
A TESTBED FOR THE COMPARISON OF PARAMETRICSURFACE METHODS1Michael Lounsbery, Charles Loop, Stephen Mann, David Meyers,James Painter2, Tony DeRose, Kenneth SloanDepartment of Computer Science and Engineering, FR-35,University of Washington, Seattle, WA 98195(206)543-1695ABSTRACTThere are currently a number of methods for solving variants of the following problem: Given a triangu-lated polyhedron P in three-space with or without boundary, construct a smooth surface that interpolatesthe vertices of P. Problems of this variety arise in numerous areas of application such as medical imaging,scattered data �tting, and geometric modeling. In general, while the techniques satisfy the continuity and in-terpolation requirements of the problem, they often fail to produce pleasing shapes. Our interest in studyingthis problem has necessitated the construction of a
exible software testbed that allows rapid implementationand testing of new surface �tting methods and analysis techniques. The testbed is written entirely in theC programming language and is highly portable. Other relevant features of the testbed are discussed, andrecommendations for improving the shape characteristics of several interpolation methods are given.1 MOTIVATIONThere is much research to be done concerning the representation of surfaces derived from points thatmust be interpolated or approximated. Tensor-product B-splines work well for modeling surfaces basedon rectilinear control nets but are not su�cient for more general surfaces. Good methods for creatingparametric surfaces from control nets with irregular patch interconnections are needed. To date, there is nostrong tradition of experimentation in this area. Designers of new surface schemes typically do not comparetheir ideas with previous results or even generate satisfactory images of their own work. Our recent researchsuggests that there needs to be more such experimentation by researchers in this �eld.Experimentation is di�cult, however, because a large software base is required. As part of our studies,we have constructed such a base. Our software is not only designed to allow us to do our own research butalso is intended to promote experimentation in the area by other researchers. With this aim in mind, we tookpains to design the system to be portable, modular, and extensible. These concerns were more important inour setting than those of execution speed.1Published in The Proceedings of SPIE conference on Curves and Surfaces in Computer Vision and Graphics, Ferrari andDigueriredo (eds), 1990, pg 94{1052Currently at The University of Utah 1

This paper explains the structure of our system, discusses design tradeo�s, and describes its currentfunctionality. 2 SOFTWARE ARCHITECTUREThe surface interpolation survey we are currently working on, detailed in [10], involves looking at manydi�erent interpolation schemes and applying various metrics to judge the quality of the resulting surfaces.The data we are interpolating consists of the positions and normals at a set of points, and sometimes higher-order derivatives at these points. The methods we are studying interpolate this data with a smooth surface.Our system allows us to judge the quality of these surfaces through the use of various metrics. A metric canbe something as simple as a number or as complicated as an image. Initially, we had a number of metricsthat we wished to apply to multiple surface schemes. Breaking the system into separate modules enabled usto implement a metric once and use it to evaluate all the surface schemes.2.1 Initial approachWe saw two approaches to the architecture of our system. One approach would be to create a singlemonolithic system to handle all tasks. Another would be to divide the potential tasks into separate stand-alone modules that could be connected as needed. We choose the second approach because it allows oneto implement and test a new scheme without requiring an understanding of the entire system. In a UNIX1environment, this kind of modularity is readily achievable through the use of pipes.When �rst designing the system, we were more concerned with ease of implementation than with systemperformance. In order to decrease the implementation time, we wanted the system to be as simple as possible.Separate �xed formats were designed for the interfaces between modules. Each interface involved a minimalamount of data. This made the implementation easy, as the implementor of a module would receive onlythe data that the module needed. It was not long, however, before we ran into problems with this format.Some of the surface schemes we wanted to implement required more data than our �xed format provided.We also found a need for other metrics of surface quality. These new metrics required still more informationthat was not present in our data format.Changing the data formats to incorporate this new data would have meant changing all of the modules,including those that did not use this new data. It also seemed likely that we would want to make furtherchanges to the data format in the future. Such changes would again involve changing all of the modules,regardless of whether or not they used the new data. Our system was proving to be too rigid for its intendedpurpose. What we needed was a more extensible system. For us, this meant using a more
exible dataformat.Letting completely unstructured data
ow across the pipes would have satis�ed our
exibility require-ments. Unfortunately, this format would have placed the task of interpreting the data entirely upon theimplementors of the modules. To facilitate implementation, we wanted to provide a parser usable by allimplementors. Because this would still require that the parser recognize all data, even data that is not used,some degree of structure is still necessary.1UNIX is a trademark of Bell Laboratories. 2

2.2 DstructsThe two primary requirements of our data format were that it be extensible and that additional datawould not a�ect the functionality or require changes to a module that did not need this data. Additionally,we wanted to write a common parser to be used by all modules. Our solution was to implement a form ofhierarchical property list. All modules (except the �rst and last ones) read and write a common data format.The data is structured in such a way that a module can read the data, process what it understands, andoutput its own results along with the input that it did not use.We also wanted our system to work on and across many types of hardware. Our �rst implementationpartially achieved this goal because it was written in the C programming language. The new pipeline is alsowritten in C and has been compiled on a number of di�erent hardware platforms. A second area of portabilityconcern was the format of the data that
ows across the pipeline. An e�cient binary representation couldnot be used for compatibility reasons, such as byte-order issues. We also wanted to read and edit this datadirectly. We, therefore, chose an ASCII representation.The data that we pass between di�erent modules are arranged in a hierarchical property list format whichwe call dstructs, short for dynamic structures. Dstructs are arranged as lists of name-value pairs. The value�eld of a name-value pair can be an atom (a string or real number), a list of name-value pairs, or an arrayof values. There is an ASCII external representation of dstructs as well as a procedural interface with whichto access them from inside a program.The dynamic structure of the hierarchy allows us to easily add additional name-value �elds to a list. Aprogram can be created or modi�ed to interpret this addition. The already existing modules will not haveany di�culties processing the new data: they just read it, ignore it, and optionally pass it along on theiroutput stream.In dstructs, the name portion of the name-value pair provides a description of the meaning of the value.This name provides a keyword for a program to use in accessing information. A list of these keywords isused to locate data in a dstruct. Such a lookup structure makes it easy for a program to select only the �eldsit requires. Naming conventions must be established between two modules that communicate by means ofdstructs. For example, a program that reads and processes a stream of triangles expects each triangle tobe in a dstruct headed by the name Triangle. Any program that writes out triangles must adhere to thisformat.An example of the external format of a dstruct appears in Figure 1. Each name-value pair is enclosedin parentheses, and strings are enclosed in double quotes. Arrays are enclosed in square brackets with thearray elements being separated by commas. Each dstruct is terminated with a semicolon. The dstruct inthis example represents a triangle. Values in a dstruct are accessed from within a program using a syntaxsimilar to the syntax that C uses to access structures. To access the x-coordinate of the position of the �rstvertex, for example, one would specify the path Triangle.vertex1.pos[0].The �nal output of the pipeline is usually not in dstruct format. In some cases, this output is simpledata, such as a yes/no test to check if the surface is tangent plane continuous. In other cases, the output isused as input to an already existing renderer which has its own preexisting input format. In the latter case,the last stage of the pipeline is typically a simple translation program. For example, Render is a trianglerenderer that reads a non-dstruct input format. The last stage of the pipeline merely converts from trianglesin dstruct format to triangles in the format that Render uses.3

(Triangle . (name . "tri-0")(vertex1 . (pos . [-1, 0, 0])(norm . [-1, 0, 0]))(vertex2 . (pos . [0, 0, -1])(norm . [0, 0, -1]))(vertex3 . (pos . [0, -1, 0])(norm . [0, -1, 0])));Figure 1: An example of a dstruct in external format.The initial input to our pipeline also deviates from the dstruct format. The issue here is human readability.The input is a set of points to be interpolated together with their connectivity information. This connectivityis represented by a set of faces. Each face is an ordered sequence of points. While dstructs can be used tofully represent this data, the connectivity of the data is not readily apparent to a human reader. We havethus chosen a \semi-dstruct" format for our input. This format gives the connectivity of the data. Dstructsare used to associate additional data with the points and faces. Typically this data is geometric information.The position of points, for example, is denoted in this manner. An example of this data format is shown inFigure 2. 3 MODULESIn this section the modules we have implemented to date are discussed. Figure 3 shows a block diagramof our pipeline. The mesh description is �rst read by a surface �tter that outputs a stream of B�ezier patches.These patches are then tessellated into a stream of triangles. Next, a material is assigned to the vertices ofthe triangles. The triangles are then converted to a format understood by our renderer, which outputs animage �le. The conversion between triangles in dstruct format to the format that our renderer reads hasbeen omitted from the �gure.% Piper < octa.m | Tess -s 8 | Mat0 | Sgp | Render > octa.wff (Example 1)Example 1 illustrates a typical use of the system. This command line would be issued from a UNIXshell. It creates an image of the surface that Piper's scheme [12] produces for the octahedron data, as seenin Figure 4. Here, octa.m and octa.wff refer to the input mesh �le and image �le, respectively. Piper,Tess, Mat0, Sgp, and Render all are UNIX programs. The vertical bar `|' creates a pipe between twoprograms. The `<' sign indicates that a program should read its input from a �le, and the `>' sign is usedwhen redirecting output to a �le.The functionality of each of the above modules and modi�cations to the pipeline in Example 1 arediscussed in sections 3.1 to 3.4. In section 3.5, a few more examples will be given to clarify these ideas.3.1 Surface �ttersThe �rst program in Example 1 is Piper. Piper is a module which implements Piper's surface �tting4

%% The mesh description for an octahedron.%px = (Point . (pos . [1,0,0]) (norm . [1,0,0]));py = (Point . (pos . [0,1,0]) (norm . [0,1,0]));pz = (Point . (pos . [0,0,1]) (norm . [0,0,1]));mx = (Point . (pos . [-1,0,0]) (norm . [-1,0,0]));my = (Point . (pos . [0,-1,0]) (norm . [0,-1,0]));mz = (Point . (pos . [0,0,-1]) (norm . [0,0,-1]));PPP = [px,py,pz];PPM = [py,px,mz];PMP = [pz,my,px];PMM = [px,my,mz];MPP = [mx,pz,py];MPM = [mx,py,mz];MMP = [mx,my,pz];MMM = [mz,my,mx];mesh = {PPP,PMP,MPP,MMP,PPM,PMM,MPM,MMM};Figure 2: The mesh for an octahedron.
-Mesh �� ��Fitter -Patches �� ��Tess -Triangles �� ��XRender�� -�� ��Material -Triangles �� ��Render -ImageFigure 3: Surface Fitting Pipeline.5

Figure 4: Shaded image generated in Example 1.scheme [12]. This module, like all surface �tters, takes a mesh as input. The surface �tters we haveimplemented thus far (except for Catmull and Clark's �tter [3]) assume that the mesh consists exclusivelyof triangular faces. The �tters for several of these schemes output triangular B�ezier patches. A separateprogram, Tess, then tessellates these patches into triangles. Some schemes, however, compute surface patchesthat are in a di�erent form. The methods presented by Herron [9] and Nielson [11] fall into this latter category.The �tters for these non-B�ezier schemes tessellate the patches themselves and directly output the resultingtriangles. There is also a simple �tter, Fitter0, which �ts a degree one triangular B�ezier patch to eachface. This is equivalent to simply outputting the face as a triangle. To date, we have implemented �ttersfor schemes proposed by Catmull and Clark [3], Powell and Sabin [4], Clough and Tocher [8], Herron [9],Nielson [11], Piper [12], and Shiman and Sequin [13].3.2 B�ezier patchesIn Example 1, we see that the output of Piper is piped into Tess. Tess, as was mentioned above,tessellates the patches it reads and outputs the resulting triangles. The `-s'
ag to Tess tells it how denselyto sample each patch. There are also
ags that tell Tess to compute additional information, such as Gaussiancurvature, at the vertices. Tess would be omitted from the pipeline when running a scheme that does notoutput B�ezier patches. These schemes must tessellate the surface patches themselves.There is a second program that reads in triangular B�ezier patches. This program, G1, determines ifneighboring patches meet with tangent plane continuity, also known as G1 continuity. Its default mode ofoperation is to output the patches it reads on standard output. If the patches fail to meet with tangentplane continuity, G1 prints a warning on standard error. This allows a user to insert G1 into the pipeline asa �lter and determine whether the patches meet continuously without a�ecting modules further down thepipeline.3.3 Binding of materialsA material gives the light re
ecting characteristic of a surface and is used by the renderer to determinethe color of the surface. When Tess tessellates a patch, it does not assign materials to the vertices. Instead,6

a separate program is called to bind materials to the vertices of the triangles. To date, we have implementedthree material binders: Mat0, KColor, and Radial. In Example 1, we see that the output of Tess is pipedinto Mat0, which assigns a uniform material to each vertex.In our research, we found it useful to shade our surfaces based on their curvature. Tess can be usedto compute either Gaussian or mean curvature at each vertex. Instead of Mat0, KColor would be called tomake the material assignment at the vertices based on this curvature information.We also found it useful to look at surfaces generated from data sets sampled from the sphere, the torus,and the capsule (a cylinder with two hemispherical caps). Radial reads in triangles and assigns materialsto the vertices based on the distance from each vertex to one of these surfaces. By looking at the coloring ofthe resulting image, we can see how accurately the �tted surface matches the true surface.3.4 Sgp, RenderThe next program in Example 1 is the simple translation program Sgp. It converts triangles in dstructformat to a format understood by Render, a standard triangle-based rendering program. Render generatesa shaded image which it writes to standard output. In Example 1, Render's output is redirected to the �leocta.wff. The images are stored in Washington File Format (w�), an image �le format developed locally.There is a set of programs with which to manipulate images in w� format. The image produced inExample 1 is actually a color image. It was converted to a gray scale image with the following sequence ofcommands:% rgb2i < octa.wff | DiffuseN -b 8 > octa.gray.wffThe program rgb2i converts an RGB image into an intensity (gray scale) image. DiffuseN is a programcapable of dithering both gray scale and color images [14].Render has a companion program, XRender. XRender also reads triangles in Render's triangle formatand displays these triangles in wire-frame on an X-window.3.5 ExamplesIn order to illustrate various operations allowed by our system, a series of further examples is presentedbelow. In the �rst example, we will look at a simple mesh on an X-window. Next, we will see how to bindmaterials to the surface generated in Example 1 based on the the curvature of this surface. We will alsosee how to run the �tter more e�ciently when we know we are generating the same output more than once.Finally, we will show how the pipeline changes for a surface �tting scheme that produces output other thanB�ezier triangles.In Example 1, we rendered a shaded image of the surface that Piper's scheme generates for the octahedronmesh. Suppose we want to view the mesh itself in wire-frame on an X-window. For creating just a wire-framedrawing of the mesh, we can use the simple �tter, Fitter0. We can also omit the material derivation. Toview the octahedron mesh in this way, we type to the command line:7

Figure 5: X-window display of octahedron mesh (Example 2).% Fitter0 < octa.m | Tess | Sgp | XRender (Example 2)The octahedron mesh is processed by Fitter0, which outputs a degree one B�ezier triangle for each facein the mesh. Tess is then called to translate the B�ezier representation into simple triangles. Next, Sgpconverts these triangles from dstruct format into the format used by XRender. XRender then displays thetriangles in an X-window. Figure 5 shows this display.Examining the image octa.wff generated in Example 1, we suspect that the surface constructed byPiper's scheme exhibits sudden shifts in curvature. We can run Piper's scheme again, assigning materials tothe surface according to its Gaussian curvature at the sampled points. We do this by typing:% Piper < octa.m | Tess -s 8 -kg | KColor | Sgp | Render > octa.wff (Example 3)Note that this example is almost the same as Example 1, except for two changes: we called Tess withan extra command
ag, and we replaced the call to Mat0 with a call to KColor. The `-kg'
ag tells Tessto compute both the position and Gaussian curvature at each sampled point. KColor binds materials to thevertices based on the Gaussian curvature at each vertex rather than binding a uniform material, as Mat0would have done.If we knew from the start that we would make both a uniform assignment of materials to the triangles andan assignment based on Gaussian curvature, we could have saved processing time by writing the trianglesto a �le to be read by both KColor and Mat0:% Piper < octa.m | Tess -s 8 -kg > octa.out% KColor < octa.out | Sgp | Render > octa.kg.wff (Example 4)% Mat0 < octa.out | Sgp | Render > octa.simple.wffNote that in this example, both Mat0 and KColor read the �le that has positional and Gaussian curva-ture information associated with the triangles. Mat0 does not use Gaussian curvature in its assignment ofmaterials. Its functionality is una�ected by this additional information.Some of the surface �tters do not output B�ezier patches. Instead, they sample the surfaces they buildand output a stream of triangles, bypassing the Tess program. If we wanted to generate a shaded image ofthe octahedron surface constructed by Nielson's method, we would type:% Nielson -s 8 < octa.m | Mat0 | Sgp | Render > octa.wff (Example 5)4 ABSTRACT DATA TYPES8

ForeachMeshFace(mesh,face)printf("face %s: ",face->name);ForeachFaceVertex(face,vertex)printf(" %s ",vertex->name);EndForeachprintf("\n");EndForeachFigure 6: C code to iterate over a mesh.There are several libraries available to an implementor of modules. These libraries are listed and brie
ydiscussed in this section. An implementor of a surface �tting scheme will be most interested in the meshlibrary and the geometry package. Implementors of modules further down the pipeline will only see dstructsas input. They will be interested in the dstruct library and perhaps the geometry package.4.1 MeshMeshes are a collection of vertices, edges, and faces. Internally, meshes are stored in a modi�ed formof the winged-edge data structure [1, 2]. An implementor of a surface �tting scheme, however, cares littleabout the internal form of the mesh. An implementor will typically want a way to parse the mesh into aninternal format; a method for iterating over all of the faces of the mesh; and, for each face, ways of lookingat the surrounding vertices and neighboring faces.Our mesh library provides a convenient access facility through a set of \iterators". One iterator iteratesover all of the faces of the mesh; another visits all of the vertices surrounding a face. Additionally, thereare commands for extracting data associated with the faces, edges, and vertices, as well as a command towalk along a user-speci�ed path through the mesh. Figure 6 shows a C code body that prints all the facesin a mesh along with the vertices surrounding each face. ForeachMeshFace and ForeachFaceVertex are Cmacros implementing two of our iterators. EndForeach is a macro that terminates our iterators.Each vertex of the mesh has an associated dstruct, which can be used to store arbitrary information.Typically this dstruct will be used to store geometric information about the vertices. Most programs pro-cessing meshes will frequently access this geometric data. However, access to dstructs is slow. It makes sense,then, to have another data structure associated with each vertex to hold frequently accessed information.Upon reading a mesh, the user may, if desired, call a routine that will iterate over the mesh and convert allthe geometric data from dstruct form to an internal format. Note that this extra structure exists only fore�ciency reasons. Dstructs could be used exclusively to hold this information.4.2 GeometryThe mesh and dstruct libraries are connected to a geometry package that is fully described in [7] (acondensed version appears in [6]). Brie
y, the geometry package provides relatively high-level supportfor performing geometric calculations. The package is based on coordinate-free abstractions of a�ne andEuclidean spaces. The use of coordinate-free concepts allows the package to perform automatically certain9

low level calculations. This package also performs geometric consistency checks to guarantee that requestedoperations are geometrically valid.4.3 DstructsAs mentioned in section 2.2, dstructs are the dynamic structures used to store data that
ow betweenmost stages of the pipeline. A dstruct is a hierarchical list of name-value pairs. Each value can be any oneof a scalar, a string, a list of name-value pairs, or an array of values. Programmers access dstructs through afunctional interface. Functions in this library include routines for reading dstructs from standard input andwriting them to standard output; routines to get and set values in the list; and functions to see if values existin a dstruct. To facilitate extracting commonly used data structures, separate libraries providing additionalaccess operations are layered over dstructs. For example, there is a library to access geometric objects suchas points and vectors.Internally, dstructs are stored as trees. The tree metaphor also provides a convenient way to think aboutaccessing values within the dstruct; the programmer just speci�es the path down the tree to the desiredvalue. This path is speci�ed with a syntax similar to C syntax for accessing a structure. The main di�erencebetween dstructs and C structures is that dstructs may be dynamically changed: �elds may be added ordeleted \on-the-
y."

10

5 EXPERIENCESWe created our pipeline to facilitate our research in surface �tting. We implemented several schemesand looked at shaded images of the resulting surfaces. These shaded images revealed shape defects in thesurfaces. Most of the papers describing these schemes had only rendered line drawings of their surfaces. Thedefects we observed, while readily apparent in shaded images, are not apparent in line drawings.Although these shaded images showed us that there were indeed problems with these schemes, it wasnot apparent to us what the causes of these problems were. We decided to look at other metrics of surfacequality to help us locate the source of the problems. As a second metric, we wanted to look at Gaussiancurvature plots. Tess was modi�ed to compute Gaussian curvature values, and we wrote KColor to falsecolor the triangles based on these values. Schemes such as Nielson's [11] and Herron's [9], however, generatesurfaces for which it is di�cult to compute the Gaussian curvature. For this reason, we used simple datasets (such as samplings of the sphere), and looked at the radial distance from the \true" surface (a sphere)to the �tted surfaces.Both methods of coloring were easy to integrate into our system: we simply changed the pipeline to callKColor or Radial instead of Mat0. With the exception of Tess, no other parts of the pipeline had to bechanged.These two metrics revealed the problem: the boundary curves of the patches were concentrating curvaturenear their endpoints, leaving relatively
at regions in the middle of the curves. All the schemes propagatedthis
atness inward, leaving large
at regions in the middle of the patches.We then wished to experiment with di�erent methods of creating boundary curves. In particular, wewanted to try to spread the curvature more uniformly along these curves and see if that gave us betterlooking surfaces.The method of curve construction we tried was proposed by de Boor, H�ollig, and Sabin [5]. This methodmatches curvature data at the vertices, as well as tangential and positional information. In order to get thiscurvature information, the second fundamental form had to be associated with each vertex of our data sets(a second fundamental form is a symmetric 2�2 matrix that encodes the curvature properties of a surfaceat a point).The changes that were made to add second fundamental forms to our vertices were fairly simple. First, anew �eld was added to the dstructs associated with the points in the mesh. Next, we wrote a set of routinesto compute curvature values, given the second fundamental forms in dstruct form. We then wrote a newboundary curve construction routine to implement the de Boor, H�ollig, Sabin method. The last step was toinsert the appropriate calls to this new boundary curve routine into some of the surface �tting schemes. Noother code had to be changed. Modules that read meshes but did not use second fundamental forms wereuna�ected by this additional data.We then used samplings of the sphere for our data sets and compared the de Boor, H�ollig, Sabin method ofconstructing boundary curves to the methods in the original papers. The de Boor, H�ollig, Sabin method gavesurfaces that were very close approximations to the sphere, while the surfaces produced by other methodslooked more like rounded polyhedra. The sphere was considered the ideal shape for these data sets becauseit has completely uniform curvature. 11

5.1 PerformanceIn terms of e�ciency, our system behaves quite poorly. The dstruct format is verbose, causing largeamounts of data to be passed between modules. The quantity of data alone degrades performance. There isalso a high overhead in parsing and accessing this data. Conversion to internal formats helps to reduce thecost of this access.However, for our work, system e�ciency is not a major concern. More important to us is the time neededto implement and experiment with new and existing surface schemes. By these measures, our system hasdone quite well. When presented with a new surface scheme, we only have to implement the correspondingsurface �tting module. The scheme's output should be either simple triangles or polynomial triangular B�ezierpatches. Either of these formats can be given to several metrics for judging the quality of the surface. If we�nd that a module needs additional information, we can add this information to the data stream withouta�ecting the functionality or having to rewrite modules that do not use this data. Thus, our system meetsour goals: it enables us to study new surface schemes without having to implement a large system for eachnew scheme. 6 CONCLUSIONIn summary, the system we have created is portable, modular, and extensible. Portability was achievedby writing our software in C and using an ASCII external data format. To create a modular system, webroke our system into tasks connected with UNIX pipes. There were two factors that enabled us to give oursystem the extensibility we needed. Our system's modularity was the �rst of these factors. The second wasthe use of a data format
exible enough to allow for changes to the data without a�ecting the functionality ofall the modules. Dstructs, our data format, are a compromise between �xed-format data and unstructureddata. The structure in dstructs allows all modules to use a common parser. The format is still
exibleenough to allow for changes to the data passed between modules without having to rewrite modules that donot use this data. 7 ACKNOWLEDGEMENTSThis work was supported in part by the National Science Foundation under grant numbers DMC-8802949,CCR-8957323, CCR-8612543, and IRI-8801932. Support from the Digital Equipment Corporation, Xerox,and IBM is also gratefully acknowledged.
12

8 REFERENCES[1] Bruce G. Baumgart. Geometric modeling for computer vision. PhD thesis, Stanford University, Stanford,CA, October 1974.[2] I. C. Braid, R. C. Hillyard, and I. A. Stroud. Stepwise construction of polyhedra in geometric modeling.In K. W. Brodlie, editor, Mathematical Methods in Computer Graphics and Design. Academic Press,1980.[3] E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary topological meshes. CAD,10:350{355, 1978.[4] Zoltan J. Cendes and Steven H. Wong. C1 quadratic interpolation over arbitrary point sets. IEEECG & A, 7(11):8{16, November 1987.[5] C. de Boor, K. H�ollig, and M. Sabin. High accuracy geometric Hermite interpolation. CAGD, 4(4):269{278, December 1987.[6] Tony D. DeRose. A coordinate-free aproach to geometric programming. In W. Strasser and H.-P. Seidel,editors, Theory and Practice of Geometric Modeling, pages 291{306. Springer-Verlag, Berlin, 1989.[7] Tony D. DeRose. Coordinate-free geometric programming. Technical Report 89-09-16, University ofWashington, Seattle, WA 98195, September 1989.[8] G. Farin. A modi�ed Clough-Tocher interpolant. CAGD, 2(1-3):19{28, September 1985.[9] G. Herron. Smooth closed surfaces with discrete triangular interpolants. CAGD, 2(4):297{306,December1985.[10] Stephen Mann, Charles Loop, Michael Lounsbery, David Meyers, James Painter, Tony DeRose, andKenneth Sloan. A comparison of parametric surface interpolation methods. In preparation.[11] Gregory M. Nielson. A trans�nite, visually continuous, triangular interpolant. In Gerald Farin, editor,Geometric Modeling: Algorithms and New Trends, pages 235{246. SIAM, 1987.[12] Bruce Piper. Visually smooth interpolation with triangular B�ezier patches. In Gerald Farin, editor,Geometric Modeling: Algorithms and New Trends, pages 221{233. SIAM, 1987.[13] L. A. Shirman and C. H. S�equin. Local surface interpolation with B�ezier patches. CAGD, 4(4):279{295,December 1987.[14] Kenneth Sloan. A hybrid scheme for color dithering. In SPIE/SPSE Symposium on Electronic ImagingScience and Technology, February 1990. 13

