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Approximate Continuity
for Functional, Triangular
Bézier Patches

Yingbin Liu, Stephen Mann∗

In this paper, we investigate a relaxation of the C1 continuity conditions
between functional, triangular Bézier patches, allowing for patches to meet approx-
imately C1. We analyze the cross boundary continuity of functional triangular
Bézier patches, and derive a bound for the discontinuity in the normals between
two patches based on their control points. We test our discontinuity bound on a
simple data fitting scheme using cubic patches.

1 Introduction
In computer-aided geometric design, piecewise polynomial patches, such as

Bézier patches, are often used to interpolate a set of data points and corresponding
normal vectors. Although infinite continuity is guaranteed inside the patch, the
cross boundary continuity is determined by the control points from adjacent patches.
To have the required cross boundary continuity, certain rules must be applied to
the control points. However, sometimes fulfillment of these conditions is impossible
when using a single polynomial patch per face. As a result, more patches have
to be used to achieve C1 continuity. For example, in functional data fitting with
piecewise polynomial triangular surface patches, typically three or more triangular
Bézier patches are fitted to each data triangle [1, 8].

In this paper, we analyze using approximate continuity, instead of precise con-
tinuity, to construct triangular, functional Bézier patch surfaces, where we allow
small discontinuities in the surface normals along the common boundary between
two patches. Such a relaxed form of continuity should be sufficient in many ap-
plications, such as NC machining, where the machining process only approximates
the desired surface. Likewise, in computer animation, if the discontinuity in surface
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Figure 1. Control points of a triangular Bézier patch

normals is not visible, then an approximately continuous surface model should be
sufficient, although parametric, not functional patches would be required.

Given the control points of two neighboring patches that meet with C0 conti-
nuity, we derive two bounds on the discontinuity angle between the surface normals
along the common boundary. To test the accuracy of our bound, we devised a sim-
ple data fitting scheme that fits a single cubic patch to each data triangle, where
only C0 continuity conditions are enforced.

2 Background
In this work, we are interested in triangular Bézier patch representations of

functions over the plane. A triangular Bézier patch of degree n specified in barycen-
tric coordinates relative to a domain triangle 4D0D1D2 is given by

R(t) =
∑

~,|~|=n

R~B
n
~ (t),

where ~ = (i, j, k) with i, j, k > 0, |~| = i + j + k and

Bn
~ (t) =

n!
i!j!k!

uivjwk.

Here (u, v, w) are the barycentric coordinates of the parameter t relative to the
domain triangle. The points R~ are the control points of the patch (see Figure 1).
In the functional setting, we wish to represent a height field over the xy-plane, i.e.,
z = f(x, y). If we use a Bézier patch with domain triangle 4D0D1D2 for a function
over the plane, then all of the xy-values of the control points are spaced evenly
within the domain triangle, with

Rxy
~ =

iD0 + jD1 + kD2

n
,

where Rxy refers to the x, y coordinates of the three space point R (Rz will be used
to refer to the z-coordinate of R). Thus, the only degrees of freedom in functional
Bézier patches are the z-coordinates of the control points.
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The boundaries of the triangular Bézier patch are given by the boundary
control points, and the cross boundary derivative along the boundary is given by
the difference of the first two layers of control points. For two Bézier patches of the
same degree to meet with C0 continuity, they must share common boundary control
points. For two functional Bézier patches to meet with C1 continuity, their adjacent
panels along the boundary must be coplanar (e.g., in Figure 2, for F and F̄ to meet
with C1 continuity, the control points F0, H0, F̄0, and H1 must be coplanar, the
control points F1, H1, F̄1, and H2 must be coplanar, and the control points F2, H2,
F̄2, and H3 must be coplanar). For additional details on triangular Bézier patches,
see [3].

For our relaxation to approximate continuity, we use the following defini-
tion [6]:

Let S be a piecewise, C0 surface. Define S to be ε-C1 if the maximum
angle between two surface normals at any point p on S is bounded by
ε.

As stated, the definition of ε-C1 allows for a surface to have a “razor edge”; we do
not consider these surfaces to be ε-C1 for ε < 90 degrees.

3 Bounding the discontinuity
In earlier work, discontinuity between adjacent triangular Bézier patches was

approximated by sampling the normals of the patches along the common boundary,
and computing the maximum angle between corresponding pairs of normals [2, 6].
This method has two weaknesses: first, it can be computationally expensive, and
second, in general the method computes an ε that is less than the maximum. The
difficulty in computing the true maximum is that the function for the discontinuity
is non-polynomial. In this section, we derive a bound for the discontinuity in the
surface normal based solely on the control points of the neighboring patches.
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Figure 2. Domain of patches F , F̄ , and G.

We begin by deriving a general bound in the discontinuity between two adja-
cent polynomial patches. To simplify the bound, we look at the case of cubic patches
that have equal normals at the ends of their common boundaries. We feel that the
case of equal normals at the ends of the common boundary is interesting, since by
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interpolating the position and derivatives at the corners of a data triangle, schemes
can often achieve polynomial precision (cubic precision in the case of the scheme
we used to generate test data for our paper). Although this polynomial precision
many not provide bounds on the discontinuity, it helps to control the discontinuity
between adjacent patches.

We focus on functional surfaces. Consider the case shown in Figure 2, where we
have two cubic Bézier patches F and F̄ meeting with C1 continuity, whose common
boundary we call H (this figure actually shows the orthographic projection of the
control points into the xy-plane; the control points themselves have arbitrary z
values). Since we are in the functional setting, the spacing between consecutive
Hxy

i is a constant h, and the spacing between each F̄ xy
i , Hxy

i pair is a constant g.
We can compute the normal vector for patch F̄ (which is also the normal of patch
F ) by calculating the cross product of the two directional derivatives in the x and
y domain directions:

~N =

(
n

n−1∑
i=0

(Hi+1 −Hi)Bn−1
i (t)

)
×

(
n

n−1∑
i=0

(F̄i −Hi)Bn−1
i (t)

)
.

To simplify the computation, we assume that the boundary H in the domain
is parallel to the y-axis, and that the bottom edges of F and F̄ in the domain are
parallel to the x-axis (in Section 4, the patches can have arbitrary domain triangles;
we perform a change of basis on those patches to yield the arrangement we have just
described). Letting ~Hi = Hi+1 −Hi and ~̄F i = F̄i −Hi, we have ~Hx

i = 0, ~Hy
i = h,

and ~̄F
x

i = g, ~̄F
y

i = 0. With

~Hi = ~Hx
i ~x + ~Hy

i ~y + ~Hz
i ~z = 0~x + h~y + ~Hz

i ~z

~̄F i = ~̄F
x

i ~x + ~̄F
y

i ~y + ~̄F
z

i ~z = g~x + 0~y + ~̄F
z

i ~z

~N can be calculated as

~N =

(
n

n−1∑
i=0

[0, h, ~Hz
i ]Bn−1

i (t)

)
×

n

n−1∑
j=0

[g, 0, ~̄F
z

j ]B
n−1
j (t)


= n2[h

n−1∑
j=0

~̄F
z

jB
n−1
j (t), g

n−1∑
i=0

~Hz
i Bn−1

i (t),−hg] (1)

Now consider a patch G over the same domain as F̄ that shares the Hi bound-
ary control points of F , but whose control points differ from F̄ elsewhere. We can
think of the Gi as being displaced from the F̄i along the ~z-axis: Gz

j = F̄ z
j + zj .

The equation for the normal ~N ′ of patch G along the boundary H is (based
on Equation 1)

~N ′ = n2[h
n−1∑
j=0

(~̄F
z

j + zj), g
n−1∑
i=0

~Hz
i ,−hg]Bn−1

i (t)Bn−1
j (t)
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= ~N + n2
n−1∑
j=0

[hzj , 0, 0]Bn−1
j (t). (2)

Letting

I = n2
n−1∑
j=0

[hzj , 0, 0]Bn−1
j (t),

we have
~N ′ = ~N + ~I.

The relationship among ~I, ~N and ~N ′ is shown as in Figure 3(a). In the following
sections, we describe two methods to bound the angle between N and N ′.

3.1 Method 1

The angle θ between N and N ′ is

θ = arcsin

(
| ~N × ~N ′|
| ~N || ~N ′|

)
= arcsin

(
| ~N × ( ~N + ~I)|

| ~N || ~N ′|

)
= arcsin

(
| ~N × ~I|
| ~N || ~N ′|

)

= arcsin

(
n4h2|

∑n−1
j=0 zjB

n−1
j (t)[0, g,−

∑n−1
i=0

~Hz
i Bn−1

i (t)]|
| ~N || ~N ′|

)
. (3)

Using Equation 3, it is difficult to calculate a true maximum value for θ. We
can calculate an upper bound for θ by finding the maximum/minimum value for
each part in the numerator and denominator separately.

Theorem 1. For functional triangular Bézier patches F and G, arranged as shown
in Figure 2 and discussed in the text, the bound on the angle θ between the normals
of the two patches along their common boundaries is given by

θ ≤ arcsin

(
n4h2Lz

√
g2 + (Lh)2

L ~NL ~N ′

)
, (4)

Where

Lz = max

| n−1∑
j=0

zjB
n−1
j (t)|

 , Lh = max

(
|
n−1∑
i=0

~Hz
i Bn−1

i (t)|

)
,

and L ~N/L ~N ′ denote the minimum length of ~N and ~N ′ as we vary t over [0, 1].

The proof of this theorem is simple. Since Lz and Lh are degree n− 1 Bézier
curves, taking the maximum absolute value of zj and ~Hz

i will generate the maximum
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Figure 3. Determining a bound on θ.

values. For function L ~N , we bound

L ~N ≥
∣∣n2[h min

∣∣ n−1∑
j=0

~̄F
z

jB
n−1
j (t)

∣∣, g min
∣∣ n−1∑

i=0

~Hz
i Bn−1

i (t)
∣∣,−hg]

∣∣
≥ n2

∣∣[h Zmin(F̄ z
j ), g Zmin( ~Hz

i ),−hg]
∣∣

where Zmin(ai) is zero if the ai are of mixed sign, and is the minimum of the
absolute values of the ai otherwise. Similiarly, we have the definition of L ~N ′ as

L ~N ≥ n2
∣∣[h Zmin(Ḡz

j ), g Zmin( ~Hz
i ),−hg]

∣∣.
If patches F and G are both cubic triangular Bézier patches, and the panels at

each end of the boundary are coplanar, then the control points of these end panels
have zero z displacement, i.e., G0 = F̄0 and G2 = F̄2, and z0 = z2 = 0. Thus,
the only freedom to manipulate is G1. The upper bound defined by Equation 4
simplifies to

θ ≤ arcsin

(
n4h2|z1|

√
g2 + (Lh)2

2L ~NL ~N ′

)
. (5)

Here the extra factor of 2 in the denominator is because the Bernstein polynomial
B2

j (t) obtains its maximum value over [0, 1] at t = 1
2 , and B2

j ( 1
2 ) = 1

2 .

3.2 Method 2

Theorem 2. For functional triangular Bézier patches F and G, arranged as shown
in Figure 2 and discussed in the text, the bound on the angle θ between the normals
of the two patches along their common boundaries is given by

θ ≤ arcsin
(

hn2Lz

2L

)
, (6)

Where Lz is defined as in method 1 and

L = min(L ~N , L ~N ′).
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Proof. Our goal is to bound the angle θ between ~N and ~N ′ for t ∈ [0, 1]. For now,
assume that | ~N | ≤ | ~N ′|. As illustrated in Figure 3(a), I ′ is the vector that forms
a chord on the circle of radius | ~N |, where its tail is placed at the head of ~N with
|I| = |I ′|, and I · I ′ ≥ 0. Looking at Figure 3(a), we see that θ ≤ φ. For any ~N and
~I of fixed length, angle φ reaches its maximum value when | ~N | = | ~N ′| (Figure 3(c)).
We can bound θ by computing a bound on φ:

θ ≤ φ ≤ 2 arcsin

(
|~I|
2L

)

= 2arcsin

(
n2
∣∣∑n−1

j=0 [hzj , 0, 0]Bn−1
j (t)

∣∣
2L

)

= 2arcsin
(

hn2Lz

2L

)
(7)

We now look at a special case of two cubic Bézier patches F and G, where
the panels at each end of the boundary are coplanar. As mentioned in method 1,
we have G0 = F̄0 and G2 = F̄2, therefore z0 = z2 = 0. Equation 6 simplifies to

θ ≤ 2 arcsin

(
|h9
∑2

j=0zjB
2
j (t)|

2L

)

≤ 2 arcsin
(

9h|z1|
4L

)
. (8)

Again, the Bernstein polynomial B2
j (t) obtains its maximum value over [0, 1] at

t = 1
2 , and B2

j ( 1
2 ) = 1

2 .
For any approximate C1 continuity surface, we can use the minimum result

of the two methods as a bound of the discontinuity angle.

4 Data fitting scheme
To test our scheme, we used samplings of the Franke functions. By vary-

ing the sampling density, we obtained a set of ε-C1 surfaces with a range of C1

discontinuities.
The data fitting scheme solves the following problem:

Given: A triangulation T of a region of the plane, with z-values and
normals values at the data points.

Find: A piecewise polynomial surface that interpolates the data points
and the normals.
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The following ε-C1 construction is the first step of a scheme that appeared
in [7]. Three types of control points are constructed: data points, boundary points
and one internal point. For a triangle of data T = 4P0P1P2, we construct a cubic
Bézier patch R (whose projection in the xy-plane is shown in Figure 1) by the
following steps:

1. Set the z values of the three corner data points (black points in Figure 1) to
the z values of the vertices of T :

Rz
3,0,0 = P z

0 , Rz
0,3,0 = P z

1 , Rz
0,0,3 = P z

2 .

This ensures that our patch interpolates the positional data of T .

2. For the other 6 boundary control points (in gray), calculate the intersection
of a line parallel to the z-axis with the tangent plane of the nearest corner
point. For example, to compute R2,1,0, we intersect the line through Rxy

2,1,0 in
the direction of the z-axis with the plane passing through P0 and the normal
stored at P0. The z value of this intersection point is used as the z value
of R2,1,0. The other five boundary control points are computed in a similar
manner.

This forces the patch to interpolate the normal data of T , and ensures that
all the control points surrounding a data point are coplanar.

3. Set the internal control point (the white point in Figure 1) by evaluating R
at the vertices of the three adjacent data triangles and averaging the result.
Details of this step are given in the next section. This step is the same as
the one used by Foley-Opitz to set the center point in their hybrid patch
construction [4].

4.1 Setting the internal control point

For the data triangle 4P0P1P2, and the adjacent data points Q0, Q1 and Q2

(Figure 4), the last step of our construction needs to calculate the z-coordinate of
the internal control point of R.

P0

R111

P2

Q1

Q0

Q2

P1

Figure 4. Evaluation at the adjacent data points

We will compute three values for the missing control point R1,1,1: R0, R1, and
R2. Each value will be computed by evaluating the patch we are constructing, R, at
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the three Qxy
i values, and require R(Qxy

i ) = Qz
i . Each evaluation gives us a linear

equation in the unknown control point R1,1,1. Solving each equation gives us one
of the Ri, which we average to get the value for R1,1,1. The details are as follows.
Let (t0i , t

1
i , t

2
i ) be the barycentric coordinates of Qxy

i relative to 4P xy
0 P xy

1 P xy
2 .

Evaluating R at Qxy
i gives us

Qz
i =

∑
~,|~|=3

Rz
~ B

3
~ ((t0i , t

1
i , t

2
i ))

= Rz
i B

3
(1,1,1)(t

0
i , t

1
i , t

2
i ) +

∑
~,~6=(1,1,1)

Rz
~ B

3
~ ((t0i , t

1
i , t

2
i ))

=⇒ Rz
i =

Qz
i −

∑
~,~6=(1,1,1) Rz

~ B
3
~ ((t0i , t

1
i , t

2
i ))

B3
(1,1,1)(t

0
i , t

1
i , t

2
i )

We then set Rz
1,1,1 = (Rz

0 + Rz
1 + Rz

2)/3.
Note that if all six data points and normals (P0, P1, P2, Q0, Q1, Q2) come

from a single cubic polynomial C, then R0 = R1 = R2 = R1,1,1 and the surface
patch we construct will reproduce this polynomial, i.e., R = C.

While this scheme is not ideal for data fitting, it meets the requirement for
generating our test data; in particular, the cubic convergence results in smaller
discontinuity as we increase the sampling density of the base functions.

4.2 Boundary patches

For data fitting schemes like ours, there is usually a special construction for
the boundary data triangles, since they have only one or two neighboring triangles
rather than the three neighbors that internal data triangles have. For the scheme
we describe in this section, the boundary triangles could be handled by, in Step 3,
just computing one or two of the Ri values, and averaging those to compute R1,1,1.

In this paper, however, our interest in the data fitting scheme is as a method
for generating surface patches to test the ideas of ε-C1 continuity. To simplify the
analysis, we did not want complicating factors resulting from special cases on the
boundaries. Therefore, rather than use the special case construction described in
the previous paragraph, we did not construct patches for the boundary layer of
triangles in the triangulation.

4.3 Applying the continuity analysis

To use the approximate continuity result of Section 3, the control points of
two adjacent patches F and G must be arranged as in Figure 2 (i.e., the common
boundary H must be aligned with the y-axis, and another boundary must align
with the x-axis). If the domains of our patches do not meet these constraints, we
can change the representation of the patches to the required configuration as follows
(see Figure 5):

1. Create a coordinate frame F = {O, x′, y′, z′}, with the origin O at one end
of the common boundary, and call the other end of the boundary as E ; align
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Gp

Fp

O

E

y′

x′ O x′

y′

Figure 5. Changing frames/domains for the approximate continuity calculation.

the y′ basis vector with the common boundary; set the x′ basis vector to be
perpendicular to y′ in the xy-plane; and set the z′ basis vector to be parallel
to the z axis.

2. Position two points Fp and Gp in the domain along the x′-axis, with |O −
Fp| = |O −Gp| = |E − O|.

3. Re-parameterize F by evaluating F at Fp using the de Casteljau algorithm [3],
and extracting the subpatch over the domain 4FpOE . A similar process can
be used to extract the representation of G over the domain triangle 4GpEO.

We can now use the continuity bounds described in Section 3, using the coor-
dinates of the control points relative to F . To use the result in Section 3, we have
to know the position of the control points that have precise continuity with F (e.g.,
the F̄i of Figure 2). The points F̄i will have the same xy-positions as the Gi, but
have a z-value so that patch F̄ meets patch F with C1 continuity. The points F̄0

and F̄2 already meet the required C1 planarity conditions; we just need to find F̄1,
which is given by

F̄1 = t0H1 + t1H2 + t3F1,

where (t0, t1, t2) are the barycentric coordinates of Gxy
1 relative to 4Hxy

1 Hxy
2 F xy

1 .

5 Tests and results
For our tests, we sampled the six “Franke functions” as described by Gran-

dine [5], and fit approximate C1 surfaces to this data using the scheme described in
Section 4. Since we wished to test the boundary discontinuity and the convergence
properties as we increased the sampling, we used uniform samplings of these six
functions.

We bounded the discontinuity in the surface normals between adjacent patches
using three methods. The first was by sampling the common boundary of every pair
of adjacent patches at 100 points, computing the surface normals, and calculating
the angle between these normals. The other two methods are using the bounding
methods we describe in Section 3 of this paper. Table 1 shows the maximum
discontinuity of the sampled angles and correspondent two upper bounds for all
curves; all the numbers are in degree.

The Grid column refers to the number of cells in the square grid to which
we fit patches; two triangular patches were fit to each square of the grid. We did
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Table 1. Discontinuity of Franke function surfaces.

Functions Grid Discontinuity Method 1 Method 2

10×10 26.487492 67.894637 35.814840
20×20 8.254011 11.494557 8.597684

F1
40×40 1.226258 1.469088 1.266205

10×10 8.059139 13.315756 11.347997
20×20 2.676044 3.660120 3.431178

F2
40×40 0.438722 0.515085 0.541983

10×10 1.430003 1.630511 1.498616
20×20 0.231934 0.240315 0.235121

F3
40×40 0.030659 0.030940 0.030764

10×10 0.512760 0.545877 0.519773
20×20 0.069462 0.070669 0.069708

F4
40×40 0.008862 0.008901 0.008870

10×10 5.426008 9.497992 6.355084
20×20 0.988369 1.235251 1.039557

F5
40×40 0.137503 0.146953 0.139415

10×10 0.432433 0.503140 0.506612
20×20 0.081190 0.089400 0.097062

F6
40×40 0.013420 0.014184 0.016166

not fit data to the boundary layer of squares, so the actual number of samples we
took from the corresponding Franke function was three higher in each dimension
(e.g., a 10 × 10 grid means we took 13 × 13 samples). The samples were taken
so that (ignoring the boundary layer) the outer layer aligns with the [0, 1]-square
in the domain. As shown in Table 1, although the discontinuity of our scheme is
noticeable at low samplings of the Franke function, the discontinuity drops quickly
when sampling density is increased; the discontinuity appears to drop as O(h);
however, we have not proven this result.

From Table 1, our bounds on the discontinuity appear to be a tight bound on
the actual discontinuity. The bound is not quite satisfying for some surfaces such
as method 1 for function 1 at grid 10 × 10, but it improves as the sample density
is increased. Comparing the two bounds, we find that bound of method 1 is not
as good as the bound for method 2 for most surfaces. If we look at a plot of the
normal discontinuities for all the patch boundaries (Figure 6(d)), we again see that
the maximum discontinuity for most boundaries is small, and as expected that the
maximum for any one boundary occurs near the middle of the curve but not exactly
at t = 0.5.

If we plot the ratio of the estimated discontinuity to the maximum sampled
discontinuity for all boundaries of one surface, we see that the ratio can be higher
than the value in Table 1. Plots were generated for Function 1, on a 20 × 20
grid (Figure 6(a,b,c)). Each point on the graph is the ratio of our error bound to
the numerically computed maximum error for the boundary between two pairs of
patches. From the plot, we see that using method 1 (Figure 6(a)) can generate more
boundary curves with lower ratio than using method 2 (Figure 6(b)), especially for
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Table 2. Ratio distribution for Franke Function 1.

Ratio 1.0-1.5 1.5-2.0 2.0-2.5 2.5-3.0 3.0-3.5 3.5-

Method 1 84.43 12.76 1.98 0.34 0.09 0.0

Method 2 77.33 15.86 4.57 1.29 0.60 0.34

Combined 94.83 5.17 0.0 0.0 0.0 0.0

Table 3. Ratio distribution for other Franke functions.

Ratio 1.0-1.1 1.1-1.2 1.2-1.3 1.3-1.4 1.4-1.5 1.5-

Method 1 71.72 5.86 9.48 6.21 0.00 6.72
Method 2 74.66 8.97 9.48 6.55 0.00 0.34

F2
Combined 74.66 8.97 16.03 0.0 0.00 0.34

Method 1 90.17 9.57 0.26 0.00 0.00 0.00
Method 2 71.43 17.84 8.71 3.02 0.00 0.00

F3
Combined 96.12 3.88 0.00 0.0 0.00 0.00

Method 1 100.0 0.00 0.00 0.00 0.00 0.00
Method 2 68.10 31.90 0.00 0.00 0.00 0.00

F4
Combined 100.0 0.0 0.00 0.00 0.00 0.00

Method 1 68.97 18.97 7.41 3.28 1.03 0.34
Method 2 72.24 10.34 6.90 4.48 1.90 4.14

F5
Combined 78.45 15.34 4.48 1.38 0.34 0.0

Method 1 96.03 3.79 0.17 0.00 0.00 0.00
Method 2 75.00 21.38 2.24 0.86 0.34 0.17

F6
Combined 99.31 0.69 0.0 0.0 0.0 0.0

those with lower discontinuity angles. But method 2 is better for boundary curves
where there is a high normal discontinuity. We can take the minimum of the two
results as the final bound (Figure 6(c)). Table 2 shows the percentage of boundaries
for which the ratio of our error bound methods to the sampled method lie within
different ranges for function 1. Table 3 shows the percentage distribution for other
functions. All the surfaces in Table 2 and Table 3 are sampled on a 20 × 20 grid.
For the combination of the two methods, the majority of the points are in the lower
end of the ratio (Figure 6(c)).

6 Future work
In this paper, we focused on the aproximate continuity of cubic Bézier patches

in the functional case. This work is really a first step in working with approximate
continuity; although we derived an upper bound for the cross boundary discontinu-
ity, we would like to compute a tighter bound, and extend the bound to arbitrary
degree. Alternatively, rather than compute the bound based on the control points
of the patch, we might be able to base a discontinuity bound on samples of the
normals along the patches.

The construction we gave here built patches and then tested the normal dis-
continuity. The data fitting scheme in this paper is only for testing purpose, but we
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(a) Bound over sampled error ratio, method 1.
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(b) Bound over sampled error ratio, method 2.
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(c) Bound over sampled error ratio, minimum.
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(d) Discontinuity curves.

Figure 6. Plots of Franke function 1.

are also interested in making a construction that guarantees a level of approximate
continuity, one that perhaps trades off the level of discontinuity with curvature
properties of the patch.

Additionally, we want to extend the approximate continuity construction to
parametric surfaces. This will be more complex, as many of the simplifications we
used in computing the bound for the functional case do not apply in the parametric
setting.

As a final note, it is important to realize that the visibility of the discontinu-
ity depends not just on the angle between the normals, but also on the material
properties, the viewing angle, etc. Perceptual studies should be made to determine
the maximum angle of allowable discontinuity for various material properties.
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