever a new instantiation is encountered. This technique 

is generally used for C++ template implementation and has been discussed in [ 5] for 

designing and implementing the Pizza language. 

Some of the implementation details of heterogeneous translation are: 

1. Because the generic class files are never loaded, the class files 

produced through compiling the generic classes do not have to be valid. 

2. Every time a reference to a new instantiation of a parameterized class is 

encountered, the compiler produces an additional class file with actual 
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type parameters instead of formal types. The instantiated files should be 

interpreted by the virtual machine. Therefore, it must be valid. 

The main deficiency of this implementation method is that redundant compilations are 

produced. A considerable number of nearly identical files with strange names might be 

created by the compiler. The heterogeneous translation may incur a substantial 

increase in code size. However, heterogeneous translation can provide correct run time 

information about instantiated classes. 

Homogeneous Translation 

Homogeneous translation uses a single copy of code with a universal representation, 

namely the homogeneous translation maps a parameterized class into a single class to 

represent all its instantiations. A homogeneous translation has been implemented in 

Pizza and GJ, a superset of the Java Language that supports bounded and even F­

bounded parametric polymorphism. 

Some of the implementation details of the heterogeneous translation are: 

1. When compiling a parameterized class, the formal type parameters 

are assumed to be their corresponding bound types. Therefore, a 

parameterized class is represented by simply replace the formal type 

parameters with their bound types respectively. 
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2. When a reference to an instantiated class is encountered, the compiler 

must interpret the generic class file that corresponds to the generic 

class. The compiler interprets each formal type parameter as its 

corresponding actual type. All the instantiated classes are represented 

by the same generic class produced from their corresponding 

parameterized class. 

Homogeneous translation yields much more compact code than heterogeneous 

translation, by contrast, homogeneous translation leads to incorrect run time 

information about instantiated classes and parameter types. 

Mixtures of heterogeneous and homogeneous translation are possible. In our thesis 

work, the NextGen proposal gives such a solution intended to make a trade-off 

between size and speed, by creating one type erased base class for each parametric 

class and one light wrapper class and one interface for each instantiated class. 

2.5.2 Type Erasure Technique For Generic Java To Java 

Translating 

The type erasure technique is a straightforward method of translation, through which a 

parametric class, for example List<T>, is translated into the class a Java programmer 
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would write to implement List with the Java generic coding idiom. During translation, 

type erasure replaces type variables by their upper bounding type (typically Object). In 

this manner, all the instantiations of a given parametric class such as List<T> are 

converted to a single corresponding base class List<Object>. 

The type erasure technique was developed by Odersky and Wadler for Pizza [5] 

and GJ [18]. These are two of the most popular generic Java compilers, where GJ is a 

successor of Pizza. Because the design and implementation of GJ is based on the 

previous work of Pizza, GJ and Pizza are similar in several aspects: 

• They are both supersets of the conventional Java with provision of 

parametric polymorphism mechanism. 

• Both of them are designed to be fully backward compatible with the 

conventional Java programming language, in that every legal conventional 

Java program is still legal in the extended language. 

• Both Pizza and GJ are implemented with the homogeneous translation 

technique. They are both explained and implemented by translation into the 

conventional Java progranuning language. 

Nevertheless, there are a number of differences between the two: 
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• In addition to generic types, Pizza introduces high-order functions and 

algebraic data types with pattern matching. While OJ adds only one important 

idea-type parameterization to Java. 

• When dealing with the legacy library code, Pizza needed to rewrite all legacy 

code to use a parametric version. But in OJ, a parametric type such as List<T> 

may be passed wherever the corresponding raw type List is expected. 

• Parametric types in OJ only apply to reference types. A base type such as int 

cannot be used as a type parameter. In Pizza, both base types and reference 

type are legal as type parameters 

A Pizza compiler has been implemented by adding Pizza features to EspressGrinder 

[5] which is a compiler for Java written in Java. A compiler implementing OJ has been 

written in OJ, and can also be used as a Java compiler. Our NextOen compiler is a 

modification of the OJ compiler, based on the NextOen proposal [20] and is 

implemented in OJ. 



CHAPTER3 

A Solution for Dynamic Parametric 

Polymorphic Classes For Java-NextGen 
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Pizza [5] and its successor GJ [18] have shown that introducing parametric classes to 

Java using the type erasure technique is an interesting approach. The main problem of 

extending Java to GJ [18] is that the run time information of the instantiated 

parametric types is not be available through homogeneous translation. As mentioned 

earlier, GJ cannot support type-dependent operations such as object and array creation 

operations over type variables, or casts and instance tests operations over parametric 

types. For example, the following operations are illegal in GJ, where T is a type 

parameter. 

(1) new T[] 

(2) new T( ... ) 

(3) instanceof CollectionClass<X>, each for specific X such as Integer 
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This situation prevents the desirable integration of the programming mechanisms 

introduced with the core language. 

In this thesis, a NextOen compiler was built based on the discussion of an extension 

[20] to the OJ proposal. This uses the type erasure technique with additional run time 

information about the instantiations of the type parameters. In this chapter we will 

give a description of the design issues underlying NextOen. 

3.1 How NextGen Is Intended to Work 

In general terms, NextOen employs a combination of homogeneous and heterogeneous 

translation so that run time information about the type parameters is captured for use 

with a primarily homogeneous translation. Homogeneous translation avoids the 

creation of a large number of redundant compilations arising from the instantiation 

with type parameters. At the same time, the run time information about the instantiated 

types can only be carried or be known through the heterogeneous translation. 

Therefore NextOen intends to use a combined approach to address the integration 

issues of OJ and keep the code growth to an acceptable level. 

Roughly speaking, the NextOen was designed in tandem with OJ. Just as the 

conventional Java programming language is a subset of OJ, OJ is a subset of the 

NextOen. But NextOen differs from OJ in three respects: 
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1. Parameterized types and type variables can be used wherever a 

conventional Java type can be used. In particular, NextGen can implement 

the operations such as: 

newT( ... ) 

newT[n] 

By allocating a new object or a new array with the correct run time type 

information, N extGen avoids the severe restrictions placed on this 

construct in GJ. Furthermore, NextGen can implement casting operations 

or instance test operations on parametric types such as 

GeneralCollection<T> . 

2. NextGen is always type-sound when involving parametric type declaration. 

In contrast, GJ is only type-sound with some constraints. GJ will always 

generate an unchecked warning whenever it encounters the operation new 

T [ ... ] (where T is a type parameter). In GJ, such operations cannot be 

executed even though they seem to be type-correct and pass compilation, 

since the information of the type parameters is not available at run time. 

3. GJ implements all the instantiations of a given parametric class using a 

single run time class representation. But NextGen implements the 

instantiations of a given parametric class in a more complex way, with one 

erased base class for each parametric class. One light wrapper class and 
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one interface for each instantiation are used. The wrapper class inherits the 

type-erased methods from the abstract type-erased base class. The run time 

information for each parametric class instantiation is carried through the 

wrapper class. In NextGen, some new class files are generated whenever a 

new instantiation of a parameterized class is found. 

3.2 The Design and Implementation ofNextGen 

3.2.1 Parameterized Type Declaration 

A parameterized type declaration (class or interface) defines a set of types, one for 

each possible instantiation of the type parameter. Loosely based on the syntax of 

templates in C++, a parameterized type in NextGen consists of a class or interface 

type C and a parameter section' <Ti, ... ,Tn>. C is the name of the parametric class or 

interface, <Ti, ... ,Tu> is a list of type variable declarations delimited by<> brackets. 

Each type variable declaration has an optional class or interface type as an upper 

bound, and each actual type variable must be a subtype of the bound type. If the bound 

clause is omitted in a type variable declaration, the type java.lang.Object is assumed as 

the default bound. The scope of a type variable is all the program text of the class or 

interface declaration. 
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Figure 3-1 is a simple example of a parameterized class definition in NextGen. 

Note: the type-dependent operation new T[n] is illegal in GJ but legal in NextGen. 

Public class NGVector<T> { 

Private T[] eles; 

Public NGVector ( int initCapacity) { 

eles = new T[initCapacity]; 

} 

public T elementAt (int index) { 
I 

return eles[index]; 

} 

public void setElementAt(T newvalue, int index} { 
I 

eles[index] = newValue; 
I' 

} 

Figure 3-1 A parameterized class NGVector definition 

In NextGen, an instantiation of a parametric class or interface can be used anywhere a 

conventional unparametric class is used. The type variables can also be used anywhere 

that a simple unparametric class is used except as the direct supertype in an "extends" 

or "implements" clause of a class or interface declaration. 



40 

3.2.2 Translation Maintaining Run Time Type Information 

Like Pizza and GJ, NextGen use type erasure in implementing parametric types. All 

occurrences of type variables in a program text are replaced by their bounding type 

(typically Object). NextGen augments the type erasure model used in Pizza and GJ by 

using wrapper classes and interfaces to provide run time type information. Therefore, 

compared with GJ, the translation in NextGen is more complex. 

We can roughly describe the translation process ofNextGen as replacing all types 

by their corresponding erasures. The erasure of a non-parametric type is the type itself 

(so the erasure of String is String). The erasure of a type parameter is the erasure of its 

bound (in parametric class List<T> definition, the erasure of T is Object). In these 

cases, the translations in NextGen and GJ are similar. However, the erasure of a 

parametric type is quite different between GJ and NextGen. In GJ it is translated into 

conventional Java by type erasure, where all instantiations of parametric classes are 

translated to their corresponding base class. NextGen, on the other hand, supports run­

time-dependent operations, i.e. all objects of parametric type carry their run time type 

information, so the parametric type translations of NextGen involve more diversified 

forms. We therefore need to consider the following three situations in parametric type 

translation [ 18]: 



41 

I. Converting each ''new" operation involving a parametric type to a "new" 

operation for the corresponding wrapper class. Thus, 

new Stack<Nurnber> 

is translated to 

new $$Stack$_Nurnber_$ 

and 

new Vector<Boolean>[lOO] 

is translated to 

new $$Vector$_Boolean_$[100]. 

2. Converting each casting operation to the parametric type to two casts 

sequentially: a cast to the corresponding wrapper interface, followed by a 

cast to the corresponding base class. Thus, 

(Vector<Integer>) x 

is translated to 

(Vector) (($Vector$_Integer_$) x) 

3. Converting each instanceof test involving a parametric type to an 

instanceof test on the corresponding wrapper interface. Thus, 

instanceof Vector<Integer> 

is converted to 
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instanceof $Vector$_Integer_$ 

We now discuss the GextGen translation from two points of view: 

(!) The translation of a parametric classes 

(2) The translation of the client classes of the parametric classes 

For a Given parametric class C<To, ... T0> in a package P, the NextGen compiler 

generates a type-erased base class C in the same package. This base class C extends 

the base class of the parametric super-type ofC<To, ... T.>. All the attributes for each 

member of C<To, ... T0> are preserved in its corresponding base class. In order to 

support the run time type depended operations, NextGen uses a slightly different 

process than GJ to construct the base class. If the run time-dependent operations do 

not occur in a parametric class, the NextGen compiler constructs the base class in the 

same way the GJ compiler translates GJ into the conventional Java language. When a 

run time depended operation such as 

newT( ... ) 

or newT[n] 

is encountered in a method body, such an operation is replaced by a call to a generated 

auxiliary method. In the base class, all the generated auxiliary methods (called a 

"snippet") are abstract and protected with a mangled name. These auxiliary methods 

can be appropriately overridden in each wrapper class according the specific actual 

type parameter to perform the appropriate type-dependent operation. 
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The parameterized class NGVector<T> in Figure 3-1 is translated by the NextGen 

compiler into a class file for the base class shown in Figure 3-2. 

public abstract class NGVector { 

private Object[] eles; 

} 

public NGVector int initCapacity) { 

eles = $snip$1 (initCapacity); 

} 

public Object eleroentAt (int index) { 

return eles[index]; 

} 

public void setElementAt(Object newvalue, int index){ 

eles[index] = newvalue; 

} 

abstract protected Object[] (int initCapacity); 

Figure 3-2 The type-erased base class for the 

parametric class NGVector in Figure 3-1 

For each instantiation of a parameterized class used in a compilation unit, the 

NextGen compiler generates both a lightweight wrapper class and an empty interface 
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to cany the run time type parameter information. The reason for this is that Java does 

not support multiple inheritance, i.e. a Java class can be extended from only one super 

class. When one parameterized class such as Stack<T> extends another 

parameterized class such as Vector<T>, there are two super types for each 

instantiation of Stack<T> like Stack<A>. The two super types of Stack<A> are: 

1. its corresponding base class Stack, from which it inherits nearly all of its 

members 

2. the corresponding instantiation Vector<A> of parameterized class 

Vector<T> 

In NextGen the type of the wrapper class can be represented by its 

corresponding interface. Therefore, a wrapper class $$Stack$_E_$ can extend its 

base class Stack and implement its own interface $Stack$_E_$. At the 

same time, $Stack$_E_$ implements the corresponding interface 

$Vector$_E_$ for the super wrapper class $$Vector$_E_$. The resulting type 

hierarchy produced by the NextGen for this example is shown in Figure 3-3. In Figure 

3-3, boxes representing classes and ovals representing interfaces. 
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Vector <T> 

Stack <T> 

(a) NextGen Source 

Stack $Vector$_E_$ 

$$Vector$_E_$ 

$Stack$_E_$ 

$$Stack$_E_$ 

(a) JVM Representation 

Figure 3-3 A Simple Parametric 'l'ype Hierarchy and Its 

JVM Class Representation 
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The wrapper class inherits all the type-erased methods from the corresponding base 

class that is constructed by erasure from the parameterized class definition using type 

erasure. Further, if the run time type-dependent operations such as new T [ J do not 

occur in the parametric class, the wrapper class simply duplicates the base class 

constructors by invoking the constructor call to the base class (using a superclass 

constructor call super). Otherwise, if the parametric class contains type-dependent 

operations, NextGen augments the type erasure model with additional snippets. Thus, 

the corresponding wrapper class not only replicates base class constructors by 

forwarding constructor calls to the base class but also provides the implementations 

for the abstract snippets methods in the base class. These additional snippet methods' 

definitions select the appropriate snippet code to meet the requirements of the run time 

type-dependent operations. 

For example, for NGVector<Integer>, an instantiation of the parametric class 

NGVector<T> shown in Figure 3-1, NextGen generates an empty wrapper interface 

$NGVector$_Integer_$ and a wrapper class $$NGVector$_Integer_$ 

shown in Figure 3-4. 

Figure 3-3 and Figure 3-4 show that the translation of the constructor in the 

NGVector<T> base class is postponed because the constructor invokes an operation 

new T [ J that dependents on the run time type information of the type parameter T. 

The specification of the actual allocation operation is served as a "dynamic" method 

call made in the corresponding wrapper class. 



public interface $NGVector$_Integer_$ { } 

public class $$NGVector$_Integer_$ extends NGVector 

implements $NGVector$_Integer_$ 

{ 

} 

public $$NGVector$_Integer_$ (int initCapacity) { 

super (initCapacity); 

} 

public protected Object[] $snip$1((int initCapacity) 

{ 

return new Integer[initCapacity]; 

} 

Figure 3-4 the wrapper interface and wrapper class for 

NGVector<Integer> which is an instantiation 

of the parametric class NGVector<T> of Figure 3-1 

47 
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CHAPTER4 

Our Implementation 

of a N extGen Compiler 

4.1 Summary of GJ Compiler 

The GJ compiler has been implemented in GJ itself by Wadler et.al, and is publicly 

available from a number of web sites. In May 2001, Sun has put forward a proposal to 

add generic types to the Java programming language, and also released a prototype on 

Wadler's GJ implementation. Our NextGen compiler is derived from this prototype. 

We therefore also refer to Sun's prototype as the GJ compiler. 

Roughly speaking, the GJ compiler is constructed as a series of passes over an 

abstract syntax tree. As illustrated in Figure 4-1, the scanner maps a source program, 

which is an input stream consisting of Unicode characters [12], into a token sequence. 

The parser then maps the token sequence into an abstract syntax tree. Subsequently, 
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several traversals over the syntax tree nodes are performed to evaluate the semantic 

rules and finally map flat Java to bytecodes. 

In the GJ compiler, everything in one source file is kept in one TopLevel 

structure. The syntax tree of the compiler is represented by the recursive constructs of 

the syntactic subcomponet tree nodes. 

In the GJ compiler, there is an abstract root class Tree for all the abstract 

syntax tree nodes. The GJ compiler provides definitions for each of GJ's syntactic 

constructs, such as if statements or for loops, as subclasses nested inside the root 

class Tree. A class hierarchy for representing the abstract syntax tree is shown in 

Figure 4-2. 

The root class Tree itself defines fields for the tree's type and position. The 

subclasses used to represent individual GJ syntactic constructs are highly standardized. 

Each subclass typically contains only tree fields for the syntactic subcomponents of 

the node. For example, as shown in Figure 4-3, class ClassDef represents a class 

definition node. All variables and methods defined in this class are embodied in the 

field: List<Tree> defs. 

A variable definition is represented by a tree node of Vardef and a method 

definition is represented by a MethodDef tree node. 
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Source File 

• 
Scanner 

Token Stream 

, . 
Parser 

Syntax Tree 

•• 
Enter Phase 

Attribution Phase 

TransType Phase 

GenCode Phase 

Byte Code 

'' 

Figure 4-1 Outline of the GJ Compiler 
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(abstract super class) 

TopLevel Import ClassDef MethodDef VarDef 

( subclasses for the syntactic construct) 

Figure 4-2 Implementation of the Abstract Syntax Tree 

public class ClassDef extends Tree { 

} 

public int flags; 

public Name name; 

public 

public 

public 

public 

public 

public 

Figure 4-3 

List<TypeParameter> typarams; 

Tree extending; 

List<Tree> implementing; 

List<Tree> defs; 

ClassDef ( ... ) { ... } //constructor 

void visit( Visitor v) { v._case(this); } 

GJ Implementation of the Abstract Syntax Tree 

Node Representing A Class Defmition 
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The root class Tree and each subclass define a method visit which takes a 

given Visitor object to the tree node. The Visitor object provides a traversal 

method _case corresponding to each individual subclass being defined. So, the 

actual tree processing is done by the Visitor classes. 

The tree Visitors process the abstract syntax tree by recursively traversing the tree 

nodes. As shown in Figure 4-1, there are four main passes over the abstract syntax 

tree. Each pass is performed by its corresponding tree visitor: 

1. Enter: By sweeping through all the syntax trees, the tree visitor Enter 

enters symbols for all encountered definitions into the symbol table. 

2. Attr: The main context-dependent analysis phase is provided through this 

tree visitor. 

3. TransType: Through this pass, the extended Generic Java is translated into 

the conventional Java. 

4. Gen: the tree visitor Gen accomplishes the code generation phase. 
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In GJ compiler, all the tree traversal methods have the overloaded name _case. 

They are distinguished by the subclasses of Tree, which represent the concrete tree 

nodes and are taken as arguments of the traversal methods. An abstract 

Tree.Visitor class is defined as containing one _case method for each of the 

Tree subclasses. Each concrete visitor class is implemented as a subclass of the 

abstract class Tree. Visitor and overrides those _case methods. Figure 4-4 gives 

an overview ofthis. 
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public abstract class Tree { 

public void visit (Visitor v) { v._case (this); } 

public static abstract class Visitor { 

public void _case (Tree that) { 

throw new InternalError ("unexpected: "+that); 

} 

public void _case(TopLevel that){_case((Tree) that);} 

public void _case(Import that {_case((Tree) that);} 

public void _case(Vardef that {_case((Tree) that);} 

} 

} 

public class Attr extends Tree.Visitor { 

public void _case (ClassDef tree) { 

//code for the attribution of a class definition tree node 

} 

public void _case (MethodDef tree) { 

//code for the attribution of a method definition tree node 

} 

} 

Figure 4-4 Visitors in the GJ compiler 
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4.2 Modification of the GJ Compiler to Handle NextGen 

NextGen is intended to address the type integration problems of GJ. The syntax of 

NextGen is similar except that it supports parametric type in any context, i.e. the type­

dependent primitive operations such as 

instanceof Vector <X> 

new T [ ... ] 

new T ( ... ) 

where T is a type parameter and X represents any specific reference type, are legal in 

NextGen. 

NextGen compiler employs the lexical analyzer and parser from GJ. Through the 

lexical analyzer, a source file is mapped into a token sequence. The parser then maps 

the token sequence to an abstract syntax tree. 

Like GJ, the NextGen compiler is structured as a series of passes over the abstract 

syntax tree. The actual language processing is still done by the tree Visitor class, 

but the implementation of the tree Visitor is more complicated. 

As we have discussed in the previous sections, NextGen implements parametric 

types in Java by an enhanced type erasure model. The type erasure process that 
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NextGen uses to construct base classes generates essentially the same code for 

parameterized classes as the corresponding unparameterized code written using the 

Java generic coding idiom. This is similar to GJ. However, NextGen is designed to 

provide run time type information. During the translation from NextGen to 

conventional Java, the NextGen compiler must automatically generate the lightweight 

wrapper interfaces and wrapper classes. For the parametric classes involing type­

dependent operations, the NextGen compiler must automatically introduce a package­

private auxiliary snippet method in the type-erased base class for each one of such 

operations. All these snippets should be abstract in the base class. The corresponding 

wrapper classes then appropriately override these snippets, and therefore are able to 

correctly carry the run time type information. 

In view of the these needs, we extend the GJ compiler by changing the behaviors of 

the concrete tree Visitors such as Attr and TransType. In a NextGen 

compiler, the program, represented as the abstract syntax tree, is changed through the 

series of traversal passes. 

Because the Tree visitors provide an individual traversal method for each kind of 

tree node, we implement the traversal methods with the algorithm shown in Figure 4-

5. 



Step I: Check if the processed tree node involves a parametric type. If not, go 

to step 5. Otherwise go to step 2. 

Step 2: Check if the corresponding wrapper class and wrapper interface already 

exist in the same package. If not, go to step 3. Otherwise go to step 4. 

Step 3: Generate the corresponding wrapper clkss and wrapper interface. 

Step 4 : Modify the processed tree node with the corresponding wrapper class 

or interface. Go to step 7. 

Step 5: Check if the processed tree node involves the type dependent primitive 

operations: 

Step 6: 

Step 7: 

new T[ ... ] 

or new T( ... ) 

where T is a type parameter. If not, go to step 7. Otherwise, go to step 

6. 

Generate a snippet method tree node (a kind ofMethodDef tree node) 

corresponding the type-dependent operation in step 5; embed the 

snippet method tree node into the corresponding ClassDef tree node; 

modify the processed tree node with the added snippet method tree 

node. 

Do the normal traversal processing as in GJ. 

Figure 4-5 The Algorithm for Modifying Traversal Methods of 

the Tree Visitor in GJ Compiler to handle NextGen 
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Because a parameterized type, T< ... >, can be represented as a tree node of 

TypeApply, the step 1 is easy to accomplish. For example, suppose we are passing 

across a VarDef tree node for the attribution phase, where the VarDef tree node 

represents a variable definition. The VarDef tree node definition (nested inside the 

abstract class Tree) and the Visitor method definition for a V arDef tree node look like 

the following: 

public class varDef extends Tree { 

} 

public Name name; 

public Tree varType; 

//the variable name 

//type of the variable defined 

public void _case(Vardef tree) { 

} 

//codes for checking that the variable's declared type 

//is well-formed 

Here, in the traversal method we need only to check if tree. varType is a kind of 

TypeApply tree node and we can then decide if the defined variable has a 

parametric type. 
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In step 2, there is a need to check a specific generated wrapper class and a interface 

in the same compilation unit. In the original GJ compiler prototype, there is a class 

ClassReader which provides operations to read a class file into a internal 

representation. This class can be used to check for the existence of a wrapper class by 

testing for the generated . class file. 

As decided in step 3, for an instantiation of a parametric type the corresponding 

wrapper class and wrapper interface need be generated. Here, knowing the properties 

of the base class is essential. In the NextGen compiler, we use the Java reflection 

feature to generate the wrapper class and wrapper interface. 

"Reflection" is a particular feature of the Java programming language. It allows an 

executing Java program to discover information about the modifiers, the fields, the 

constructors and methods of a loaded class, and then examine and manipulate the Java 

class from within itself. This feature does not exist in other conventional programming 

languages such as Pascal, C and C++ [22]. We use reflection to obtain information 

about the base class file for a parametric class C<T i, ... >. Once the base class 

information is in hand, we can easily specialize the snippets in forming the wrapper 

class and then the wrapper interface. Figure 4-6 shows how to use the reflection, 

where baseClassName is a string representing the base class name of a parametric 

class. 

To get the information about a class that we want to manipulate, we first need to 

obtain a j a va . 1 ang . C 1 ass object for the corresponding class. Instances of the 

class j ava. lang. Class represent classes and interfaces in a running Java 
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application. The reflection classes such Modifier, Constructor and Method 

can be found in java. lang. reflect. The class Modifier provides a method to 

decode the class and member access modifiers; the class Constructor provides 

information about a constructor for a class; and the class Method provides 

information about, and access to, a single method of a class or interface. In Figure4-6, 

statement (2), we can get the Java language modifiers for the class or interface, 

encoded as an integer. From the statement (3) we get an array of Constructor 

objects reflecting all the constructors declared by the class represented by this Class 

object. From statement ( 4) we find out what methods are defined in the class. 

Class baseClass = Class.forName( baseClassName ); 

Int modifiers= baseClass.getModifiers(); 

Constructor[] cons= baseClass.getConstructors(); 

Method[] meths = base.getDeclaredMethods(); 

Figure 4-6 Illustration for How Reflection Works 

//(1) 

I I (2) 

I I ( 3) 

//(4) 

By discovering and using the member information of a base class from a given 

parametric class, it is easy to define the corresponding wrapper class and wrapper 

interface for an instantiation of parametric class. As illustrated in Figure 4-6, we can 
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get a list of all the methods declared by a class. We can therefore decide if the base 

class has snippet methods. If the base class has no snippet method (the parametric 

class does not include the operation new T( ... ) and new T[ ... ], where T is a type 

parameter), we create the wrapper class so that it inherits all the methods of the base 

class without overriding them. We also replicate base class constructors by forwarding 

constructor calls to the base class using super. Otherwise, in the wrapper class we 

have to further provide the corresponding definition of the abstract snippets methods 

in the base class. We use different kinds of snippet method names to differentiate the 

operation new T[ ... ] and new T( ... ): 

new T[ ... ] ~ $snip$ followed by a number 

new T( ... ) ~ $snipNewclass$ followed by a number 

We can therefore make a decision from the snippet method name whether the 

allocation operation is for an array (new T[ ... ] ) or new object (new T( ... )). 

For example, in a parametric class C<T>, the statements: 

T tl; 

tl = new T(10); 

T [ J eleros; 

eleros =new T[size]; //size is variable representing a int 
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may be type erased to the base class C as: 

Object tl; 

tl = $snipNewclass$1 ( 10 ); 

Object[] elems; 

elems = $snip$1(size); //size is variable representing a int 

protected abstract Object $snipNewclass$1 (int intValue ); 

protected abstract Object[] $snip$1 (int size); 

When an instantiation of C<T>, such as C<Integer>, is encountered, a 

corresponding wrapper class $$C$_Integer_$ and wrapper interface $C$_Integer_$ 

are created. The wrapper class will implement the corresponding abstract methods in 

the base class as: 

protected Object[] 

{ 

$snip$1(int intValue) 

return new Integer[intValueJ; 

} 

protected Object $snipNewclass$1(int intValue) 

{ 

return new Integer(intValue); 

} 
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Then, in the following step, we modify the processed tree node by updating the 

TypeApply node with the corresponding !dent tree node which represents the type 

corresponding to the wrapper class. In the compiler all the unparameterized types are 

represented as an !dent tree node during the compilation. We handle a wrapper class 

as if it were an unparametric class. 

The discussion of the other steps has been included into the extended discussion of 

step 3. 

4.3 Experiments and Results 

Because our experimental compiler is written in GJ, we tried using our NextGen 

compiler to compile the compiler source code itself. In our experimental setup, we 

also designed 12 parameterized classes specifically containing runtime dependent 

operations. One of the experimental test programs is shown below: 
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public class NGVector<T>{ 
private T[J elements; //the array buffer into which the elements 

of the Vector are stored 

} 

private int capacity; 
private int size; //the number of the elements in the Vector 

//Constructor 
public NGVector(int i){ 

elements= new T[i]; 
capacity = i; 
size = O; 

} 

//This is the feature of NextGen 

public void addElementl(T t){ 
T tl; 
tl =new T(lO); //This is the feature of NextGen 

} 

if( size< capacity){ 

} 

elements[size] = t; 
size++; 

public String toString(){ 
String s = " " ; 

} 

for(int i = O; i<size; i++){ 
s = s + elements(i];; 
if(i != size-1) 

s=s+ 11
; 

} 
return s; 

public class tl{ 

} 

public static void main(String[] argv){ 
String s; 

} 

tO sl; 
sl =new tO(); 

NGVector<Integer> IntVector; 
IntVector = new NGVector<Integer>(20); 

for{int i= 1; i<=20; i++) 
IntVector.addElementl(new Integer(i)); 

System.out.println(IntVector.toString()); 
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Our study of the NextOen proposal, and implementation of a compiler prototype, 

lead us to believe that the type erasure technique can also be enhanced to provide run 

time parameterized types with run time information in Java. Just as OJ is designed as a 

superset of the conventional Java programming langnage, the NextOen proposal is 

upward compatible with OJ. Our experiments show that a legal OJ or conventional 

Java program can also be compiled by the NextOen compiler into JVM code. 

The most important improvement to the OJ compiler is that the NextOen compiler 

has the ability to provide run time support for parametric type instantiation. This 

makes NextOen more expressive than OJ and better fit with Java programming 

mechanism, which maintains run time type information about the class of an object 

and the type of the elements of an array. The primary drawback of OJ is that it does 

not carry any run time type parameter information, so it can not support type 

operations over type variables, or instance tests over parametric types. However, In 

NextOen, the parametric type expressions can be used anywhere that conventional 

types can be used. Specifically, the following type dependent primitive operations can 

be supported in NextOen: 

new T[ ... ] 

new T( ... ) 

instanceof C<reffype> 

where T is a type parameter and reffype is a kind ofreference type. 
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Consider a parametric class C<T> with a field: T[] x, where x is initialized by an 

operations new T [ ... ].With OJ, the code can pass the compiler, but a "unchecked" 

warning message will be issued. Further, because Java arrays carry their element type 

at run time and the Java type system forces array assignments to be type-correct, an 

array value of type Object[] cannot be assigned to a variable of type Integer[]. So, if a 

variable Y has type Integer[] and Z is a object of type C<Integer>, the operation Y = 

Z.x will generate a run time type error even though they seem type correct at compile 

time. On the other hand, the NextOen compiler will postpone the initializing operation 

new T[ ... ] until the object Z ofC<Integer>, an initialization of the parametric type 

C<T>, is generated. The operation new T[ ... ] is then done as new Integer[ ... ]. In this 

way, NextOen is always type-sound with respect to parametric type declaration. 

We have seen from our implementation of the NextOen compiler that NextOen 

cannot avoid the continuous creation of new class files as parameterized classes are 

instantiated with different types. Growth in the number of files is a problem with the 

heterogeneous translation approach. This is because, in Java, each compiled class 

requires its own file. 

Our experiments on the NextOen compiler also show that, compared with OJ, 

NextOen has weaker compatibility properties. In OJ, because all the instantiations of a 

given parameterized class such as Collection<T> are translated into a single class 

Collection<Object> (which is identical to an unparameterized Collection class 
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implemented using the Java generic coding idiom), GJ achieves great compatibility 

with the Java legacy code. In GJ, objects created by legacy code using the Java generic 

coding idiom may be passed to new GJ code that expects objects of parameterized 

type, and also a new created objects of a parametric type may be passed to legacy code 

that uses the Java generic coding idiom. For example, the following code is considered 

to be legal in GJ. 

LinkedList<String> LS= new LinkedList<String>(); 

LinkedList L = LS; 

Further, in GJ, the legacy code using the Java generic coding idiom may call the new 

parameterized libraries and the new parameterized code may also call the legacy 

libraries that use Java generic coding idiom. So, only one version of the library is 

required in GJ. If one anticipates to eventually rewrite the Java source library with 

parametric types, the task can be scheduled at a convenient time. 

In contrast, because the NextGen compiler translates a parameterized class such 

as Collection<T> into a base class Collection which may not be identical to the 

unparameterized class Collection (that is implemented using the Java generic coding 

idiom) the new NextGen code cannot use the legacy libraries directly. So, rewriting 

the Java source library with parametric types is preferable with NextGen. In another a 

separate convertation of the libraries with adaptor is absolutely necessary. 
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CHAPER5 

Conclusions and Future Work 

5.1 Conclusions 

Our experiments in developing a NextGen compiler have shown that relying on an 

enhanced type erasure technique to achieve parameterized classes with run time 

parameter information in Java is workable. 

Our NextGen compiler employed a mixture of both homogeneous and 

heterogeneous translation. It cannot avoid the new class creation problem of 

heterogeneous translation, but it limits these new classes to be very small in size. 

When the full integration between parametric types and Java language features is 

not required, GJ remains the best solution. The reason is that GJ does not cause 

overhead, and it also achieved a great compatibility with the Java legacy code. 
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5.3 Future work 

NextGen has achieved the complete integration of the parameterized types with the 

conventional Java programming language typing at the cost of increase in number of 

small class files and weaker compatibility properties with the Java legacy code. For 

example, an object created with legacy code that uses the Java generic coding idiom 

cannot be passed directly to the new parametric code from NextGen. Considering a 

smoother process of upgrading from legacy code to the parameterized code still needs 

further study. 

With NextGen, a new parametric code cannot use the Java legacy libraries. 

Rewriting the source library with parametric types is also is a considerable task. 

In our experimental NextGen compiler, we used the Java reflection feature in 

generating the wrapper classes and interfaces. This means that the base class of the 

parameterized class must already exists before its client uses it. If the client is within 

the same file as the parameterized class, our prototype compiler cannot work properly. 

Further implementation with our existing compiler would be needed to solve this 

problem or we can try another approach such as adding extra attributes to the base 

class file for a parameterized class. 



70 

References 

[1] K.rzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming, 

Methods, Tools and Applications, Addison-Wesley, 2000 

[2] S. Yu. Notes of the course Theory of Objects, 2001. 

[3] J. H. Solorazno and S. Alagic. Parametric polymorphism for Java: A reflective 

solution. In conference on Object-Oriented Programming, systems, languages and 

Applications, pages 216-225. ACM, 1998. 

[4] M. Odersky, P. Walder, G. Gracha, and D. Stoutamire. Making the future safe for 

the past: Adding Genericity to the Java programming language. In Conference on 

Object-Oriented Programming, Systems, Languages and Applications, pages 183-200. 

ACM, October 1998. 

[5] M. Odersky and P. walder. Pizza into Java: Translating theory into practice. In 

Symposium on Principles of Programming Languages, pages 146-159. ACM, 1997. 

[6] James Gosling, Henry McGilton. The Java Language Environment, A White 

Paper. May 1996. http://java.sun.com/docs/white/langenv/. 



71 

[7] Jr. Guy L. Steele. Growing A Language. Journal of Higher-Order and Symbolic 

Computation, 221-236, 1999. 

[8] Mirko Virlli. Parametric Polymorphism in Java: an Efficient Implementation for 

Parametric Methods. Symposium on Applied computing. Pages 610-619. ACM 

SAC2001. 

[9] Dominic Duggan. Modular Type-based Reverse Engineering of Parameterized 

Types in Java Code. In Conference on Object-Oriented Programming, Systems, 

Languages and Applications, pages 97-113. ACM, 1999. 

[10] Kresten Krab Thorup. Genericity in Java with virtual types. European Conference 

on Object-Oriented Programming, pages 444-471, LNCS 1241, Springer-Verlag, 

1997. 

[11] Kim B. Bruce, Martin Odersky, Philip Wadler. A statically safe alternative to 

virtual types. In Proceedings of the European Conference on Object-Oriented 

Programming, page 1-27. ECOOP 1998. 

[12] Cosling J., Joy B., and Seele G. The Java Language Specification. Addison­

Wesley. 2000. 



72 

[13] Andrew C. Myers, Joseph A Bank, Barbara Liskov. Parameterize Types for 

Java. In Symposium on Principles of Programming Languages, page 132-145. ACM, 

January 1997. 

[14] T. Lindolm and F. Yellin. The Java Virtual Machine. Addison-Wesley. 1996 

[IS] Ole Agesen, Stephen Freund, and John Mitchell. Adding Type Parameterization 

to the Java Language. In Symposium of Object-Oriented Programming: Systems, 

Languages, and Applications, ACM, October 1997. 

[16] Alex Tomlins, Chris Jackson. Java Generics: Final Report June 1999. 

http://www.iis.ee.ic.ac. uk/-frank/ surp99/report/ caj 97 I 

[17] Gary McGraw, Ed Felten. Securing Java: Getting down to Business with Mobile 

Code. John Wiley & Sons, Inc. 1999. 

[18] Gilad Bracha, Martin Odersky, David Stoutamire, Philip Wadler. GJ: Extending 

the Java programming 

[19] Gilad bracha, Martin Odersky, David Stoutamire, Philip Wadler. Making the 

future safe for the past: Adding Genericity to the Java Programming Language. In 



73 

Conference on Object-Oriented Programming, Systems, Languages and Applications, 

page 183-200. ACM 1998. 

[20] Robert Cartwrigh, Guy L. Steele Jr. Compatible Genericity with Run-time Types 

for the Java Programming Language. In Conference on Object-Oriented Programming, 

Systems, Languages and Applications, page 201-215. ACM 1998. 

[21] Sun Microsystems, Inc. JDK 1.2: The Java Collections Framework, 

[22] Glen McCluskey. Using Java Reflection. January 1998. 

http://developer.java.sun.com/ developer/technicalArticles/ ALT /Reflection 

[23] Ran Rinat, Scott F. Smith. Correspondence Polymorphism for Object-Oriented 

Languages. In Conference on Object-Oriented Programming, Systems, Languages 

.and Applications, pages 167-178. ACM, 1999. 



Name: 

Place of birth: 

Year ofbirth: 

Post-secondary 
Education and 
Degree: 

Honors and 
Awards: 

Relate work 
experience: 

VITA 

HuanlingLu 

Shanxi, China 

1967 

Tsinghua University 
Beijing, China 
1984-1989 B. Eng. 

Tsinghua University 
Beijing, China 
1991-1994 M. Eng. 

The University of Western Ontario 
London, Canada 
1998-2000 Special Undergraduate Student 

The University of Western Ontario 
London, Canada 
2000-2002 M. Sc. 

Dean's honor list 
1998-1999 

Teaching Assistant 
The University of Western Ontario 
2000-2002 

74 




