
Techniques for Transformation and Exchange of
Standardized Digital Ink

(Spline Title: Transformation and Exchange of Digital Ink)
(Thesis Format: Monograph)

by

Birendra Keshari

Graduate Program in Computer Science

Submitted in partial fulfillment
of the requirements for the degree of

Master of Science

Faculty of Graduate Studies
The University of Western Ontario

London, Ontario, Canada

c© Birendra Keshari 2008

THE UNIVERSITY OF WESTERN ONTARIO

FACULTY OF GRADUATE STUDIES

CERTIFICATE OF EXAMINATION

Chief Adviser: Examining Board:

Dr. Stephen M. Watt Dr. David J. Jeffrey

Advisory Committee: Dr. Mahmoud El-Sakka

Dr. Eric Schost

The thesis by

Birendra Keshari

entitled:

Techniques for Transformation and Exchange of Standardized Digital Ink

is accepted in partial fulfillment of the

requirements for the degree of

Master of Computer Science

Date: April 15, 2008
Chair of Examining Board
Dr. John Barron

ii

Abstract

Easy availability of various pen based devices, such as Tablet PCs, PDAs and smart-

phones, has created many opportunities to be explored in the area of pen-based

computing. The diverse nature and settings of pen-based applications demands a

platform-neutral representation for digital ink supporting a wide range of operations.

Ink Markup Language (InkML), an XML-based language, provides such a represen-

tation that allows a variety of operations in a flexible and efficient manner.

InkML provides support for a range of pen-based application through two styles

- streaming and archival - which are semantically equivalent but have different prop-

erties. In this thesis, we present solutions for doing transformations between these

two styles and performing operations on them. Using streaming InkML, we present

different techniques that can be used for exchanging digital ink in a heterogeneous

collaborative environment. The main challenges for such a task stem from factors

such as differences in channel properties of the ink sources with different capabilities

and screen resolutions. We give an analysis and comparison of the various ink sharing

techniques.

As two use cases, we discuss a mathematical symbol recognition server and an

InkML based protocol to provide support for doing mathematics in a collaborative

inking environment.

Keywords: InkML, streaming ink, archival ink, whiteboard, symbol recognition

iii

Acknowledgments

I would like to thank my supervisor Dr. Stephen M. Watt for his support, motivation

and guidance, without which this work would have not been possible. I would also

like to thank all the members of the ORCCA lab for their help and support. I would

especially like to thank Dr. Elena Smirnova for her helpful discussions and motivation.

I would like to thank my internship advisor, Dr. Sriganesh Madvanath, for his

helpful discussions and guidance during a summer internship at HP Labs, Bangalore,

India.

iv

Contents

Certificate of Examination . ii

Abstract . iii

Acknowledgements . iv

Table of Contents . iv

List of Tables . viii

List of Figures . ix

1 Introduction 1

1.1 Thesis Subject . 1

1.2 Related Work . 4

1.3 Thesis Organization . 5

2 InkML Concepts 7

2.1 Introduction . 7

2.2 Trace Format . 9

2.2.1 Channel . 10

2.2.2 Channel Properties . 10

2.3 Trace and Trace Group . 12

2.4 Ink Source . 13

2.5 Context . 14

v

2.6 Shared Canvas . 15

2.7 Annotation . 17

2.8 Definitions . 18

2.9 Streaming and Archival Styles . 19

2.9.1 Streaming Style . 20

2.9.2 Archival Style . 21

3 Streaming-Archival Conversion Techniques 23

3.1 Need for Conversion . 23

3.2 Conversion Problem . 24

3.3 Streaming to Archival Conversion . 26

3.4 Optimization . 28

3.5 An Alternate Approach to Streaming to Archival Conversion 32

3.6 Archival to Streaming Conversion . 35

4 Techniques for Sharing Digital Ink 41

4.1 Using Shared Canvas . 41

4.2 Client-oriented Schemes . 43

4.2.1 Scheme I . 44

4.2.2 Scheme II . 46

4.3 Server-oriented Scheme . 49

4.4 Hybrid Scheme . 51

4.5 Comparisons . 54

4.6 Comparisons with Other Digital Ink Formats 55

5 Support for Collaborative Mathematics 56

5.1 Motivations . 57

vi

5.2 Use Cases . 58

5.3 The InkML-Based Protocol . 59

5.3.1 Login . 59

5.3.2 Client Recognition Request 59

5.3.3 Server Recognition Response 61

5.3.4 Sending Writer Info . 63

5.3.5 Sending Training Data . 63

5.3.6 Exchange of Control Information 64

5.3.7 Error Handling . 64

5.4 Online Symbol Recognizer . 65

5.4.1 Support Vector Machines . 66

5.4.2 Feature Extraction . 67

5.4.3 Preprocessing . 67

5.4.4 Online Feature Vector . 69

5.5 An Example . 69

6 Implementations 72

6.1 Streaming-Archival Conversion . 72

6.2 Sharing Digital Ink . 74

6.3 InkML-Based Protocol for Recognition 76

7 Conclusion 79

7.1 Summary . 79

7.2 Future Directions . 80

Bibliography 81

Vita 87

vii

List of Tables

2.1 Channel Attributes (from [CFW06]) 10

2.2 Reserved Channel Names in InkML (from [CFW06]) 11

4.1 Comparison of the Schemes . 54

5.1 Error Codes . 65

viii

List of Figures

2.1 Example of traces (from [CFW06]) 8

2.2 Traces in rendered form (from [CFW06]) 9

2.3 An Example of Channel Properties 11

2.4 An Example of Trace . 12

2.5 An Example of Trace using Velocity 13

2.6 An Example of Trace Group . 13

2.7 An Example of InkSource . 14

2.8 An Example Showing Context Reference 15

2.9 Inheritance and Overriding of Context through Reference ([KW07b]) 16

2.10 An Example of Shared Canvas (from [KMA+08]) 17

2.11 An Example of Textual Annotation 18

2.12 An Example of XML-based Annotation 18

2.13 Streaming Applications (from [KW07b]) 19

2.14 Archival Application (from [CFW06]) 20

2.15 An example of Streaming Style InkML (from [KMA+08]) 21

2.16 An Example of Archival Style InkML 22

3.1 Streaming (left) and Archival (right) Ink Markup Structure Conversion

(from [KW07b]) . 25

ix

3.2 Streaming to Archival Translation (from [KW07b]) 27

3.3 A Streaming Style Markup (Input) 29

3.4 An Archival Style Markup (Output) 30

3.5 An Example of Duplicate Context (from [KW07b]) 31

3.6 Optimization of Archival Ink (from [KW07b]) 33

3.7 Optimized Archival InkML . 34

3.8 Result of Applying Alternate Approach 36

3.9 Result of Applying Alternate Approach and Optimization 37

3.10 Archival to Streaming Translation (from [KW07b]) 39

3.11 A Streaming Style Markup (Output) 40

4.1 Sharing ink with shared canvas(upper) and without it(lower) 42

4.2 Collaborative Environment . 43

4.3 Client-oriented Scheme I . 44

4.4 Client-oriented Scheme II . 47

4.5 Server-oriented Scheme . 49

4.6 Hybrid Scheme . 51

5.1 Results from Recognition Servers can be combined 57

5.2 Use Case Scenarios . 60

5.3 Processing: smoothing, interpolating and re-sampling (from [KW07a]) 68

5.4 Turning Angle(θ) (from [KW07a]) . 70

5.5 An example . 71

6.1 A Web Interface for Streaming-Archival Translators 74

6.2 Output Window of Streaming-Archival Translators 75

6.3 Web-based Symbol Recognition Interface 78

x

Chapter 1

Introduction

1.1 Thesis Subject

Pen-based input methods provide intuitive and convenient ways to interact with com-

puter systems in various circumstances. For example, it is more convenient to input

mathematical formulas, musical notation or drawings in handwritten form using a

digital pen than with traditional keyboard-based input methods. There has been a

lot of work done in the area of pen-based computing such as handwriting recognition,

writer identification, ink messaging, electronic form filling, authentication and so on.

The easy availability of various pen-based devices such as Tablet PCs, PDAs and

Smartphones has created even more opportunities to be explored in this area.

In a pen-based application, the movement of a digital pen on the digitizer generates

digital ink which may contain various information including x and y coordinates,

time, pressure and orientation of the pen tip. The digital ink thus generated has

to be represented in some format so that it can be interpreted. Moreover, for easy

interoperability between the software packages it is very important that the digital ink

be stored in a standard and open format. Most of the existing pen-based applications

1

2

either use their own proprietary digital ink format or some of the popular, but limited,

digital ink formats such as UNIPEN [Guy94] and Jot [Cor93]. Since the nature of

pen-based applications is so diverse, it is also important that the digital ink format

capture various requirements and provide support for different operations such as

streaming, sharing digital ink, annotation and so on.

UNIPEN is very focused on handwriting recognition and therefore it may not be

suitable for other types of pen-based applications that require operations such as real-

time streaming of digital ink, sharing of digital ink and so on. Jot is a proprietary

format and it also doesn’t provide support for such operations. ISF (Ink Serialized

Form) [Mic04] is a binary digital ink format developed by Microsoft that is also

proprietary. Ink Markup Language (InkML) is an open standard digital ink for-

mat being developed under the W3C Multi-Modal Interaction Group and it provides

various features required by different pen-based applications. Being XML based, it

provides greater flexibility to application developers e.g. application-specific informa-

tion can be added easily to digital ink files. Besides several other benefits, it provides

support for streaming and sharing digital ink.

Pen-based application can be broadly categorized into streaming and archival

types. InkML provides support for both the types through two forms or styles of

markup called “streaming” and “archival ink”. Both of these are semantically equiv-

alent but each provides support for certain operations more directly. For example,

streaming style provides better support for streaming digital ink in an incremental

order with lower overhead for transmission and archival style provides better support

for operations such as search, retrieval, annotation and so on. Applications that op-

erate in both modes may benefit from conversion of digital ink from one format to

another. To the best of our knowledge, no such algorithms or tools exists to date. In

this thesis, we present algorithms to do such conversions. These are also used with

3

the digital ink sharing techniques, which we discuss later, to archive the shared ink

which is collected in streaming form.

Communication using digital ink is one of the most important applications of

pen-based technology. Whiteboard sharing, which allows several users to interact

and put digital ink on a shared canvas using pen-devices, is an ink-based communica-

tion method that can be very useful in several practical scenarios such as classroom

teaching, distance education, workgroup meeting, collaborative document annotation

and so on. Whiteboard sharing becomes more useful and interesting, but at the same

time more challenging, when the collaborative environment is heterogeneous. The

challenges stem not only from differences between operating systems and platforms

but also from the differences in characteristics of the pen and the display devices,

such as screen size, screen resolution, ink channels and so on. In this thesis, we

present various techniques for exchanging digital ink in heterogeneous collaborative

environments. We do an in depth analysis of each technique and compare them.

In order to provide support for doing mathematics using a digital pen in a col-

laborative inking environment, it is important to provide pen-based mathematical

user interfaces. A mathematical symbol recognizer is the core component of such

interfaces and is usually developed using machine learning algorithms. This requires

large amount of training data and also high processing capability. Therefore, it might

not be feasible to implement a full-fledged mathematical handwriting recognizer in

smaller resource constrained devices such as PDAs, Smartphones and so on. We

present the concept of a symbol recognition server and an InkML-based protocol to

allow communication between the recognition server and the clients for tasks such as

sending the recognition requests, receiving the results and so on. This when com-

bined with the whiteboard sharing, can provide a starting infrastructure for doing

mathematics in a collaborative environment.

4

1.2 Related Work

Digital ink formats other than InkML do not have the concepts of streaming and

archival forms and no algorithms or tools to do conversion between these two forms

of InkML exist till date. In this thesis, we present such conversion algorithms for the

first time.

Various whiteboard sharing applications have been developed in the past. How-

ever, interoperability was not the main focus in those systems. Tivoli [PMMH93] is

one of the most popular and earlier system developed by IBM for informal workgroup

meeting. The Learning Experience Project [BCH+04], an initiative of Microsoft

Research’s Learning Sciences and Technology group, explores collaborative learning

space by developing the ConferenceXP research platform. The platform provides a

whiteboard sharing feature which has been further explored by several educational

institutions: InkBoard [NWSS05], developed at MIT, is a collaborative sketching

application based on the ConferenceXP platform and designed for Tablet PCs which

enables design teams to interact with each other by using real-time strokes. The

ConferenceXP uses Microsoft’s proprietary Ink Serialized Format (ISF) [Mic04] for

streaming the digital ink and therefore, this limits its use to Windows environment

where ISF is natively supported.

A peer-to-peer collaboration technique using InkML has been discussed in [ASM08].

Both the clients taking part in the ink communication agree upon the common chan-

nels in an initialization phase. Once initialization is done, both starts sending ink to

each other in data transfer phase. This system however, does not support multi-party

ink communication.

XEP-0113 [FJe03], an extension protocol to XMPP [osc99], is one of the so-

lutions aimed at supporting interoperability across platforms and devices by using

5

SVG (Scalable Vector Graphics) to represent digital ink for ink messaging. How-

ever, it doesn’t provide support for other channels except x and y space.The RiverInk

Framework [NG07] proposes the use of a subset of InkML to represent ink for inter-

operability. It proposes sending digital ink in both InkML and PNG image format

for interoperability between heterogeneous devices (including both pen and non-pen

devices). The bulky nature of the data makes it less suitable for resource constrained

devices in mobile networks.

Lenaghan and Malyan propose XPEN, an XML-based format for distributed on-

line handwriting recognition [LM03], which is based on the UNIPEN format. In our

work, we use InkML to represent the ink traces and we also describe the InkML-

based protocol for communication between the recognition server and clients. We

show how most of the information can be put within the ink itself using annotation

XML. We also show how our technique provides support for creating a collaborative

environment for doing mathematics.

1.3 Thesis Organization

Chapter 2 introduces the various concepts of InkML that are required to understand

the work presented in later chapters. It discusses the semantics and use of different

InkML elements with examples. It also explains the concepts of the streaming and

archival form of InkML, the shared canvas concept and annotation.

Chapter 3 starts by discussing the need for streaming to archival and archival to

streaming conversions. It analyses the conversion problems and then presents the

conversion algorithms. It also discusses the optimization algorithm which can be

applied after streaming to archival conversion.

6

Chapter 4 presents different InkML-based techniques for sharing digital ink in

heterogeneous collaborative environments. We do in-depth analysis of each technique

and also compare them.

Chapter 5 discusses a framework for doing mathematics in a collaborative envi-

ronment. It presents various use-cases which should be fulfilled by an InkML-based

communication protocol for this task and then it shows how the protocol fulfills them.

It also describes the symbol recognition component which resides in the recognition

server.

Chapter 6 provides details about the implementation of the algorithms, techniques

and components discussed in Chapters 3, 4 and 5.

The thesis concludes with Chapter 7 by summarizing our work and by discussing

the future directions and possibilities.

Chapter 2

InkML Concepts

2.1 Introduction

This chapter introduces some of the concepts of InkML ([CFW06], [Wat07]) that are

needed to understand the work presented in later chapters.

The movement of a digital pen on the surface of a digitizer produces a sequence

of points containing values that describe the trajectory of the pen as the user writes.

In InkML, a continuous sequence of such values (from pen-down to pen-up or v ice-

versa) is represented by a <trace> element. Figure 2.1, taken from InkML speci-

fication [CFW06], shows an example of traces that contain X and Y values. The

rendered version of this digital ink (also taken from InkML specification) is shown in

Figure 2.2.

The points within a trace are separated by a commas and each coordinate within

a point is separated by white space(s). Each coordinate of the point in a trace can

be considered as a separate “channel” that provides values over time.

7

8

<ink>

<trace>

10 0, 9 14, 8 28, 7 42, 6 56, 6 70, 8 84, 8 98, 8 112, 9 126, 10 140,

13 154, 14 168, 17 182, 18 188, 23 174, 30 160, 38 147, 49 135,

58 124, 72 121, 77 135, 80 149, 82 163, 84 177, 87 191, 93 205

</trace>

<trace>

130 155, 144 159, 158 160, 170 154, 179 143, 179 129, 166 125,

152 128, 140 136, 131 149, 126 163, 124 177, 128 190, 137 200,

150 208, 163 210, 178 208, 192 201, 205 192, 214 180

</trace>

<trace>

227 50, 226 64, 225 78, 227 92, 228 106, 228 120, 229 134,

230 148, 234 162, 235 176, 238 190, 241 204

</trace>

<trace>

282 45, 281 59, 284 73, 285 87, 287 101, 288 115, 290 129,

291 143, 294 157, 294 171, 294 185, 296 199, 300 213

</trace>

<trace>

366 130, 359 143, 354 157, 349 171, 352 185, 359 197,

371 204, 385 205, 398 202, 408 191, 413 177, 413 163,

405 150, 392 143, 378 141, 365 150

</trace>

</ink>

Figure 2.1: Example of traces (from [CFW06])

9

id11434609 pdfM
achine by B

roadgun S
oftw

are - a great P
D

F
 w

riter! - a great P
D

F
 creator! - http://w

w
w

.pdfm
achine.com

 http://w
w

w
.broadgun.com

Figure 2.2: Traces in rendered form (from [CFW06])

2.2 Trace Format

In general, an ink source can have several channels (eg. X, Y, Force) associated with

it and an ordered sequence of such channels is known as the “trace format” of the ink

source. Such channels can be “regular” (always appearing) or “intermittent” (may or

may not appear). In InkML, a trace format is represented by <traceFormat> and it

can have multiple <channel> elements and optional <intermittentChannel> elements

as children. The order of <channel> and <intermittentChannel> inside <traceFormat>

defines the order of channel values of a point inside <trace>. For example, in a trace

format definition, if channel X appears first and it is followed by channel Y then an

InkML interpreter would interpret the first value of a point in a trace to be X and

the second value to be Y .

10

2.2.1 Channel

In InkML, a channel is represented by <channel> element and may have several at-

tributes that can be used to set properties of the channel. Some of these attributes

which we shall use to describe our work are listed in Table 2.1.

Attribute Name Meaning
name Name of the channel (e.g. X, Y)
type The data type of the point values for this channel

(e.g. integer or boolean)
min The lower boundary for the values of this channel
max The upper boundary for the values of this channel

Table 2.1: Channel Attributes (from [CFW06])

The required attribute name specifies the interpretation of the channel in the

trace data and InkML provides some reserved channel names which are listed below

in Table 2.2.

An intermittent channel, represented by <intermittentChannel>, can enclose one

or more <channel> elements as children. It lists those channels whose value may

optionally be recorded for each sample point. For example, channel side button

states(Bi) could be used as intermittent channels (value may be recorded only when

the button is pressed).

2.2.2 Channel Properties

Channel properties are used to represent the properties of the channels of a trace

format. In InkML, they are represented by <channelProperties> and it can enclose

multiple <channelProperty>s as children. A channel element can have the attributes

channel (channel name), name (name of the property of device or ink source), value

(value of named property) and units (units used for value). A channel property

declaration sets the value of a particular property name of a channel channel to value.

11

Channel Name Dimension Meaning
X length X coordinate.
Y length Y coordinate.
Z length Z coordinate. Height of the pen position

above writing surface.
F force pen tip force.
S tip switch state (touching/not touching

the writing surface).
B1 ... Bn side button states.
OTx angle tilt along the x-axis.
OTy angle tilt along the y-axis.
OTz angle tilt along the z-axis.
OA angle azimuth angle of the pen (yaw).
OE angle elevation angle of the pen (pitch).
OR angle rotation (rotation about pen axis).
C color value (device-specific encoding).
CR, CG, CB color values (Red/Green/Blue).
CC, CM, CY, CK color values (Cyan/Magenta/Yellow/Black).
W length stroke width (orthogonal to stroke).
T time time (of the sample point).

Table 2.2: Reserved Channel Names in InkML (from [CFW06])

InkML specification provides a list of reserved property names, resolution being one

of them. Resolution may be expressed as fractions of unit, eg. 1/2000 in (inches),

0.5 mm or it may be expressed in inverse units eg. 1500 points per inch. Figure 2.3

shows an example of channel properties.

<channelProperties>

<channelProperty channel = "X" name = "resolution" value = "0.01"

units="mm"/>

<channelProperty channel = "Y" name = "resolution" value = "100"

units = "1/mm"/>

</channelProperties>

Figure 2.3: An Example of Channel Properties

12

2.3 Trace and Trace Group

A trace, represented by <trace>, is a sequence of sampled points that represent the

trajectory of the pen tip as user writes. The values of each point of a trace are recorded

according to the format specified by the trace format of the ink source. InkML has the

notion of the “current context” (discussed later in Section 2.5) and the trace format

of a trace is either determined implicitly by the <traceFormat> associated with the

current context. Alternatively, a trace can make an explicit reference to a context

(through a contextRef attribute) and the trace format associated with that context

becomes the current trace format. Figure 2.4 shows an example of a trace whose

trace format contains channels X, Y and F .

...

<context>

<traceFormat>

<channel name="X" min="0" max="2034"/>

<channel name="Y" min="0" max="2034"/>

<channel name="F" min="0" max="255"/>

</traceFormat>

</context>

<trace> 1000 1003 200, 1003 1007 198, 1004 1022 176, ... </trace>

...

Figure 2.4: An Example of Trace

The point values can also be recorded in terms of velocity (using ’ as a prefix)

or acceleration (using ” as prefix). This helps to reduce the size of the data. For

example, the trace data in Figure 2.4 can be equivalently represented as shown in

Figure 2.5.

A group of traces can be enclosed within a <traceGroup> element. This can be

useful for example to logically group multiple traces. A trace group can also contain

multiple trace groups and this allows to group ink data in a more flexible way. An

13

...

<context>

<traceFormat>

<channel name="X" min="0" max="2034"/>

<channel name="Y" min="0" max="2034"/>

<channel name="F" min="0" max="255"/>

</traceFormat>

</context>

<trace> 1000 13 200, ’3 ’4 ’-2, ’1 ’15 ’-22, ... </trace>

...

Figure 2.5: An Example of Trace using Velocity

example of <traceGroup> is shown in Figure 2.4.

...

<traceGroup xml:id=’eqn1’>

<traceGroup xml:id=’sym1’>

<trace>...</trace>

<trace>...</trace>

</traceGroup>

<traceGroup xml:id=’sym2’>

<trace>...</trace>

<trace>...</trace>

<trace>...</trace>

</traceGroup>

</traceGroup>

...

Figure 2.6: An Example of Trace Group

2.4 Ink Source

An ink source (<inkSource>) allows one to represent various specifications of a hard-

ware device (digitizer) such as model, manufacturer, trace format, sample rate, ac-

tive area and channel properties. Manufacturer and model are specified through

manufacturer and model attributes of <inkSource> whereas trace format and channel

14

properties are specified by making <traceFormat> and <channelProperties> direct

children to <inkSource>. An example of ink source is shown in Figure 2.7.

<inkSource xml:id = "tabletxyz"

manufacturer = "xyz.com"

model = "XYZTab 2000 USB"

specificationRef="http://www.xyz.com/xyz-tab/2000usb.html">

<traceFormat href="#tf1"/>

<sampleRate uniform="True" value="200"/>

<activeArea size="A6" height="100" width="130" units="mm"/>

<srcProperty name="weight" value="100" units="g"/>

<channelProperties>

<resolution channel="X" value="5500" units="1/in"/>

<resolution channel="Y" value="5500" units="1/in"/>

<resolution channel="F" value="522" units="dev"/>

</channelProperties>

</inkSource>

Figure 2.7: An Example of InkSource

2.5 Context

In InkML, various details about the context in which the ink is recorded is ex-

pressed through <context> element. A context has different aspects: <traceFormat>,

<inkSource>, <brush>, <timestamp>, <canvas> and <canvasTransform>. These aspects

can appear as a direct child to <context> or these can be referenced through corre-

sponding referencing attributes of <context> (eg. brushRef).

InkML has the concept of “current context” which is the context at any particular

instant of time. Current context can change due to an event such as a change in brush.

15

A new <context> element can alter the current context by overriding the current

values of aspects with the new ones. To allow reusability, it is allowed to reference a

previously defined context from a new <context> through contextRef attribute. In

such cases, all the aspects from previous context are inherited and the new aspects

overrides the inherited aspects.

<context xml:id="context1" brushRef="#penA" traceFormatRef="#format1"

canvasRef="#can1"/>

...

<context xml:id="context2" contextRef="#context1" brushRef="#penB"/>

Figure 2.8: An Example Showing Context Reference

For example, in the InkML snippet shown in Figure 2.8, context2 inherits all

the aspects of context1 through contextRef. However, it points to a separate brush

penB and therefore penB overrides penA. This is similar to the concepts of overriding

and inheritance in object oriented paradigm. This concept has been illustrated in

Figure 2.9.

2.6 Shared Canvas

InkML provides built-in support for applications that require sharing of digital ink

coming from different ink sources by means of the <canvas> and <canvasTransform>

elements, both aspects of current context. A canvas has an associated trace format

specified either as a child element or referred to by its traceFormatRef attribute.

In a collaborative environment, all the ink sources should agree upon a common

canvas i.e. current context of each sender (ink source) should point to the shared

canvas. The <canvasTransform> element can specify two child elements known as

the forward canvas transform and the inverse canvas transform. In the whiteboard

16

context2

canvasRef = "#can1"
canvasTransformRef = ""
traceFormatRef = #format1"
inkSourceRef = ""
brushRef = "#penA"
timeStampRef = ""

timeStampRef = ""
brushRef = "#penB"
inkSourceRef = ""
traceFormatRef = #format1"
canvasTransformRef = ""
canvasRef = "#can1"
contextRef = "#context1"

context1

contextRef = ""

Figure 2.9: Inheritance and Overriding of Context through Reference ([KW07b])

sharing scenario, a forward canvas transform contains the mapping information re-

quired to map the ink data from an ink source trace format to the canvas trace

format, and an inverse canvas transform contains information about the inverse map-

ping. If the inverse canvas transform is not specified and the invertible attribute

of <canvasTransform> is true, it implies that the forward mapping is invertible i.e.

the inverse canvas transform can be determined automatically. Each ink source par-

ticipating in the ink communication can establish its current canvas transform by

17

sending out a <canvasTransform> element. Figure 2.10 shows an example of shared

canvas (CT denotes forward canvas transform and iCT denotes the inverse).
id1211659046 pdfM

achine by B
roadgun S

oftw
are - a great P

D
F

 w
riter! - a great P

D
F

 creator! - http://w
w

w
.pdfm

achine.com
 http://w

w
w

.broadgun.com

Figure 2.10: An Example of Shared Canvas (from [KMA+08])

2.7 Annotation

InkML allows arbitrary textual and XML-based annotation of digital ink in an easy

way and these allow to attach semantics to the digital ink. Simple textual descriptions

in the ink markup can be inserted using <annotation> elements. The category of

textual annotation is expressed by setting attribute type to the predefined values in

InkML or it can also be application defined. An example of textual annotation is

shown in Figure 2.11.

XML-based annotation can be done using <annotationXML> elements. This pro-

vides greater flexibility as it allows arbitrary XML (eg. MathML, RDF, XHTML)

to annotate the digital ink to provide richer semantics. Figure 2.12 illustrates an

example where XML-based annotation is used to express the bounding box of a trace

using XML.

18

<traceGroup xml:id="tg1">

<annotation type="truth">Hello</annotation>

<trace> ... </trace>

...

</traceGroup>

Figure 2.11: An Example of Textual Annotation

<traceGroup xml:id="tg1">

<annotationXML>

<boundingBox>

<x>100</x>

<y>200</y>

<width>1200</width>

<height>3200</height>

</boundingBox>

</annotationXML>

<trace> ... </trace> ...

</traceGroup>

Figure 2.12: An Example of XML-based Annotation

2.8 Definitions

Reusable contents such as brush, canvas, canvas transform, context, ink source , trace

format, trace and others can be defined in the <definitions> section of InkML. This

section usually appears at the beginning of the ink markup and the elements defined

within it have a unique id so that they can be later referenced from outside. Such

definitions do not alter or establish any context and these are only for the purpose

of reuse. This may not be used heavily in streaming applications as the contextual

elements and traces may not be known in advance but it can be very useful for archival

applications. We discuss the two styles of InkML (streaming and archival) and use

of definition in archival form in following Section 2.9.

19

2.9 Streaming and Archival Styles

Pen-based applications can be broadly classified into streaming and archival types.

A streaming application sends/receives digital ink to/from another streaming appli-

cation. An example of such applications is shown in Figure 2.13. On the other

hand, an archival application deals with storage of digital ink for future retrieval and

processing. Figure 2.14 shows an example of such application.

id92516953 pdfM
achine by B

roadgun S
oftw

are - a great P
D

F
 w

riter! - a great P
D

F
 creator! - http://w

w
w

.pdfm
achine.com

 http://w
w

w
.broadgun.com

Figure 2.13: Streaming Applications (from [KW07b])

InkML provides support for both types of applications through the notion of two

styles of ink markup: streaming and archival. These are semantically equivalently

but each provides direct support for certain operations. For example archival style

provides more direct support for operations such as search, retrieval, annotation and

so on and streaming style provides support for transmission of digital ink in an in-

cremental order resulting in lower overhead for transmission.

20

id1366334656 pdfM
achine by B

roadgun S
oftw

are - a great P
D

F
 w

riter! - a great P
D

F
 creator! - http://w

w
w

.pdfm
achine.com

 http://w
w

w
.broadgun.com

Figure 2.14: Archival Application (from [CFW06])

2.9.1 Streaming Style

Streaming style can be used in a scenario where an application transmits the dig-

ital ink to another application (or sometimes to itself). This style is based on

the concept of current context which is the context associated with the ink be-

ing generated at a particular instance of time. The current context has various

aspects such as <inkSource>, <traceFormat>, <brush>, <timestamp>, <canvas> and

<canvasTransform>. Initially, all of these contextual element has a default value (De-

fault Context) and these values can be altered by sending a <context> element. An

event that occurs in the sender application (eg. change in brush) can be directly

mapped to one of the relevant contextual elements. Ink data may be sent after its

context has been established. Thus, stream of ink data interspersed with contextual

elements may be transmitted in an incremental order.

21

With this model, each receiver can easily maintain the current context of the

sender. Whenever a new contextual element is seen, its values suitably modify (or

override, as appropriate) the old values. Contextual elements are sent only when there

is a change in context and this helps to reduce the data on the wire. For instance,

if the current brush’s color is red and a red trace is scribbled then it is sufficient to

only send the trace and not the brush color information, as the receiver can know

the sender’s current brush color from the current context it maintains. This idea has

been illustrated in Figure 2.15 (trace “t4” is sent without any brush information).

id1355346500 pdfM
achine by B

roadgun S
oftw

are - a great P
D

F
 w

riter! - a great P
D

F
 creator! - http://w

w
w

.pdfm
achine.com

 http://w
w

w
.broadgun.com

Figure 2.15: An example of Streaming Style InkML (from [KMA+08])

2.9.2 Archival Style

In archival style, all the contextual elements such as <traceFormat>, <inkSource>,

<brush>, <timestamp>, <canvas>, <canvasTransform> and <context> are defined within

<definitions> section. Traces and trace groups make direct references to these con-

22

textual elements from outside the <definitions> to establish their context. Such

structure helps to know the context information directly from the <definitions>

alone. Thus, it directly supports the search and retrieval operations by saving time

which is important for archival applications. An example of archival style is shown

in Figure 2.16.

id1381197546 pdfM
achine by B

roadgun S
oftw

are - a great P
D

F
 w

riter! - a great P
D

F
 creator! - http://w

w
w

.pdfm
achine.com

 http://w
w

w
.broadgun.com

Figure 2.16: An Example of Archival Style InkML

Chapter 3

Streaming-Archival Conversion

Techniques

In this chapter we highlight the importance of streaming-archival conversion, discuss

the nature of the conversion problem and then provide algorithms for doing these

conversions. This chapter is based on our paper [KW07b] published in the proceedings

of the International Conference on Document Analysis and Recognition, 2007.

3.1 Need for Conversion

Since streaming style InkML provides direct support for streaming digital ink, pen-

based applications that require ink to be sent and received from other applications

as it is generated will use the streaming style of InkML to exchange digital ink. The

feature to save the digital ink collected from various ink sources for future retrieval and

processing can increase the usefulness of such pen-based applications. For example,

saving an ink chat session or a collaborative design session can be very useful for

later use. The structure of the ink markup in the archived form should facilitate

23

24

operations such as search, retrieval, annotation and so on. Streaming style doesn’t

provide support for such operations. Therefore, it may not be efficient to save the

digital ink in the same form as it was generated and received. Archival style provides

better support for such operations. Hence, conversion from streaming to archival

style is very important in such situation.

The ability to stream the digital ink archived in the past can be another impor-

tant feature of a pen-based application. The streaming can occur within the same

application or between two separate applications on different machines/devices that

are able to communicate with each other. For example, it can be very useful if an

ink chat application can play an ink chat session from an archived form that was

saved in the past. Similarly, it can also be useful if an application can stream an

ink conversation in archival form saved in the past to another application on differ-

ent machine. Since streaming style provides mechanism to directly map events to

contextual elements, it is more suitable for the ink interpreter in the receiver appli-

cation. Therefore, conversion from archival to streaming form can be very useful in

such scenarios.

3.2 Conversion Problem

Both streaming and archival styles of InkML carry exactly the same information.

However, the organization of the InkML primitives within the two structures are

different. Hence, they impose different requirements for markup processor and gen-

erators and give different computational complexities for certain operations. In a

streaming form, contextual elements appear in-line to the ink data and contextual

elements can make references to previously appearing contextual elements resulting

in a very complex chain of references. In order to find the current context at a par-

25

ticular point in the markup, the previously occurring chain of references has to be

resolved.

In archival form, all the contextual markups are enclosed within <definitions>

section. Each trace/trace group can make explicit reference to the contextual elements

defined in this section to establish its context. Such structure allows the context of a

trace/trace group to be known directly from <definitions> section.

The conversion problem is to transform a streaming structure to archival structure

and vice versa without any loss of information in efficient ways (Figure 3.1). In an

abstract way, the transformation problem can be seen as rearrangement and update

of the InkML primitives by preserving the semantics.

id2260671 pdfM
achine by B

roadgun S
oftw

are - a great P
D

F
 w

riter! - a great P
D

F
 creator! - http://w

w
w

.pdfm
achine.com

 http://w
w

w
.broadgun.com

Figure 3.1: Streaming (left) and Archival (right) Ink Markup Structure Conversion
(from [KW07b])

26

3.3 Streaming to Archival Conversion

The central idea behind streaming to archival conversion is to resolve the context of

each trace in the markup. These contextual elements are then put in the <definitions>

section and all the traces that share the same context are grouped using <traceGroup>.

Each <traceGroup> points to its context defined in <definitions> section through its

contextRef attribute.

A detailed overview of the algorithm is presented in activity diagram shown in

Figure 3.2. An XML parser is used to parse the ink markup and obtain a DOM (Doc-

ument Object Model) [Gro] tree. All the elements defined within a <definitions>

section are saved for later use. We will call it oldDef. The XML elements in the DOM

tree is scanned sequentially and in order to keep track of the different aspects of the

current context of each trace in the markup a data structure with fields id, brush,

traceFormat, inkSource, canvas, canvasTransform and timestamp is maintained.

Whenever a <context> element is encountered, a test is made to check whether

the changes due to this element results in the same context as current context or

different. If the changes results in the same context as current context then it is

simply ignored. Otherwise, the current value of id is saved in a temporary variable

(let’s call it tempID) and the aspects of the current context are updated. The field

id is set to the value of property id of the <context> if present, otherwise an id

of the form “contextgN” is automatically generated by the algorithm, where ’N’

is an integer that starts from 1 and gets incremented by one each time a new id

is generated. A new context element with its id set to id and contextRef set to

tempID (if <context> doesn’t have this attribute already set) is created and put in

the <definitions> section. Contextual elements (eg. <brush>, <traceFormat> and

so on) that are enclosed within <context> are also put in the definition. All traces

27

Encapsulate trace within <traceGroup> element and
make referene to current context and brush

has ID

Generate new ID for all context

current context

Output Archival InkML

New definitions = old definitions + generated contexts

Determine current context and brush for each trace

Save all <context> that

Save old <definitions>

Input Streaming InkML

changes except brush and update

Figure 3.2: Streaming to Archival Translation (from [KW07b])

28

sharing same context are grouped together by enclosing them within a <traceGroup>

and its contextRef attribute points to the newly created context in definition section.

Since <traceGroup> has an attribute brushRef, if the context change is only the brush

change then no new context is put in the definition section. The brushRef property of

<traceGroup> points to the appropriate brush and contextRef attribute points to the

id of the current context. Finally, the oldDef is merged with the existing definitions

in the <definitions> section.

Figure 3.3 shows an example of streaming markup input to the conversion algo-

rithm and Figure 3.4 shows its transformed archival form.

3.4 Optimization

As the context changes over a period of time, the context at a particular point of

time can happen to be the same as the context at any previous time. Therefore,

during transformation of InkML structure from streaming to archival form, there are

possibilities of duplicate context ids being generated. Although this doesn’t have

any effect on the semantics, it does increase the size of the archival ink. A situation

where duplicate context ids can be generated is shown in Figure 3.5. The conversion

algorithm (previous section) will generate an id for each context change. The two

contexts C1 and C4, shown in the Figure 3.5, happen to be the same (since both

have ‘t1’ as trace format and ‘b1’ as brush). Therefore, C4 should be removed from

the definition section and all the references to C4 should be updated to C1. This can

help to reduce the size of the markup.

In a collaborative inking scenario, if digital ink is collected from different ink

sources then each ink source may change the context to its current context before

sending its ink data even if its context is not changed, so that the receiver knows

29

<ink>

<definitions>

<brush xml:id=’penA’/>

<canvas xml:id=’can1’>...</canvas>

<canvas xml:id=’can2’>...</canvas>

<canvasTransform xml:id=’trans1’>...</canvasTransform>

<traceFormat xml:id=’format1’>...</traceFormat>

</definitions>

...

<context xml:id=’c1’ canvasRef= ’#can1’

canvasTransformRef=’#trans1’ traceFormatRef=’#format1’/>

<trace>...</trace>

<context><traceFormat xml:id=’format2’>...</traceFormat></context>

<trace>...</trace>

<context canvasRef=’#can2’/>

<trace>...</trace>

<context canvasRef=’#can1’/>

<trace>...</trace>

<context brushRef=’#penA’/>

<trace>...</trace>

<context traceFormatRef=’#format1’/>

<trace>...</trace>

<trace>...</trace>

</ink>

Figure 3.3: A Streaming Style Markup (Input)

30

<ink>

<definitions>

<brush xml:id=’penA’/>

<canvas xml:id=’can1’>...</canvas>

<canvas xml:id=’can2’>...</canvas>

<canvasTransform xml:id=’trans1’>...</canvasTransform>

<traceFormat xml:id=’format1’>...</traceFormat>

<traceFormat xml:id=’format2’>...</traceFormat>

<context xml:id=’c1’ canvasRef= ’#can1’

canvasTransformRef=’#trans1’ traceFormatRef=’#format1’/>

<context xml:id=’contextg1’ contextRef=’#c1’

traceFormatRef="#format2"/>

<context xml:id=’contextg2’ contextRef=’#contextg1’

canvasRef=’#can2’/>

<context xml:id=’contextg3’ contextRef=’#contextg2’

canvasRef=’#can1’/>

<context xml:id=’contextg4’ contextRef=’#contextg3’

traceFormatRef=’#format1’/>

</definitions>

...

<traceGroup contextRef=’#c1’>

<trace>...</trace>

</traceGroup>

<traceGroup contextRef=’#contextg1’>

<trace>...</trace>

</traceGroup>

<traceGroup contextRef=’#contextg2’>

<trace>...</trace>

</traceGroup>

<traceGroup contextRef=’#contextg3’>

<trace>...</trace>

</traceGroup>

<traceGroup contextRef=’#contextg3’ brushRef=’#penA’>

<trace>...</trace>

<trace>...</trace>

</traceGroup>

<traceGroup contextRef=’#contextg4’>

<trace>...</trace>

</traceGroup>

</ink>

Figure 3.4: An Archival Style Markup (Output)

31

duplicate!

<trace> ... </trace>

 <context traceFormatRef="#t2"/>

<trace> ... </trace>

<trace> ... </trace>

C1

C2

C3

C4

CONTEXT IDs

(C1)

<context traceFormatRef="#t1" brushRef="#b1"/>

<context traceFormatRef="#t1" brushRef="#b2"/>

 <context brushRef="#b1"/>

Figure 3.5: An Example of Duplicate Context (from [KW07b])

where the ink is coming from. In such situation, the chances of getting duplicate

context ids generated can be high and hence, optimization can be very beneficial.

The output of the conversion algorithm presented in previous section can be fur-

ther optimized using the technique shown in Figure 3.6. The optimization algorithm

basically scans all the contexts in the <definitions> section and detects those that

are duplicates. Two vectors: vect and duplicateVect are used to store the origi-

nal and duplicate vectors respectively and these are initially empty. A data structure

called currentContext with fields traceFormat, inkSource, brush, canvas, canvasTrans-

form, timestamp and original is maintained to keep track of the current context as

<context> elements are being scanned. The field original is used to store the refer-

ence to the original context when the context itself is a duplicate. Whenever a new

context is found, a test is made to check whether it is already present in vect vector or

not. Comparison is done by comparing the absolute values of each aspects of the two

32

contexts. If the test fails then it is appended to vect. Otherwise, the original field

of current context is set to the id of the context in vect and the context is appended

to duplicateVect. The process continues until all the <context>s have been processed.

In the end, all the duplicate contexts and their corresponding originals is found in

duplicateVect. These are removed from the definitions and all the references made

to these contexts from outside of definitions are replaced by the id of the original

context.

In Figure 3.4, a closer observation at the result obtained by applying streaming to

archival technique reveals that the context contextg4 generated during the conversion

is a duplicate of context c1. The application of optimization algorithm on this output

produces the optimized version which is shown in Figure 3.7. In this output, the

duplicate context has been removed and all the references to it has been replaced by

the id of original context (c1).

3.5 An Alternate Approach to Streaming to Archival

Conversion

The streaming to archival conversion algorithm described in the Section 3.3 pre-

serves the chain of context references within <definitions> section in the archival

form. This might be useful for some applications to know how the contexts were

changed. An alternative approach to streaming to archival conversion is to resolve

all the aspects of the context of each trace group and make direct references to the

aspects (brush, trace format, canvas, canvas transform, time stamp and ink source)

and not to other contexts, thus, removing the chain of references. Although this

removes the information about how different contexts were inherited, this approach

33

Input Archival Ink

vect = createVector()
Traverse <definitions>

duplicateVect = createVector()

duplicateVect.add(currentContext)
currentContext.original = original
remove this <context> from <definitions>

vect.add(currentContext)

Output Optimized Archival InkML

[no more <context>]

[more <context>]

[’vect’ has ’currentContext’]

[’vect’ doesn’t have ’currentContext’]

Find absolute values of different aspects of current context
currentContext = createCurrentContext(...)

Replace duplicate context IDs with originals
using ‘duplicateVect’
Update references to these contexts

Figure 3.6: Optimization of Archival Ink (from [KW07b])

34

<ink>

<definitions>

<brush xml:id=’penA’/>

<canvas xml:id=’can1’>...</canvas>

<canvas xml:id=’can2’>...</canvas>

<canvasTransform xml:id=’trans1’>...</canvasTransform>

<traceFormat xml:id=’format1’>...</traceFormat>

<traceFormat xml:id=’format2’>...</traceFormat>

<context xml:id=’c1’ canvasRef= ’#can1’

canvasTransformRef=’#trans1’ traceFormatRef=’#format1’/>

<context xml:id=’contextg1’ contextRef=’#c1’

traceFormatRef="#format2"/>

<context xml:id=’contextg2’ contextRef=’#contextg1’

canvasRef=’#can2’/>

<context xml:id=’contextg3’ contextRef=’#contextg2’

canvasRef=’#can1’/>

</definitions>

...

<traceGroup contextRef=’#c1’>

<trace>...</trace>

</traceGroup>

<traceGroup contextRef=’#contextg1’>

<trace>...</trace>

</traceGroup>

<traceGroup contextRef=’#contextg2’>

<trace>...</trace>

</traceGroup>

<traceGroup contextRef=’#contextg3’>

<trace>...</trace>

</traceGroup>

<traceGroup contextRef=’#contextg3’ brushRef=’#penA’>

<trace>...</trace>

<trace>...</trace>

</traceGroup>

<traceGroup contextRef=’#c1’>

<trace>...</trace>

</traceGroup>

</ink>

Figure 3.7: Optimized Archival InkML

35

may be more beneficial when speed is of higher priority and the application doesn’t

need the information about how context changes happened. This may save time as

the different aspects of the context of a trace group can be known directly.

The algorithm to do such conversion is very much similar to the earlier streaming

to archival conversion algorithm (Section 3.3). A new <context> generated in the

earlier algorithm would not make a reference to another context, instead, it would

make references to different aspects defined in the <definitions> using the corre-

sponding referencing attributes such as traceFormatRef, canvasRef and so on. These

aspects can be determined from different fields that are used to keep track of different

aspects of the current context. A Result of applying such technique to the streaming

InkML shown in Figure 3.3 is shown in Figure 3.8.

The same optimization algorithm discussed in Section 3.4 can be applied to the

result shown in Figure 3.8 and this produces the output shown in Figure 3.9.

3.6 Archival to Streaming Conversion

For the conversion from archival to streaming form, it is required to capture the events

(eg. change in brush) and reflect them in the markup in-line to the trace outside the

<definitions>. A technique to do such conversion is shown in Figure 3.10.

The first step in the conversion process is to remove all the <context> definitions

in the <definitions> section from the DOM tree and save it temporarily. A data

structure similar to the one used in previous techniques is used to keep track of the cur-

rent context. This data structure has these fields: id, brush, traceFormat, inkSource,

canvas, canvasTransform and timestamp. Each <traceGroup> element outside the

<definitions> is processed one by one. The contextRef attribute of a <traceGroup>

is used to determine its context and then it is compared with the current context.

36

<ink>

<definitions>

<brush xml:id=’penA’/>

<canvas xml:id=’can1’>...</canvas>

<canvas xml:id=’can2’>...</canvas>

<canvasTransform xml:id=’trans1’>...</canvasTransform>

<traceFormat xml:id=’format1’>...</traceFormat>

<traceFormat xml:id=’format2’>...</traceFormat>

<context xml:id=’c1’ canvasRef= ’#can1’

canvasTransformRef=’#trans1’ traceFormatRef=’#format1’/>

<context xml:id=’contextg1’ canvasRef=’#can1’

canvasTransformRef=’#trans1’ traceFormatRef="#format2"/>

<context xml:id=’contextg2’ canvasRef=’#can2’

canvasTransformRef=’#trans1’ traceFormatRef="#format2"/>

<context xml:id=’contextg3’ canvasRef=’#can1’

canvasTransformRef=’#trans1’ traceFormatRef="#format2"/>

<context xml:id=’contextg4’ canvasRef= ’#can1’

canvasTransformRef=’#trans1’ traceFormatRef=’#format1’/>

</definitions>

...

<traceGroup contextRef=’#c1’>

<trace>...</trace>

</traceGroup>

<traceGroup contextRef=’#contextg1’>

<trace>...</trace>

</traceGroup>

<traceGroup contextRef=’#contextg2’>

<trace>...</trace>

</traceGroup>

<traceGroup contextRef=’#contextg3’>

<trace>...</trace>

</traceGroup>

<traceGroup contextRef=’#contextg3’ brushRef=’#penA’>

<trace>...</trace>

<trace>...</trace>

</traceGroup>

<traceGroup contextRef=’#contextg4’>

<trace>...</trace>

</traceGroup>

</ink>

Figure 3.8: Result of Applying Alternate Approach

37

<ink>

<definitions>

<brush xml:id=’penA’/>

<canvas xml:id=’can1’>...</canvas>

<canvas xml:id=’can2’>...</canvas>

<canvasTransform xml:id=’trans1’>...</canvasTransform>

<traceFormat xml:id=’format1’>...</traceFormat>

<traceFormat xml:id=’format2’>...</traceFormat>

<context xml:id=’c1’ canvasRef= ’#can1’

canvasTransformRef=’#trans1’ traceFormatRef=’#format1’/>

<context xml:id=’contextg1’ canvasRef=’#can1’

canvasTransformRef=’#trans1’ traceFormatRef="#format2"/>

<context xml:id=’contextg2’ canvasRef=’#can2’

canvasTransformRef=’#trans1’ traceFormatRef="#format2"/>

<context xml:id=’contextg3’ canvasRef=’#can1’

canvasTransformRef=’#trans1’ traceFormatRef="#format2"/>

</definitions>

...

<traceGroup contextRef=’#c1’>

<trace>...</trace>

</traceGroup>

<traceGroup contextRef=’#contextg1’>

<trace>...</trace>

</traceGroup>

<traceGroup contextRef=’#contextg2’>

<trace>...</trace>

</traceGroup>

<traceGroup contextRef=’#contextg3’>

<trace>...</trace>

</traceGroup>

<traceGroup contextRef=’#contextg3’ brushRef=’#penA’>

<trace>...</trace>

<trace>...</trace>

</traceGroup>

<traceGroup contextRef=’#c1’>

<trace>...</trace>

</traceGroup>

</ink>

Figure 3.9: Result of Applying Alternate Approach and Optimization

38

No action is taken if both are same. Otherwise, their difference is found using the

following formula:

D = C1− C2

Di =

 Ci if C1i 6= C2i

empty Otherwise

where D is the difference between two contexts C1 and C2 and Xi denotes the ith

aspect of context X. The difference between the contexts is used to reflect the change

in event using a <context> element and it is put in-line to the <trace> or <traceGroup>

element. The current context is updated to the context of the <traceGroup>. Traces

that are enclosed within a <traceGroup> with InkML annotations in the archival ink

are encapsulated within the same <traceGroup> with contextRef attribute removed.

In the absence of annotation, <traceGroup>s are removed. Stream of digital ink is

output after each <traceGroup> is processed. Thus, streaming InkML is generated

iteratively (digital ink sharing the same context is generated in each iteration).

Figure 3.11 shows the result of applying archival to streaming technique on the

archival sample shown in Figure 3.4.

39

(incremental order)

Write <trace> encapsulated by <traceGroup>

(if necessary) and output generated InkML

Input Archival InkML

[more <traceGroup>]

[no more <traceGroup>]

Use "contextChanges" info to update the current context
Encapsulate contextual elements within <context>

c1 = contextof(traceGroup)
c2 = c1.contextRef
contextChanges = diff(c2,c1)

Extract <traceGroup> elements

Remove <context> elements
from <definitions>

 (Reflects event)

Figure 3.10: Archival to Streaming Translation (from [KW07b])

40

<ink>

<definitions>

<brush xml:id=’penA’/>

<canvas xml:id=’can1’>...</canvas>

<canvas xml:id=’can2’>...</canvas>

<canvasTransform xml:id=’trans1’>...</canvasTransform>

<traceFormat xml:id=’format1’>...</traceFormat>

<traceFormat xml:id=’format2’>...</traceFormat>

</definitions>

...

<context canvasRef= ’#can1’

canvasTransformRef=’#trans1’ traceFormatRef=’#format1’/>

<trace>...</trace>

<context traceFormatRef=’#format2’/>

<trace>...</trace>

<context canvasRef=’#can2’/>

<trace>...</trace>

<context canvasRef=’#can1’/>

<trace>...</trace>

<context brushRef=’#penA’/>

<trace>...</trace>

<context traceFormatRef=’#format1’/>

<trace>...</trace>

<trace>...</trace>

</ink>

Figure 3.11: A Streaming Style Markup (Output)

Chapter 4

Techniques for Sharing Digital Ink

In this chapter we discuss different InkML-based schemes that allow to share digital

ink in heterogeneous collaborative environments. We analyze each technique and

compare them. Part of this work was done at HP Labs at Bangalore, India during

a summer internship under the supervision of Dr. Sriganesh Madhvanath and is the

basis of an article which is to appear in the International Conference on Frontiers in

Handwriting Recognition (ICFHR), 2008 ([KMA+08]).

4.1 Using Shared Canvas

To allow multiple clients (ink sources) share digital ink, there should be some method

that allows the conversion of digital ink from each source’s trace format to each

target’s trace format. This is achieved using the <canvas> and <canvasTransform>

elements discussed in Chapter 2. The element <canvas> provides a shared virtual

space for cooperation of ink applications. The main advantage of such an intermediate

representation is that only (m+n) conversions are required to convert from m sources

to n targets instead of (m ∗ n), as illustrated in Figure 4.1.

41

42

id1616216859 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

Figure 4.1: Sharing ink with shared canvas(upper) and without it(lower)

The conversion of digital ink from a source trace format to target trace format

involves two steps: (i) convert the digital ink from source trace format to shared

canvas trace format using forward canvas transform of the source and (ii) convert

the digital ink in shared canvas trace format to the target trace format using inverse

canvas transform of the target. For example, in Figure 2.10, in order to convert the

digital ink from device1’s trace format to device2’s trace format, we can apply CT1

first and then iCT2 to the ink data.

From an implementation standpoint, InkML provides greater flexibility in the

sense that the canvas transformations (forward and inverse) can be applied at dif-

ferent locations (client or server) depending upon the requirements. In the following

43

subsections, we discuss different possible schemes and highlight their advantages and

disadvantages. Depending on the location at which the transformations are applied,

we may categorize these schemes as (i) client-oriented (ii) server-oriented and (iii)

hybrid. In all these schemes, we assume that there are several clients participating

in the ink communication coordinated by a central server, and all communication is

always via the server (Figure 4.2). Also, the choice of the trace format of the shared

canvas is application dependent.

Server

client N

client 4
client 3

client 2

client 1

. . .

. . .
Figure 4.2: Collaborative Environment

4.2 Client-oriented Schemes

In this scheme, each client is responsible for keeping a record of information (trace

format and canvas transform) about other clients which is required to compute trans-

formations and also for applying the transformations in both directions (i.e. to and

44

from the shared canvas format). This scheme can be further categorized into two

variants depending on whether the forward transformation is applied before sending

the ink data to the server, or after.

4.2.1 Scheme I

id1647028687 pdfM
achine by B

roadgun S
oftw

are - a great P
D

F
 w

riter! - a great P
D

F
 creator! - http://w

w
w

.pdfm
achine.com

 http://w
w

w
.broadgun.com

Figure 4.3: Client-oriented Scheme I

In this scheme, client applies forward transformation before sending the ink to

the server. The following sequence of activities occurs whenever a client ci joins the

session or when its pen-device changes:

• The server sends shared canvas information to the client ci in the following
format:

<ink>

<definitions>

<canvas xml:id=’sharedCanvas’>

<traceFormat xml:id=’canvasFormat’>

...

45

</traceFormat>

</canvas>

</definitions>

<context traceFormatRef=’#canvasFormat’/>

</ink>

The server alters the current context by establishing current trace format to

be the canvas trace format. This is because later, all the ink broadcast by the

server is in the canvas format.

• By comparing its own trace format with the trace format of the shared canvas,

client ci computes its canvas transform and saves it for later use. Every time the

ink source of client ci generates ink, forward canvas transformation is applied

to it and then the transformed trace data is sent to the server.

• The server broadcasts the ink received from client ci to all clients (may be except

client ci in which case it is generated internally).

The above technique guarantees that each client receives the digital ink in the

trace format of the shared canvas. Since each client saves its canvas transformation,

it can apply the inverse canvas transformation to the ink that it receives from server

to transform the ink to its own format.

The trace format of the ink during the entire session doesn’t change. However,

other contextual elements (e.g. change in brush) can change and are therefore main-

tained globally at the server. Whenever the context at a client changes, the server

compares the effect of the change with the global current context. The context change

is broadcast if the change is different from the current global context, otherwise the

change is ignored. This also helps to reduce data on the wire. For example, if client

ci changes the brush color to red and the previous color the server broadcast was

blue, the current brush at server is changed to red. When another client cj changes

46

its brush color to red again, there is no effect. If client cj changes its brush to blue

then the global context at the server is updated to blue.

Advantages:

• The server application is very simple as it simply broadcasts whatever it receives.

• Since switching of context is not required when the sender changes, the size of

the data on the wire is smaller.

Disadvantages:

• Performing ink mapping in both directions may not be feasible for resource

constrained devices such as PDAs, Smartphones and so on.

• There could be loss of precision due to approximation as a result of transfor-

mation.

• The server has to maintain the global context.

4.2.2 Scheme II

In this scheme both the transformations are done by a client similar to the previous

scheme. However, the forward transformation is applied only after the client receives

the ink from the server. The following sequence of activities occurs whenever a client

ci joins the session or when its pen-device changes:

47
id2081690187 pdfM

achine by B
roadgun S

oftw
are - a great P

D
F

 w
riter! - a great P

D
F

 creator! - http://w
w

w
.pdfm

achine.com
 http://w

w
w

.broadgun.com

Figure 4.4: Client-oriented Scheme II

• The server sends shared canvas information to the client ci in the following format:

<ink>

<definitions>

<canvas xml:id=’sharedCanvas’>

<traceFormat xml:id=’canvasFormat’>

...

</traceFormat>

</canvas>

<definitions>

</ink>

• By comparing its own trace format with the trace format of the shared can-
vas, client ci computes its <canvasTransform> and then it sends its ink source
definition followed by the canvas transform to the server in the following format:

<ink>

<definitions>

<inkSource xml:id=’ci’>

...

48

<traceFormat xml:id=’ciTF’>

...

</traceFormat>

<channelProperties>

...

</channelProperties>

...

</inkSource>

<canvasTransformation xml:id=’ciCT’>

...

</canvasTransformation>

</definitions>

</ink>

• The server broadcasts the definitions received from client ci to all the clients

(may be except ci in which case the client generates them internally).

The above technique allows each client to know the canvas transformation of all

other clients. In order to send the ink to the server, a client ci sends the contextual

element <context traceFormatRef=’#ciTF’ canvasTransformRef=’#ctCT’/> first and

then the trace data. The server broadcasts the trace data received from client ci to all

the clients. Each client cj receiving the ink can thereafter perform forward mapping

(from client ci to canvas) as well as inverse mapping (from canvas to client cj) to get

the ink in its own format.

Advantages:

• This technique allows digital ink to be collected from all ink sources in its

original form, without any modification or loss of precision due to approximation

as a result of transformations.

• The server application is very simple as it simply broadcasts whatever it receives

just like the previous scheme.

• The server doesn’t need to maintain global context.

49

Disadvantages:

• There are a number of context switches as each client alters the context before

sending its trace data. This can increase the amount of data transmitted.

• Similar to previous approach, performing ink mapping in both directions may

not be feasible for resource constrained clients such as PDAs, Smartphones and

so on.

4.3 Server-oriented Scheme

id1647099296 pdfM
achine by B

roadgun S
oftw

are - a great P
D

F
 w

riter! - a great P
D

F
 creator! - http://w

w
w

.pdfm
achine.com

 http://w
w

w
.broadgun.com

Figure 4.5: Server-oriented Scheme

This scheme puts the burden of record keeping and transformation on the server,

and relieves the clients of these tasks. The following sequence of activities occurs

whenever a client ci joins the session or when its pen-device is changed:

• The client sends its ink source definition in the following format:

50

<ink>

<definitions>

<inkSource xml:id=’ci’>

...

<traceFormat xml:id=’ciTF’>

...

</traceFormat>

<channelProperties>

...

</channelProperties>

...

</inkSource>

</definitions>

</ink>

• The server computes the canvas transformation for client ci and keeps a record

of it (does not broadcast to other clients). It thus constructs a Canvas Trans-

formation Table (CT Table).

When the server receives trace data from the client ci, it finds the forward canvas

transformation of client ci from CT Table and then applies it to the trace data to

convert it to the shared canvas format. The shared canvas is private to the server and

clients are completely unaware of it. In order to send the ink data to a particular client

cj, it uses CT Table again to find the client’s corresponding inverse mapping, applies

it and sends the transformed ink data to the client. Thus, it applies transformation

selectively for each client and then sends the transformed ink data to each client

separately. In addition, this scheme also requires the server to maintain a global

context similar to the one described in client-oriented scheme I and this helps to

reduce the data on the wire to some extent as context change from a client is broadcast

only when the change can later the current global context.

Advantages:

• Since there are no frequent context switches, data on the wire is reduced.

51

• There is no burden on the client, which makes this scheme particularly suitable

for resource constrained devices.

Disadvantages:

• Simple broadcast by the server is not possible, since selective transmission to

each client is also required.

• The ink data collected by the client is the transformed version, possibly resulting

in loss of precision.

• The server has to maintain the global context.

4.4 Hybrid Scheme

id1647142078 pdfM
achine by B

roadgun S
oftw

are - a great P
D

F
 w

riter! - a great P
D

F
 creator! - http://w

w
w

.pdfm
achine.com

 http://w
w

w
.broadgun.com

Figure 4.6: Hybrid Scheme

This scheme can be thought of as a blend of the two previous schemes. It helps

retain some of the benefits of the previous approaches and strikes a better balance of

52

server load and complexity on one hand, and support for resource constrained clients

on the other. The central idea is to perform half of the transformation (forward

transformation) at the server and the other half (inverse transformation) at the client.

Under this scheme, the following sequences of activities can occur whenever a client

ci joins the session or when its pen-device changes:

• The server sends the shared canvas information to client ci in the following
format:

<ink>

<definitions>

<canvas xml:id=’sharedCanvas’>

<traceFormat xml:id=’canvasFormat’>

...

</traceFormat>

</canvas>

</definitions>

</ink>

• By comparing its own trace format with the trace format of the shared can-
vas, client ci computes its <canvasTransform> and then it sends its ink source
definition followed by the canvas transform in the following format:

<ink>

<definitions>

<inkSource xml:id=’ci’>

...

<traceFormat xml:id=’ciTF’>

...

</traceFormat>

<channelProperties>

...

</channelProperties>

...

</inkSource>

<canvasTransformation xml:id=’ciCT’>

...

</canvasTransformation>

</definitions>

</ink>

53

• The server keeps a record of canvas transformation obtained from client ci in
the CT Table and then it sets the current trace format to be the shared canvas
trace format by sending following markup to client ci:

<ink>

<context traceFormatRef=’#canvasFormat’/>

</ink>

The channels in the trace format of the canvas should be a superset of the channels

supported by all the clients. When the server receives trace data from client ci, it

finds it’s forward mapping information from the CT table and applies it to the trace

data. This also includes adding null values for unreported channels. Then the server

does a simple broadcast of the ink data to all the clients. As with the client-oriented

scheme I and server-oriented scheme, this scheme also involves the server maintaining

a global current context. A change in context is broadcast only if it has resulted in a

change to the global current context.

Advantages:

• Simple broadcasting by the server is sufficient.

• The size of the data on the wire is lower than in the client-oriented schemes.

Disadvantages:

• The size of the data on the wire is relatively greater than the server-oriented

scheme.

• There could be loss of precision when the server applies forward canvas trans-

formation.

• The server needs to maintain the global context.

54

Scheme Data size Processing load Processing load Server maintains
on the wire on client on server global context?

Client I Low Medium Low Yes
Client II High High Low No
Server Low Low High Yes
Hybrid Low Low Medium Yes

Table 4.1: Comparison of the Schemes

4.5 Comparisons

In the previous sections we discussed different schemes and showed how each has its

own advantages and disadvantages. Table 4.1 shows a comparison of the schemes.

The client-oriented schemes are suitable in the situations where the client devices

have good processing capability and we want the server to be simple (broadcasting)

with less overhead on it. Out of the two schemes, scheme I seems to be better than

scheme II in terms of data size on the wire and processing overhead on the client.

The Server-oriented scheme puts all the overhead on the server and hence is seems

to be very suitable for resource constrained devices such as PDAs, Smartphones and

so on. The only major disadvantage of this technique is the requirement of selective

transmission of data by the server to the client. This makes it difficult to reuse a

standard server such as the XMPP server [osc99]. The hybrid approach seems to

create a balance between the other two schemes. Since half of the transformation is

applied on the server and only the other half is applied at clients, the overhead on

the clients is medium. At the same time, the server can simply broadcast the trace

data and no selective transmission is required.

As a conclusion, we can say that the choice of the scheme is dependent mainly on

the bandwidth of the network and nature of the clients and the server involved in the

communication for the purpose of sharing digital ink. Hybrid and Client I schemes

are suitable when a compromise is required.

55

4.6 Comparisons with Other Digital Ink Formats

Other popular digital ink format such as UNIPEN [Guy94] and Jot [Cor93] do not

provide better support for streaming and exchanging digital ink. Hence, they may not

be used for exchanging digital in a collaborative environment in an efficient manner.

Ink Serialized Form (ISF) [Mic04] may be used for streaming digital ink. Tablet

PC SDK [Mic04] provides API to convert stroke objects to ISF and vice-versa. But

ISF doesn’t support transmission of ink in an incremental order. For example, to

send a red stroke it is required to send the stroke with color information everytime,

even if the color of the current stroke is same as the previous one.

In order to support exchange of digital ink, Tablet PC SDK provides an inter-

mediate representation in HIMETRIC unit (each unit is 0.01 millimeter). The API

has built-in functions for doing conversion between ink space and pixel space of the

display. The concept of ink space is analogous to the concept of shared canvas in

InkML. This technique of representing the digital ink in an intermediate form using

HIMETRIC unit is very similar to the client-oriented scheme I discussed in section

4.2.1. Since this requires both the transformation to be done by the clients it may

not be suitable for resource constrained devices like PDAs, Smartphones and so on.

Also, being proprietary format, ISF lacks the benefits which an open standard can

offer.

Chapter 5

Support for Collaborative

Mathematics

One useful application of the digital ink sharing techniques discussed in the previous

chapter can be doing mathematics in collaborative environments. For a full-fledged

collaborative mathematical environment, mathematical handwriting recognition is re-

quired. In this chapter, we present a framework that supports the symbol recognition

needs of clients (especially resource-constrained devices) using a central symbol recog-

nition server. We use InkML for the purpose of different types of communications

between the clients and the server. In this chapter, we discuss the use of InkML to

develop the communication protocol and also describe our symbol recognition com-

ponent. The symbol recognition part of this chapter is based on our work [KW07a]

published in the International Conference on Document Analysis and Recognition,

2007.

56

57

5.1 Motivations

In order to support a full-fledged collaborative mathematical environment, a math-

ematical handwriting recognizer is required. A core component of such handwriting

recognizer is a symbol recognizer which requires a large amount of training data to

build a model and also good processing capability for the prediction of new symbols.

In resource constrained devices such as PDAs, Smartphones and so on, it might not

be feasible to store the training data and train the recognizer. One could train the

recognition system and build the model in a separate machine with good processing

capabilities but sometimes the model can still be larger. This method would also not

allow the system to adapt or evolve in future. Hence, a dedicated server for the task

of recognition can be very useful. For this, there should be some techniques by which

a client can send various kinds of requests (eg. recognize, retrain and so on) to the

recognition server and the server can respond accordingly.

id84882343 pdfM
achine by B

roadgun S
oftw

are - a great P
D

F
 w

riter! - a great P
D

F
 creator! - http://w

w
w

.pdfm
achine.com

 http://w
w

w
.broadgun.com

Figure 5.1: Results from Recognition Servers can be combined

58

Another advantage of the client-server architecture is that that recognition results

from various servers can be combined to obtain better results. Figure5.1 shows a client

combining results from three different recognition servers that use three different

recognition algorithms (SVM, HMM and Elastic Matching). The combination of

classifiers have been shown to be fruitful in various works such as [KW07a]. We

discuss the InkML-based protocol used for the communication between the recognition

servers and the clients in the following sections.

5.2 Use Cases

The use cases of the InkML-based protocol used for the communication between the

recognition server and the clients are shown in Figure5.2. Each use case is described

below.

• Login: The protocol should allow the clients to log-in into the server by pro-

viding a valid client name and a password. The communication should start

only after the client is authenticated.

• Send Recognition Result: The client should be able to send recognition

request containing information such as the trace data to be recognized, writer

info and so on.

• Send Writer Info: The protocol should allow the client to send writer infor-

mation such as age, gender and so on. Such information can be helpful to the

recognition module.

• Send Training Data: The protocol should allow the client to update the

training data at any time.

59

• Send Control Information: The protocol should allow the client to send

control information such as to retrain the system after training data is updated.

• Send Recognition Result: The protocol should allow the server to send the

recognition result to the clients. This may contain probabilities of the recognized

symbols.

• Send Error Messages: The protocol should allow the server to send error

messages whenever an error occurs (eg. recognition error, malformed XML

error).

5.3 The InkML-Based Protocol

We describe how the protocol captures each use case in the following sub-sections.

5.3.1 Login

In order to start communication with the server, client provides a valid user name
and a password in the following format:

<authenticate>

<username>...</username>

<password>...</password>

</authenticate>

5.3.2 Client Recognition Request

Client sends the recognition request in the following format:

<recognitionRequest xml:id=’request1’>

<ink>

<traceGroup>

<annotationXML>

<writerID>bkeshari</writerID>

60

Figure 5.2: Use Case Scenarios

</annotationXML>

<traceGroup xml:id=’symbol1’>

<trace xml:id=’t1’>x1 y1, x2 y2, x3 y3, x4 y4 ...</trace>

<trace xml:id = ’t2’> ... </trace>

</traceGroup>

<traceGroup xml:id=’symbol2’>...</traceGroup>

</traceGroup>

</ink>

</recognitionRequest>

The id attribute of <recognitionRequest> must be unique for an entire session.

Annotation XML may be used to put the writer id in the request to instruct the server

61

to use the model of a particular user. However, this is not mandatory. If no writer id

is provided, the server tries to use the model of the user whose name matches with

the login name. Otherwise, writer independent model is used.

In the above example, trace grouping has been performed by the client. Client

may also send traces without grouping and in such cases, server will do the trace

grouping.

<recognitionRequest xml:id=’request1’>

<ink>

<traceGroup>

<annotationXML>

<writerID>bkeshari</writerID>

</annotationXML>

<trace xml:id=’t1’>x1 y1, x2 y2, x3 y3, x4 y4 ...</trace>

<trace xml:id = ’t2’> ... </trace>

... (other traces)

</traceGroup>

</ink>

</recognitionRequest>

5.3.3 Server Recognition Response

The server responds to the client recognition request using <recognitionResult>.

The attribute recognitionRequestRef identifies the request which is being responded.

All the recognition results are enclosed within a <symbolRecoResult> element. Its

traceGroupID identifies the group of traces that were recognized as a single symbol.

Each result is expressed using a <result> element and server may provide top N

choices with probabilities, where the value of N is controlled by the client. The

default value is 1 which means the server doesn’t include probability. The result

contains name of the recognized symbol (value of element <symbolName>), Unicode

value of the recognized symbol (value of element <unicode>) and it may also contain

the estimated probability of correctness (value of element <probability>).

62

<recognitionResult recognitionRequestRef=’#request1’>

<symbolRecoResult traceGroupID=’symbol1’>

<result>

<symbolName>sigma</symbolName>

<unicode>u0187</unicode>

<probability>0.56</probability>

</result>

<result>

<symbolName>d</symbolName>

<unicode>u0107</unicode>

<probability>0.26</probability>

</result>

</symbolRecoResult>

...

</recognitionResult>

In the above example the trace grouping was already done by the client. In

the cases where the grouping is not already done by the client, the server uses the

<symbolSegment> element to provide the grouping information to the client. For

example in the following response, trace t1 and t2 has been grouped and recognized

as sigma with a probability of 0.56 and d with a probability of 0.26.

<recognitionResult recognitionRequestRef=’#request1’>

<symbolRecoResult>

<symbolSegment traceID=’t1’/>

<symbolSegment traceID=’t2’/>

<result>

<symbolName>sigma</symbolName>

<unicode>u0187</unicode>

<probability>0.56</probability>

</result>

<result>

<symbolName>d</symbolName>

<unicode>u0107</unicode>

<probability>0.26</probability>

</result>

</symbolRecoResult>

...

</recognitionResult>

63

5.3.4 Sending Writer Info

Client may send writer information in the following format:

<writer id=’bkeshari’>

<name>Birendra Keshari</name>

<age>24</age>

<gender>male</gender>

<rightHanded>true</rightHanded>

</writer>

5.3.5 Sending Training Data

A client may send training samples to the recognition server and the server may store

it for training in future. The training data should contain the name of each symbol

and also its unicode. It may also contain an optional writer id and if it is not specified,

the current login name is assumed to be the writer id. All this information is put in

the InkML using <annotationXML>.

<trainingData>

<ink>

<traceGroup>

<annotationXML>

<writerID>bkeshari</writerID>

</annotationXML>

<traceGroup>

<annotationXML>

<symbolAnnotation>

<symbolName> pi </symbolName>

<unicode> U0078 </unicode>

</symbolAnnotation>

</annotationXML>

<trace xml:id = ’t1’> ... </trace>

</traceGroup>

<traceGroup> ... </traceGroup>

</traceGroup>

</ink>

</trainingData>

64

5.3.6 Exchange of Control Information

• A client may request the server to build the model for a particular user in the

following way:

<trainingRequest xml:id=’tr1’>

<writerID>bkeshari</writerID>

</trainingRequest>

The server will respond a <trainingRequest> by a <trainingRequestResult>

which encloses training error information in the following way.

<trainingRequestResult trainingRequestRef=’#tr1’>

<trainingError>9</trainingError> (Error in percentage)

</trainingRequestResult>

• Client may instruct the server to provide top N results of symbol recognition

in the following format.

<topNRecognitionResult value=’3’/>

5.3.7 Error Handling

Server may send an error message using <error> element whenever an error occurs.

The code attribute is set to a decimal value which specifies the error code. Various

situations that may cause the server to send error messages to the client are listed

below.

• The Server may send an error message in response to <recognitionRequest> if

recognition fails. An example is given below.

<recognitionResult recognitionRequestRef=’#request1’>

<error code=’1’/> (none of the traces were recognized)

</recognitionResult>

65

Error Code Meaning
0 Unknown Error
1 Requested user’s model data not found for prediction
2 Model data not found for prediction
3 Recognition failed during feature extraction
4 Recognition failed during prediction
5 Training failed during feature extraction
6 Training failed while building the model
7 Malformed XML

Table 5.1: Error Codes

<recognitionResult recognitionRequestRef=’#request1’>

<traceRecoResult traceID=’t1’>

<error code=’1’/>

</traceRecoResult>

... (others are recognized)

</recognitionResult>

• The Server may send error message in response to <trainingRequest> if training
fails due to any reason. An example is given below.

<trainingRequestResult trainingRequestRef=’#tr1’>

<error code=’0’/>

</trainingRequestResult>

Table 5.1 lists the error codes and their meaning used in the protocol.

5.4 Online Symbol Recognizer

We use support vector machines to train the symbol recognizer and also to predict

new symbols. We describe support vector machines and the features used to train

them in the following sub-sections.

66

5.4.1 Support Vector Machines

SVM is a supervised learning algorithm that has been widely and successfully used

for pattern recognition in different areas. SVM is based on dual ideas of VC (Vapnik-

Chervonenkis) dimension and structural risk minimization principle [Vap98]. The

decision boundary in SVM is a hyperplane that separates the two classes leaving

largest margin between the vectors of the two classes. However, in real life, problems

can be linearly in-separable. To deal with this problem, a non-linear decision surface

is obtained by using kernel that lifts the feature space into a higher dimension (can

be infinite). A linear separating hyperplane is found in the higher dimensional space

and this gives a non-linear decision surface in the original feature space. The decision

function of SVM can be expressed by the following equation:

f(x) =
∑

i

αiyiK(x, xi) + b (5.1)

where yi is the label of training pattern xi and x is the pattern to be classified.

Parameters αi and b are found by maximizing a quadratic function subject to some

constraints [Vap98]. Here K(x, xi) = φ(x).φ(xi) is the kernel function and φ maps

the feature vectors into a higher dimension inner product space. The most commonly

used kernels are:

• K(a, b) = exp(−γ||a− b||2), γ > 0 (Radial Basis Function)

• K(a, b) = (γ(a.b) + r)d, γ > 0 (Polynomial)

• K(a, b) = tanh(γ(a.b) + r) (Sigmoid)

Although SVM is primarily binary classifier,a multi-class classifier can be created

by combining several binary classifiers. One-against-all, One-against-one and DAG

67

SVM are the popular techniques to combine binary classifiers to build multi-class

SVM. Comparisons between different methods in [HL02] show that DAG and one-

against-one are more suitable for practical use than the other existing methods.

The outputs from standard SVM are not calibrated probability estimates. More

interesting tasks like post-processing and combining classifiers can be done with SVM

when the outputs are probability estimates instead of labels. Various researchers have

been working to output posterior probabilities with SVM. A good measure can be

the distance of the pattern from the hyperplane. Platt [Pla99] developed a method

to transform this distance into posterior probability by applying a sigmoid function

on the outputs of the SVM as follow:

p(y = 1|f(x)) =
1

1 + exp(Af(x) + B)
(5.2)

where f(x) is the output from SVM. Parameters A and B are obtained by minimizing

the negative log-likelihood function on training data. Based on this work, an efficient

method to compute the probability has been described in [WLW04] and implemented

in libsvm [CL01] library.

5.4.2 Feature Extraction

5.4.3 Preprocessing

The following steps are involved in preprocessing:

• Smoothing: The following Gaussian smoothing is used to remove noise:

xi = 0.25 ∗ xi−1 + 0.5 ∗ xi + 0.25 ∗ xi+1

yi = 0.25 ∗ yi−1 + 0.5 ∗ yi + 0.25 ∗ yi+1

68

• Filling the intermediate points: Linear interpolation is applied between

every pair of consecutive points on each stroke to fill the intermediate points.

This removes the time information but it was found that spatial alignment is

more useful than temporal alignment of the points on the strokes. Hence, during

re-sampling phase we re-sample the points at equal distance.

• Re-sampling: Since the number of points on each stroke is large after in-

terpolation, re-sampling is required. Fewer number of points may miss useful

information such as curvature, loops etc. and a larger number of points may in-

crease the computation time. Therefore, a balance between the two is required.

We determine the number of points heuristically. Each stroke is re-sampled to

a fixed number of points (11).

• Size Normalization: Each stroke is scaled by 1
max(h,w)

, where h and w are

height and width of the bounding box of the symbol. Strokes are then translated

so that the whole symbol fit inside a square of unit length and their centers

coincide.

Figure5.3 illustrates the preprocessing steps.

Figure 5.3: Processing: smoothing, interpolating and re-sampling (from [KW07a])

69

5.4.4 Online Feature Vector

An online feature vector for each stroke is extracted after the symbol is preprocessed.

The feature vector consists of following features:

• Co-ordinates of each point on the stroke (xi and yi)

• Sines and cosines of the angles made by the line segments of the stroke

• Sines and cosines of turning angle between line segments. Figure5.4 shows an

example of turning angle.

• Centre of gravity of the symbol calculated as (
∑

i(xi/N),
∑

i(yi/N)), where N

is the total number of points on the stroke and xi and yi are the co-ordinates

of each point.

Similar features have been used in [TR05]. It is found that co-ordinates and

angle information are the most discriminating features. The decrease in error rate

of the online system is very small when the size of the feature vector is increased

by introducing new geometric features like relative length. However, the number of

support vectors is reduced.

5.5 An Example

Figure5.5 shows an example of the protocol where client sends trace groups to the

server and then server recognizes the symbols and sends the recognition result back

to the clients.

70

id31761781 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

Figure 5.4: Turning Angle(θ) (from [KW07a])

71

id1801421328 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

Figure 5.5: An example

Chapter 6

Implementations

This chapter provides the implementation details of the techniques and components

described in the previous chapters.

6.1 Streaming-Archival Conversion

The streaming-archival conversion algorithms have been implemented as an API in

Java. The usage of the API has been illustrated below.

import ca.uwo.csd.orcca.penmath.inkml.saconverter.*;

...

StreamingToArchival sa = new StreamingToArchival();

sa.setStreamingFileName(fileName);

sa.setOptimization(true);

sa.setIndent(" ");

String strArchival = sa.translate();

...

The archival InkML gets optimized only when the optimization flag is turned on

using setOptimization method. The setIndent method is used to specify the string

to be used for indentation.

72

73

The archival to streaming API is very much similar to the streaming to archival

API and can be used in the following way.

import ca.uwo.csd.orcca.penmath.inkml.saconverter.*;

...

ArchivalToStreaming as = new ArchivalToStreaming();

as.setArchivalFileName(fileName);

as.setIndent(" ");

String strStreaming = as.translate();

...

Archival to streaming API can also be used in an iterative style as shown below.

import edu.uwo.csd.orcca.penmath.inkml.saconverter.*;

...

ArchivalToStreaming as = new ArchivalToStreaming();

as.setStreamingFileName(fileName);

as.getStreamingDefinitions();

while(as.hasMoreStream())

{

String streamingInkML = as.nextStream();

}

...

The above style outputs all the traces that share the same context in the same iter-

ation. This could be helpful for example to animate the ink traces.

We have also implemented a web interface for these translators using PHP and

Java Script. PHP functions creates a translator process, sends the input to it, gets

the result back and displays it in the browser. Figure 6.1 shows a screen shot of the

web interface and an output window is shown in Figure 6.2.

74

Figure 6.1: A Web Interface for Streaming-Archival Translators

6.2 Sharing Digital Ink

A collaborative inking application has been implemented using the hybrid scheme

described in section 4.4 as it enjoys the benefits of both client-oriented scheme and

server-oriented scheme and balances the processing load between the server and the

client. The system is implemented in Java for better portability. Currently, the

system supports mouse, graphics tablet and Tablet PC devices under Windows and

Linux platforms.

The trace format of the shared canvas used in our implementation has X, Y and F

(pressure) channels, which covers the channels of the devices we are currently using.

The values of the channels X and Y are in absolute lengths units (millimeter) and

we assume their resolution to be infinite. Channel properties of the ink source are

used to compute forward and inverse canvas transform. For example, if channel X of

a particular ink source has a spatial resolution of 10 ppi (points per inch), then the

75

Figure 6.2: Output Window of Streaming-Archival Translators

76

forward canvas transform for that source would involve a multiplication factor of 2.54

(to convert from inches to millimeters).

The system provides a feature to set images of documents, maps and photographs

as the canvas background. This allows to do several interesting and useful tasks such

as collaborative document annotation and collaborative map annotation. Besides ink,

our implementation can also send text and audio messages. The audio capability is

added using the Smack Jingle API [Rea06a]. The canvas background image is saved

in the ink using an annotation XML. The ink conversations which are in streaming

InkML form can be translated to archival form using streaming to archival translator.

6.3 InkML-Based Protocol for Recognition

We have implemented a symbol recognition server that understands the protocol de-

scribed in Chapter 5 in Python. The symbol recognition component uses support

vector machines (machine learning algorithm) and it is implemented using libsvm

library [CL01]. Features are extracted from the samples in the format understand-

able by libsvm. All the features are scaled between 0 and 1. Radial Basis Function

(RBF) is used as the kernel after tyring several other kernels. For multi-class classi-

fication, we use one-against-one strategy and the probabilities are obtained through

an optimization performed on the pairwise class probabilities [Pla99]. Best values of

γ (RBF parameter) and C (SVM regularization parameter) are found by performing

grid search with γ in the range 2−15, 2−13, ..., 23 and C in the range 2−5, 2−3, ..., 215.

The dataset available at [dat] is used for training the recognition system. The

training set consists of handwritten samples from 11 subjects (seven male and four

female) collected using a Hewlett-Packard Laboratories (HP) Compaq tc1100 Tablet

PC. The symbol set consists of 48 different symbols including a-z, 0-9,
∑

, (,), −,
√

,

77∫
, {, <, >, +, 6= and else. The training dataset consists of each samples written 10

times by each subject. The data was converted to InkML format [CFW06] for better

portability in the future.

A web-based client interface (Java Applet) which communicates with the recog-

nition is shown in Figure 6.3. This was developed to test and debug the recognition

server. It allows user to scribble a symbol on its ink canvas. It creates InkML markup

from the traces, encloses it within a recognition request markup and sends them to

the recognition server for recognition. The server recognizes the symbol and sends

back the result to the client. The client parses the recognition result markup and

displays the recognition result to the user.

78

Figure 6.3: Web-based Symbol Recognition Interface

Chapter 7

Conclusion

7.1 Summary

In this work, we have developed algorithms and techniques for exchanging digital ink

in heterogeneous collaborative environments and for transforming digital ink from

one form to another depending upon the need. We have also presented an InkML-

based protocol for allowing mathematical symbol recognition which can be useful in

a collaborative environment. In doing so, we hope to have contributed something in

the area of pen-based computing and also demonstrated various proofs of concepts of

InkML.

We introduced various concepts of InkML including streaming and archival styles

and shared canvas. We presented algorithms for doing conversion from streaming

style to archival style and vice-versa. We also used these translators in a white-board

sharing application to archive the ink conversation.

We discussed four different InkML-based techniques (client-oriented I, client-oriented

II, server-oriented and hybrid) for sharing digital ink in a heterogeneous collaborative

environment. We presented an in-depth analysis of all these techniques and also com-

79

80

pared them. We found hybrid technique to be more suitable in practical scenarios

as it enjoys the benefits of both client-oriented and server-oriented techniques and

thus balances the load between the client and the server. We also compared InkML

with other digital ink formats and showed how it is more flexible and efficient. We

implemented a white-board sharing application using the hybrid technique.

We presented an InkML-based protocol for doing mathematical symbol recogni-

tion and a support vector machines based symbol recognition system. This can be

integrated with the white-board sharing application to provide mathematical user

interfaces.

7.2 Future Directions

There are a number of possible extensions that can be added to our system. One

could add gesture commands such as delete ink traces, copy ink traces and so on to

the system. For this, a set of symbols can be fixed as gesture symbols and these can

be added to the training database. Necessary actions can be taken if the recognition

result from the server is determined to be a gesture.

A structure recognition system can be added to the recognition server which when

combined with the current symbol recognition module can form a complete mathe-

matical handwriting recognition system. The protocol can be extended to support

representation of mathematical structure in the recognition result so that the client

can interpret the mathematical structure recognition result. The client could do

computations by sending the recognized result to a computer algebra system such

as Maple [CFG+84] server and display the result in the ink canvas (may be broad-

cast to all other users sharing the white-board). For example, users could perform

several operations like expanding an expression, simplifying an expression and so on.

81

This would provide a complete environment for doing mathematics in a collaborative

environment which could be very helpful for example in a classroom teaching and

distance education settings.

The current InkML-based protocol doesn’t provide control over the symbol recog-

nition algorithms. In future, this feature can be added at application level so that

client can decide which algorithm to use for recognition. This would make the recog-

nition system more flexible and user can try different algorithms depending upon

their choice. The InkML-based protocol can also be used to combine results from

several recognition servers. This can help to improve the accuracy of predictions.

Video communication capability can be added on top of the existing system to

make it more useful. Currently, only the digital ink and the canvas background image

are saved in InkML format. This can be extended by adding the feature to save all

three mediums: digital ink, audio and video in a synchronized way.

Bibliography

[ASM08] Manoj Prasad A, Muthuselvum Selvaraj, and Sriganesh Madhvanath.

Peer-to-peer ink messaging across heterogeneous devices and platforms.

In Compute 08: Proceedings of the 1st Bangalore Annual Compute Con-

ference, 2008. Article no. 25.

[BCH+04] Jay Beavers, Tim Chou, Randy Hinrichs, Chris Moffatt, Michel Pahud,

Lynn Powers, and Jason Van Eaton. The learning experience project:

Enabling collaborative learning with conferencexp. Technical report, Mi-

crosoft Research, Redmond, WA, USA, 2004. MSR-TR-2004-42.

[CFG+84] Bruce W. Char, Gregory J. Fee, Keith O. Geddes, Gaston H. Gonnet,

Michael B. Monagan, and Stephen M. Watt. On the design and per-

formance of the maple system. In Macsyma Users’ Conference, pages

199–219, Schenectady, New York, General Electric Corporation, 1984.

[CFW06] Yi-Min Chee, Max Froumentin, and Stephen M. Watt (editors). Ink

Markup Language (InkML), October 2006. http://www.w3.org/TR/

InkML/ (valid on April 2, 2008).

[CL01] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support

vector machines, 2001. http://www.csie.ntu.edu.tw/~cjlin/libsvm

82

83

(valid on April 2, 2008).

[Cor93] Slate Corporation. JOT — A Specification for an Ink Storage and In-

terchange Format, 1993. http://unipen.nici.kun.nl/jot.html (valid

on April 2, 2008).

[dat] http://www.graphics.cs.brown.edu/research/pcc/ (valid on April

2, 2008).

[Dur04] Kevin Durdle. Supporting mathematical handwriting recognition through

an extended digital ink framework. Master’s thesis, The University of

Western Ontario, London, ON, Canada, 2004.

[FJe03] Jon Ferraiolo, Fujisawa Jun, and Dean Jackson (editors). Scalable Vector

Graphics (SVG), 2003. http://www.w3.org/TR/SVG (valid on April 2,

2008).

[Gro] W3C DOM Working Group. Document Object Model Specification. http:

//www.w3.org/DOM/ (valid on April 2, 2008).

[Guy94] Isabella Guyon. Unipen 1.0 Format Definition. The Unipen Consortium,

1994. http://www.unipen.org/dataformats.html (valid on April 2,

2008).

[HL02] Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multi-

class support vector machines. IEEE Transactions on Neural Networks,

13(2):415–425, March 2002.

[KMA+08] Birendra Keshari, Sriganesh Madhvanath, Manoj Prasad A, Muthu-

selvum Selvaraj, and Stephen M. Watt. Sharing digital ink in heteroge-

84

neous collaborative environments. In International Conference on Fron-

tiers in Handwriting Recognition, 2008. (to appear).

[KW07a] Birendra Keshari and Stephen M. Watt. Hybrid mathmematical symbol

recognition using support vector machines. In Proceedings of Interna-

tional Conference on Document Analysis and Recognition, pages 859–863,

2007.

[KW07b] Birendra Keshari and Stephen M. Watt. Streaming-archival inkml conver-

sion. In Proceedings of International Conference on Document Analysis

and Recognition, pages 1253–1257, 2007.

[LM03] Andrew P. Lenaghan and Ron R. Malyan. Xpen: An xml based for-

mat for distributed online handwriting recognition. In Proceedings of

International Conference on Document Analysis and Recognition, pages

1270–1275, 2003.

[Map07] MapleSoft. Maple 11 User Manual. MapleSoft, Waterloo, Ontario,

Canada, 2007.

[Mic04] Microsoft. Microsoft Tablet PC SDK Documentation, 2004.

http://msdn.microsoft.com/library/default.asp?url=/library/

en-us/tpcsdk10/lonestar/devcenter/tbidxindex.asp (valid on

April 2, 2008).

[NG07] Jonathan Neddenriep and William G. Griswold. Riverink-an extensi-

ble framework for multimodal interoperable ink. In Proceedings of the

40th Annual Hawaii International Conference on System Sciences, pages

258b–258b, 2007.

85

[NWSS05] Hai Ning, John R. Williams, Alexander H. Slocum, and Abel Sanchez.

Inkboard - tablet pc enabled design-oriented learning. In International

Conference on Computers and Advancaed Technology in Education, pages

154–160, 2005.

[osc99] Jabber open-source community. XMPP standards foundation, Extensi-

ble Messaging Presence Protocol (XMPP), 1999. http://www.xmpp.org

(valid on April 2, 2008).

[Pla99] John C. Platt. Probabilistic outputs for support vector machines and

comparison to regularized methods. In A. Smola, P. Bartlett, B. Schlkopf,

and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages

61–74. MIT Press, 1999.

[PMMH93] Elin R. Pederson, Kim McCall, Thomas P. Moran, and Frank G. Halasz.

Tivoli: an electronic whiteboard for informal workgroup meetings. In

Human Factors in Computing Systems, INTERCHI, pages 391–398, 1993.

[Rat03] Eugene H. Ratzlaff. Methods, report and survey for the comparison

of diverse isolated character recognition results on the unipen database.

In Proceedings of International Conference on Document Analysis and

Recognition, pages 623–628, 2003.

[Rea06a] Ignite RealTime. Jingle Source Code, 2006. http://svn.

igniterealtime.org/svn/repos/smack/trunk (valid on April 2, 2008).

[Rea06b] Ignite RealTime. Smack API Documentation, 2006. http://www.

igniterealtime.org/builds/smack/docs/latest/documentation/

index.html (valid on April 2, 2008).

86

[SW06] Elena Smirnova and Stephen M. Watt. Combining prediction and recog-

nition to improve on-line mathematical character recognition. Technical

report, University of Western Ontario, 2006. http://www.orcca.on.ca/

TechReports/TR-06-06 (valid on April 2, 2008).

[SW08] Elena Smirnova and Stephen M. Watt. Context-sensitive mathemati-

cal character recognition. In Proceedings of International Conference on

Frontiers in Handwriting Recognition, 2008. (to appear).

[TR05] Ernesto Tapia and Raul Rojas. Recognition of on-line handwritten math-

ematical expressions in the e-chalk system-an extension. In Proceedings of

International Conference on Document Analysis and Recognition, pages

1206–1210, 2005.

[Vap98] Vladimir Vapnik. Statistical Learning Theory. John Wiley & Sons, New

York, 1998.

[Wat07] Stephen M. Watt. New aspects of InkML for pen-based computing.

In Proceedings of International Conference on Document Analysis and

Recognition, pages 457–460, 2007.

[WLW04] Ting-Fan Wu, Chih-Jen Lin, and Ruby C. Weng. Probability estimates

for multi-class classification by pairwise coupling. Journal of Machine

Learning Research, 99(5):975–1005, August 2004.

[Wu04] Xiaojie Wu. Achieving interoperability of pen computing with heteroge-

neous devices and digital ink formats. Master’s thesis, The University of

Western Ontario, London, ON, Canada, December 2004.

87

VITA

Name: Birendra Keshari

Born: Kalaiya, Bara, Nepal, 1982

Education and Degree: Kathmandu University

Dhulikhel, Kavre, Nepal

2000-2004 B.Eng in Computer, CGPA: 3.83/4

Work Experience: Internship, 2006

HP Labs, Bangalore, India

Teaching and Research Assistant, 2006 - 2008

Dept. of Computer Science

University of Western Ontario

London, ON, Canada

System Analyst, 2005 - 2006

Information and Language Processing Research Lab

Dept. of Computer Science

Kathmandu University

Dhulikhel, Kavre, Nepal

Software Developer (part time), 2005 - 2006

DASS Pvt. Ltd

Kathmandu, Nepal

88

Publications:

• Birendra Keshari, Sriganesh Madhvanath, Manoj A Prasad, Muthuselvum Sel-

varaj, and Stephen M. Watt. Sharing digital ink in heterogeneous collaborative

environments. In International Conference on Frontiers in Handwriting Recog-

nition, Montreal, Canada, 2008 [to appear].

• Birendra Keshari and Stephen M. Watt. Hybrid mathematical symbol recogni-

tion using support vector machines. In Proceedings of International Conference

on Document Analysis and Recognition, Curitiba, Brazil, 2007.

• Birendra Keshari and Stephen M. Watt. Streaming-archival inkml conversion.

In Proceedings of International Conference on Document Analysis and Recogni-

tion, Curitiba, Brazil, 2007.

• Yogendra P. Yadava, Govinda Raj Bhattarai, Sanat Kumar Bista, Birendra

Keshari and Jagannath Bhatta. Envisioning Machine Translation for the New

Millennium: Outlines of Preliminary Steps in Nepal. Contemporary Issues in

Nepalese Linguistics, ed. by Yogendra P. Yadava et al. pages 429-443, Kath-

mandu: Linguistic Society of Nepal, 2005.

• Birendra Keshari and Sanat Kumar Bista. UNL Nepali Deconverter. In Pro-

ceedings of CALIBER, Kochi, India, 2005.

• Birendra Keshari, Jagannath Bhatta and Sanat Kumar Bista. Nepali Part-

of-Speech Guesser and its Application in Lexicon Building. In Proceedings of

International Conference on Natural Language Processing, IIT Kanpur, India,

2005.

