Chapter 8

A Survey of Parametric
Scattered Data Fitting Using
Triangular Interpolants

This paper has been published as a chapter in “Curve and Surface Design”, H. Ha-
gen, (ed), STAM, 1992
Some of the figures from that paper are missing from this version, as are all of the

black-and-white photographs.

There are currently a number of methods for solving variants of the
following problem: Given a triangulated polyhedron P in three space with or
without boundary, construct a smooth surface that interpolates the vertices
of P. In general, while the methods satisfy the continuity and interpolation
requirements of the problem, they often fail to produce pleasing shapes.
The purpose of this paper is to present a unifying survey of the published
methods, to identify causes of shape defects, and to offer suggestions for
improving the aesthetic quality of the interpolants.

8.1 Introduction.

The problem of passing a surface through a set of data points arises in nu-
merous areas of application such as medical imaging, geological modeling,
scientific visualization, and geometric modeling. Variants of this problem
have been approached from many directions. Tensor-product B-splines work
well for modeling surfaces based on rectilinear control nets but are not suffi-
cient for more general topologies. Triangulated data, however, can represent



arbitrary topologies. In this paper, we present a survey of a class of schemes
that address the problem of fitting a surface to triangulated data.

One way to categorize surface fitting schemes is by the locality of data
used in constructing a portion of the surface. A global scheme will use arbi-
trarily many of the data points in constructing each portion of the surface;
a local scheme will only consider those points near the portion of the surface
it is creating. Only local schemes are considered in this paper.

If the surface to be constructed lies above the plane it can be described
as S(z,y) = (z,y, f(z,y)). The data set is then referred to as scalar data,
as the surface can be thought of as a scalar valued function over the plane.
Such data can be interpolated with a C! surface, using, for instance, the
methods surveyed by Barnhill [1] and Franke [11].

A parametric scheme, on the other hand, constructs a vector valued
surface, S(u,v) = (2(u,v),y(u,v), 2z(u,v)) and, unlike a scalar method, is
capable of representing arbitrary topologies. The parametric problem is
generally considered to be more difficult than the scalar variant. It has
been shown, for instance, that the data cannot always be interpolated with
a parametrically continuous surface [19]. Instead, the continuity conditions
have to be relaxed to G' (tangent plane) continuity. The schemes surveyed
in this paper are all parametric schemes.

In addition to geometric data, parametric interpolation schemes require
information about the topology of the desired surface. The topological infor-
mation is usually specified as adjacency information relating the data points
(vertices), edges, and faces. The schemes we have considered all assume that
faces are triangular (i.e., three bounding edges per face), and that any num-
ber of faces may join at a vertex. These “triangular meshes” are sufficiently
general to represent arbitrary topological surfaces.

Finally, surface fitting schemes may interpolate or approximate the given
data. Interpolating schemes construct surfaces that pass through the given
data points. Approximating schemes produce surfaces that retain the topol-
ogy of the input data, but only pass near the data points. For some applica-
tions, an interpolating scheme is preferred, while for other applications, an
approximating scheme may be a better choice. Here we will only consider
interpolating schemes, and we will ignore the issue of specialized boundary
conditions.

Thus, the primary goal of this paper is to present a unifying survey
of local, parametric, triangular, interpolatory data fitting schemes. The
surveyed schemes all proceed by first building boundary curves for a face
and then filling in the interior of the face with one or more surface patches.



While all the schemes surveyed meet mathematical smoothness condi-
tions, none of them produces surfaces with pleasing shape. Further, despite
the diversity of the methods, all the schemes we implemented produced sim-
ilar shape defects. Qur investigations indicate that these poor shapes are
primarily an artifact of the construction of boundary curves.

In Section 8.3, we present some background material. Three methods of
constructing a tangent plane continuous join between two patches are pre-
sented in Section 8.4. In Section 8.5, the surveyed schemes are described. In
Section 8.6, we look at the surfaces produced by these schemes and consider
ways of improving their shapes. In Section 8.7, we summarize and present
some recommendations.

8.2 Notation.

Throughout this paper, scalars and scalar valued functions will be denoted
by non-bold type letters and Greek letters, such as r and a. Points and point
valued functions will be denoted with boldface letters, such as V. Vectors
will be represented by boldface letters topped with an arrow, such as T.
Unit vectors will be denoted as C.

Surface patches will be denoted by the boldface letters F and G. Usually,
these surface patches will be in triangular Bézier form [10]. Often, we will
consider the case when F and G are adjacent patches. In this case, the
control points associated only with patch F will be denoted by F;, the control
points associated only with patch G will be denoted by G;, and the control
points common to both patches will be denoted by H;.

The vertices of a triangle in the domain of a patch will be denoted by p,
q, and r. The corresponding vertices in the range will be described by Vp,
Vg, and Vpg.

The directional derivative of a surface F in the direction r is denoted
by DgF. The derivative of a parametric curve H(¢) is denoted H'(t). We
will have use for a certain radial direction in the triangle pqr, namely,
rp(t) = ((1 —t)q +tr) — p.

Finally, B*(t) will denote the ith Bernstein polynomial of nth degree,
ie.,

B t) = ( ’Z’ ) (1-t)" i,



8.3 Background.

Local interpolation schemes generally construct a surface consisting of mul-
tiple surface patches. In order for the entire surface to look smooth, certain
continuity conditions must be met at every boundary between two patches.
To avoid holes in the surface, every pair of neighboring patches must meet
with C° continuity. To ensure that adjacent patches meet smoothly, one
might also want them to meet with a continuous first derivative. However,
this is not possible for surfaces of arbitrary topology. An alternate approach
is to construct the surface patches to meet with continuous tangent planes
along the boundaries. The patches are then said to meet with G continuity
(cf. [2, 20]). Several methods of ensuring tangent plane continuity will be
presented in Section 8.4.

A second issue is what is sometimes referred to as the vertex consistency
problem. This problem occurs when trying to construct a single C'? patch
for each triangular face of the data. The G! continuity conditions between
patches set up a system of constraints around each data point. For a vertex
of even degree greater than four, it has been shown that this system can not
necessarily be satisfied [32].

There are primarily two approaches taken to avoid this problem. The
first approach constructs multiple patches per face, which successfully de-
couples the cycle of constraints. A second approach is to construct patches
that are not C? at the data points. The schemes surveyed in this paper all
use one of these two approaches.

A third approach to solving the vertex consistency problem is to con-
struct a “C? consistent” curve network. Peters has shown that if the bound-
ary curves adjacent to a data point all agree with a common second fun-
damental form, then the above mentioned cycle of constraints can be satis-
fied [28]. Note that while this is a sufficient condition for satisfying the vertex
consistency problem, it is not a necessary condition. An alternate approach
to constructing a C? consistent curve network can be found in [23].

8.4 Tangent Plane Continuity.

Fitting surface patches together with tangent plane continuity has been
approached from several directions. Farin [7] and Piper [29] give sufficient
conditions for two polynomial patches to meet with G continuity. A second
approach, taken in [4, 19, 21, 26], is to first create a cross boundary tangent
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Figure 8.1: Bézier control points used in Farin’s G! conditions.

vector field for each boundary and then to construct patches that agree with
these cross boundary fields.

8.4.1 Farin.

Farin [7] presented conditions for two degree n polynomial patches with a
common degree n — 1 boundary to meet with G' continuity. Labeling the
Bézier control points as in Figure 8.1, Farin’s conditions are as follows.

Given two degree n polynomial patches with a common degree n — 1
boundary, where

Go = oa1Hp+ azH; + aF,y, o1 +ay+a=1,

(81) G, = asH,_ 1 +asH,+ aFna agtogt+a= 17

then the two patches meet with G' continuity if

n—1

7
G; = - (a1 H; + axH; 11 + oF;) + ;(Q3Hi—1 + asH; + oF;).

Equation 8.1 can be formulated in terms of the areas of the shaded
triangles of Figure 8.1:

area(Go, Ho,H;) area(Gn-1,H,_1,H,_»)

area(Fo, Ho,H;)  area(F, ;,H, {,H, ,)




Figure 8.2: The curves used in Piper’s G! conditions.

8.4.2 Piper.

Piper [29] develops sufficient conditions for two quartic patches with quar-
tic boundaries to meet with G' continuity. He begins by noting that the
following equation must hold for patches F and G to meet G*:

(8:2) e(I(t) + F(H)I(t) + 9(K(t) + h(t)L(t) = O,
where e, f, g, and h are scalar functions such that
e(t) + F(t) + g(t) + h(t) = 0
for ¢ € [0,1], and where
I(t) =) B)(t)Hi,
J(t) =) Bi(t)H;,
K(t) =) B/(t)F;,
L(t) =Y B}(t)G..

These curves are illustrated in Figure 8.2. Here, the points Fqg, F3, Go, G3,
Hy, H,, H3, and H, are known.

Piper restricts e, f, g, and h to be linear functions. Equation 8.2 then
reduces to a 3 X b system of linear equations, where the unknowns are the
control points F1, Fy, G1, G, and Hs. In certain situations, the functions
e, f, g, and h are all constant functions. In this case, the 3 X 5 system of



equations reduces to a 2 X 5 system. In summary, these constraints represent
underdetermined conditions on the unknown control points to achieve a G*
join of the patches.

8.4.3 Chiyokura-Kimura, Herron, Jensen.

As mentioned earlier, one approach to creating surface patches that meet
with G! continuity is to first construct a field of cross boundary tangent
vectors along the boundary between two patches, using data common to both
patches. The cross boundary tangent field, together with the first derivative
vector of the boundary curve, defines a tangent plane field all along the
boundary. Next, the two patches are constructed, one on either side of the
boundary, that match this tangent plane field along the boundary. The two
patches will therefore meet with G continuity. This is the approach taken
in [4, 19, 21, 26]. We present now the method of Chiyokura and Kimura
and show its relationship to other constructions.

Although Chiyokura and Kimura’s cross boundary construction was orig-
inally intended for rectangular patches, it readily extends to the construction
of quartic triangular Bézier patches [31]. The method uses the boundary
data for two adjacent patches to construct the Bézier control points that
influence the tangent plane behavior along their common boundary. The
boundary data consist of a cubic polynomial boundary curve and a pair of
tangent vectors at each end of the boundary curve (Figure 8.3 shows this
data in Bézier form). Two quartic interior Bézier control points for each
patch are set so as to match the tangent plane field. We will give the con-
struction for only one patch since the construction for the other patch is
identical.

The cross boundary tangent vector field is defined by linearly blending
two vectors, one in each of the tangent planes at the end points. Chiyokura
and Kimura choose these vectors to be unit vectors perpendicular to the
tangents at the end points of the boundary curve. For patch F, this blend
is given by

C(t) = (1 —1t)Co + tC;.

The two perpendiculars Co and C; are unique, up to sign. The signs are
chosen based on the vectors ﬁo and f‘}, as shown below, where f‘z =F,—-H,.
C(t) together with H'(t) completely specifies the tangent plane field along
the boundary.

For F to agree with the tangent plane field given by H'(t) and C(¢),



Figure 8.3: Boundary data used by Chiyokura and Kimura’s construction.
The solid points are the known control points; the hollow points are con-
structed so that the two patches meet G Note that the Hs are cubic control
points, while the Fs and Gs are quartic control points.

there must exist functions k(¢) and h(t) such that
(8.3) DeF(0, 1,1~ 1) = k(1) - G(0) + h(2) - B (1),

where () is the radial direction in the domain of F.
The values of k(t) and h(t) can be determined at the end points by
evaluating Equation 8.3 at t =0 and ¢t =1:

ﬁ0:k0‘60+h0‘ﬁ07
F3=7<?1'(A31-|-h1'1'412,

where H; = H;,; — H;, ko = k(0), k1 = k(1), ho = h(0), and hy = h(1).
For h and k to interpolate these end point conditions, they both must be at
least linear functions. If we restrict them to be no more than linear, then
each is uniquely determined:

k(t) = ko - (1— t) + by - £,
h(t) = ho - (1 —t) + hy - .

Rewriting Equation 8.3 in the cubic Bernstein basis, we can use the
coefficients to B3(t) and B3(t) to determine the desired interior control
points, resulting in:

]_ PN A — —
(8.4) F, = g{(ko + k1)Co + koC1 + 2hoH; + h1Ho} + Hy,
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1 . N - .
(8.5) F, = g{lchO + (ko + k1))C1 + hoHs + 2h1H1} + Ho.

There is still some freedom left in Equation 8.3. If h(t) is a linear func-
tion, then the product k(t) - C(¢) must be a polynomial of no higher than
cubic degree. In the above formulation, this product is only a quadratic
polynomial. Either k(t) or C(t) could be increased from a linear function to
a quadratic function. Increasing k(¢) to a quadratic function gives a scalar
degree of freedom, while increasing the degree of (_j(t) yields a vector degree
of freedom. Jensen [21] used the former generalization. He used the same
linear blend of unit vectors for C(t), but used the following quadratic scale
function:

ko + k1)

k*(t) = kg . uo(t) + C- ( 9 ul(t) + kl . U2(t),

where
ug(t) = 26% — 3t + 1, wy(t) = 4t — 4%, uy(t) = 22 — ¢,

and C is a scalar shape parameter.! For C = 1, k*(t) = k(¢).

A second degree of freedom in Equation 8.3 is in the choice of Co and
C1. These two vectors may be chosen in any fashion that uses information
available to both patches, where the construction from both sides gives the
same vectors with opposite sign. For example, in a later paper [3], Chiyokura
defines éo and él as

~ Gy —Fy
Co= 2020
0 |G0_F0|7
. G; — F
& - Ga—Fs
|G3 — F3|

Note that this definition of éo and él is affine invariant and requires knowl-
edge about both patches neighboring the boundary, whereas the earlier def-
inition is not affine invariant and only uses information about the boundary
curve.

Although Herron [19] approaches the problem somewhat differently, his
construction and the Chiyokura-Kimura construction build the same field
of cross boundary tangent vectors along the boundary curves.

'In Jensen’s paper, u; is given as u; (t) = 4t — t?>. However, without the factor of 4
scaling t?, k*(1) does not interpolate k;.



8.5 Parametric Schemes.

The schemes studied in this survey fall into two categories: the split domain
schemes and the convex combination schemes. The split domain schemes
surveyed were presented in [21, 29, 31]. The convex combination schemes
surveyed were presented in [19, 22, 26]. All methods surveyed build a surface
for each triangular face by first computing boundary curves around the tri-
angle, and then constructing one or more patches that match this boundary
data. The two categories differ in their solution to the vertex consistency
problem.

8.5.1 Split Domain Schemes.

An extensive body of literature exists that discusses the properties of poly-
nomial Bézier patches (cf. Farin [10]). If the data could be fit with Bézier
patches, we could draw on this body of knowledge to compute various prop-
erties of the surface. However, if the boundary curves are constructed in-
dependently of each other, then a single Bézier patch cannot in general be
used to interpolate the data, as the vertex consistency problem cannot in
general be solved. Split domain schemes avoid this problem by constructing
three patches per face, essentially splitting the domain triangle into three
subtriangles, as was done by Clough and Tocher for scalar valued data [9].

After splitting, each of the subpatches is used to interpolate the data
along one of the boundaries. Splitting allows the data along each boundary
to be matched independently of the data on the other two boundaries. The
remaining degrees of freedom are used to make the internal boundaries of
the three subpatches meet with G continuity.

All three of the split domain schemes presented here construct quartic
polynomial patches. Figure 8.4 schematically shows a labeling of the Bézier
control points of these patches. Some of the schemes in this section compute
cubic boundaries, so we will need to refer to both the cubic control points
and the quartic control points for these boundaries. Symbols such as I* and
E* refer to the quartic control points, whereas I* and E? refer to the corre-
sponding cubic control points. The appearance of the resulting formulas is
unfortunately visually complex; we have chosen it so that we can be specific
about which quantities are to be used in the calculations.

10
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Figure 8.4: Bézier control points for split domain schemes.
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Shirman-Sequin.

The following split domain scheme was proposed by Shirman and Sequin [31].
Three quartic triangular patches are constructed per face so as to interpolate
the data points. The construction assumes that cubic boundary curves have
been constructed and subsequently degree raised [10] to quartics.

Farin’s G! conditions are used on the internal boundaries to ensure
that the three patches meet each other with G' continuity. For ijk ¢
{PQR,QRP, RPQ}, the following relationships between the points I3, V;,

E2,, and E3, are thus imposed:
(8.6) Ef = apl} + aa Vi + By,

where a;; + ;2 + a; = 1. Similarly, at the other end of the internal bound-
aries, the following relationships hold:

(8.7) i, = oisIls + @S + o1y,

where a;3 + a;4 + a; = 1. For reasons of symmetry, we set a; = —1 for all z.
A setting of the as determines the control points I according to Equa-
tion 8.6. The method of Chiyokura and Kimura can now be used to estab-
lish tangent plane continuity across the external boundaries (Equations 8.4
and 8.5), thus determining six of the interior control points (the C;;s).
Using these as, Farin’s continuity conditions set up a system of equations
involving the interior control points which has the following solution:?2

Q; Q; Q; 3
I, = — 3Vi_< L 4>I?1+E(Cji‘|‘cki)a

2a;9 oz 20

(& 7%:]

_ 3, %3 03 3
N: = -= Iil"’?(ljl‘l'lkl)‘l'(ﬁ_ 6

o2 a1+ 2004 3 3
(f5+ 55 ) (1),

oy o1 + 20y
2 1 4> 1?2 _I_

for ijk € {PQR,QRP, RPQ}. Setting S to be the centroid of the I?,s fixes

the following as:
3 11

Qi3 = — 7y Qig = —.

4 4

ZAn error was made in the published version of these equations. Here we present a
correct solution.

12



a;1 and ;s are now related by ;1 + a;3 = 2. This leaves a scalar shape
parameter to influence the shape of the interior of the patches. By setting
a;1 = —% and a;9 = % the I?ls will be placed as in Shirman and Sequin’s
paper (i.e., I} will lie at the centroid of the triangle V,E E};).

Jensen.

Except for two differences, Jensen’s method [21] is quite similar to the
method of Shirman and Sequin. The first difference is in the construction of
the cross boundary tangent vector field along the boundaries. As mentioned
earlier, both methods compute a linearly varying cross boundary tangent
vector field. However, Jensen then uses a quadratic scaling function instead
of the linear one used by Shirman-Sequin and others. The second way in
which Jensen’s method differs from Shirman and Sequin’s method is in the
construction of the interior boundaries. While Shirman and Sequin con-
struct their patches to meet with G' continuity, Jensen uses C'! conditions
in the construction of the interior points.

Piper.

Piper’s construction differs somewhat from that of the above two split do-
main schemes. First, a single cubic patch is constructed for each face. Next,
this cubic patch is subdivided at the centroid into three cubic subpatches.
These patches are then modified to produce “candidate” patches, which are
degree elevated to quartic patches. The control points of the quartic patches
are adjusted so that they satisfy the tangent plane continuity conditions of
Section 8.4.2 along the exterior boundaries. As there are more than one
set of such control points that satisfy Piper’s continuity conditions (due to
rank deficiency of the linear system), the set chosen is the one closest to the
candidate control points in a least squares sense. Finally, the control points
along the interior boundaries are adjusted so that the three patches meet
each other with C'! continuity.

8.5.2 Convex Combination Schemes.

Convex combination schemes create a single patch for each face. The patches
are C? everywhere except at the vertices. This successfully avoids the ver-
tex consistency problem by not having consistently defined mixed partial
(i.e., twist) terms at the patch corners. Each patch is constructed by first
building boundary curves and tangent plane fields along these boundary

13



curves. Next, three patches are created, each of which interpolates part of
the boundary data. Finally, a single patch is formed by taking a convex
combination of the three patches in such a way that the resulting patch
interpolates all of the boundary data.

Nielson.

Nielson [26] presented two surface construction techniques. The first is a
transfinite method. The input to this scheme is a “triangle” of three bound-
ary curves together with a tangent plane field along each of these curves.
The only requirements on each input curve are that it is C', and that it
meet the other curves with a consistent tangent plane at each vertex. The
tangent plane fields are specified using a normal vector field rather than a
field of vectors in the tangent plane. That is, at each point along a bound-
ary curve, the tangent plane is the plane perpendicular to the corresponding
vector of the normal field. The normal fields are also required to be C?, with
the further restrictions that they must be non-zero everywhere and meet C°
at the vertices. A surface patch is then constructed that matches this data,
using a side-vertex method similar to that of the second scheme.

The second scheme is a side-vertex method that fits into the problem
domain of this survey. The method proceeds by first constructing three
boundary curves, one corresponding to each edge of the input triangle. Three
patches are created, one for each boundary/opposite vertex pair. The in-
terior of each patch is constructed by passing curves from points along the
boundary (or “side”) to the opposite vertex. Hence the name “side-vertex,”
as shown in Figure 8.5. The three patches are then blended together to form
the final patch.

All curves are constructed from two points and associated normals. We
assume the existence of a curve construction operator g, that takes two
vertices with normals and constructs a curve:

8v [VOa Vla ﬁ-Oa ﬁl](t)a

such that g,(0) = Vo, g,(1) = Vy, g/(0)-Ng = 0, and g/(1) - N; = 0.
We will also assume the existence of a normal field constructor g, that
constructs a continuous normal field along the curve g, , where g, is required
to interpolate No and N; at the end points.

The construction proceeds by building three patches, G;, 7 € {p,q,r}

14
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Figure 8.5: Side-vertex method.

defined as:

— — b
Gi(bpabqabr) = 8 |V gv[vj7vk’Nj’Nk]<1 : >’

S o by,
N;, gn[vjavka Nja Nk] < >:| (1 — bz)
Nielson notes the following two properties of G;:

1. G; interpolates all three of the boundaries.

2. G, interpolates the tangent plane field of the boundary opposite vertex
V.

The final surface is defined to be
G[Vpa an Vra N-pa N-qa N-T] = ﬁpGp + ﬂqu + ﬁ'f’Gra

where

(8.8) 5; bibi

 byby + byb, + by,

Nielson shows that the 3; are such that the blending of any three surfaces
having the two above properties yields a surface that interpolates all of the
boundary curves and tangent fields. The theorem is reasonably general as it
is true for a large class of g, and g,. The operator g, that Nielson presents
constructs tangent vectors from the two normals and interpolates these two
points and vectors with a cubic polynomial curve. The construction in

15



Figure 8.6: Control points of a triangular Gregory patch.

Nielson’s paper is not scale invariant, however, since the tangent vectors at
the ends of the curve are normalized to unit vectors. This introduces loops
in the curves if the data points are close together. The tangents should

instead be scaled to be proportional in length to the distance between Vj
and V;.

Triangular Gregory Patches.

Triangular Gregory patches are a variant of Gregory squares [14]. The key
idea is that the twist term at the vertices is a blend of two twists, one for
each boundary curve incident to the vertex. The scheme we present here is
due to Longhi [22].

After constructing cubic boundary curves, this scheme uses the method
of Chiyokura and Kimura to find a pair of cross boundary control points
for each edge (Figure 8.6). In this figure, points I;; and I;; are the points
constructed for the boundary associated with b; = 0. When evaluating the
patch at the domain point (bp, by, b,), the two interior control points near
each of the corner vertices are blended to form a single vertex, and thus, the
six interior vertices are reduced to three control points. Points I;; and I
are blended to produce the control point I, using the following blend:

bk(l — bj)Iik + bj(l - bk)Iij
br(1 —b;) + b;(1 — bx)

L =

16



This yields a quartic Bézier patch, which is evaluated at (b, by, b,) to give
a point on the surface.

Triangular Gregory patches can also be thought of as a convex combi-
nation scheme. By putting the blending functions used to construct the
I;’s over a common denominator, the scheme can be rewritten as a con-
vex combination of seven quartic Bézier patches. In this form, the blending
functions are sixth degree rational polynomials, four degrees higher than the
ones used by Nielson.

Herron.

In [19], Herron introduced a triangular surface fitting scheme in the following
form:

F = C + byb,b, X,

where C interpolates the boundary curves and X is presented as a function
that adjusts the cross boundary tangents of C to meet a specified tangent
plane fields. Although it can be shown that F is a point valued function,
neither C nor X represent affine geometric entities (points, vectors, etc.).
We present here an alternative description of Herron’s method that is
more geometric in nature. We first observe that F can be rewritten as

(8.9) F= ) BF,
1=p,q,r
where
5 b;by,

- bibj + bjbk + bkbi’

and where each F; is a quartic Bézier patch whose construction is given
below. Note that these §; are identical to those used by Nielson (see Equa-
tion 8.8).

The input required by Herron’s scheme is a triangle of points and the
six boundary curve tangents at those points. Cubic Hermite interpolation
is used on the boundary data to construct the boundary curves of F;. These
curves have to be degree raised, as F; is a quartic patch. This sets all the
exterior control points for F;, leaving only the three interior control points,
Cp, Cq, and Cg, to be determined (Figure 8.7).

For patch F;, points C; and Cj, are constructed by using the triangular
version of Chiyokura-Kimura. Equations 8.4 and 8.5 of Section 8.4.3 give
formulas for these two points. The final control point of F;, C;, can be

17



Figure 8.7: Bézier patch for Herron’s scheme.

considered a free parameter. Herron’s setting for this parameter is given in
Appendix 1.

Herron’s scheme, then, can be thought of as a hybrid scheme using the
cross boundary tangent method of Chiyokura and Kimura for constructing
triangular Bézier patches and the weighting functions of Nielson to produce
the final patch. Note that we may use Nielson’s proof above to show that F
interpolates the tangent plane fields along all edges®.

A third way to view Herron’s scheme is as a “three point” triangular
Gregory patch. By rewriting Equation 8.9 in Bernstein form, it is easily
seen that Herron’s method constructs a quartic Bézier patch, where each
internal control point is a blend of three of the internal control points of the
F;s. In Bézier form, then, the three point triangular Gregory patch blends
together fewer patches than the two point Gregory patch (three patches
instead of seven patches) and uses rational quadratic blending functions
instead of the sextic rational polynomials of the two point scheme.

8.5.3 Other Schemes.

There are other parametric surface fitting schemes that fit within the scope
of this survey. Among these are one proposed by Farin [8], one proposed by
Gregory and Charrot [15], and one proposed by Hagen and Pottmann [18].

Farin’s scheme is a split domain scheme that is noteworthy primarily
because it was the first parametric triangular surface fitting scheme. The
construction, however, has several problems. One problem is that it is asym-
metric in its treatment of the neighborhood of control points surrounding a

%It is interesting to note that Herron’s development of the method predated the pub-
lication of Chiyokur and Kimura [4] and Nielson [26]
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vertex. This asymmetry is visible in the constructed surfaces, so we chose
not to discuss it in detail here.

The method of Gregory and Charrot was originally intended by the au-
thors to be used to fill triangular holes in an array of rectangular tensor
product patches. Their scheme is a convex combination scheme that as-
sumes cross boundary tangent fields have already been constructed along
the boundary curves. Further, these tangent fields must admit a consistent
mixed partial. Extending this scheme to fit into our problem domain would
have been a fairly significant change. Although, Gregory [16] later extended
this method to allow for inconsistent mixed partials, we realized this too
late to include it in this survey.

The discretized interpolant presented by Hagen and Pottmann [18] is
another method that falls within our survey. This method extends Nielson’s
side-vertex method [26] and earlier work by Hagen [17] to second order
geometric continuity. It is unfortunate that we learned of this method too
late to include it in our survey.

8.6 Comparison.

8.6.1 Tested Characteristics.

Our primary concern in this survey was with the visual appearance of the
constructed surfaces. Other concerns, such as computational issues, were
considered secondary, as we first wanted to find methods that produced nice
shapes. Numerical stability issues are occasionally mentioned, as they can
have a large impact on the shape of the resulting surface.

One problem with using visual appearance as our criterion is that it is
a subjective measure of surface quality. In part, this stems from a lack of a
general purpose “surface quality metric,” that is, a commonly agreed upon
definition of good shape. However, the problems with the shapes of surfaces
we encountered were extreme, leaving little doubt as to the poor quality of
the surfaces.

In many applications, the data points themselves are not distinguished
points on the surface. Therefore, these points should not be visually dis-
tinguishable in the constructed surface. All schemes surveyed in this paper
construct piecewise surfaces that have second order derivative discontinu-
ities at the boundaries of the surfaces patches, implying that the boundaries
of the patches (and, thus, the data points) will be distinguished to some
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Figure 8.8: Line drawing of Clough-Tocher surface.

extent. We feel that the visual impact of these discontinuities should be
minimized.

In the past, many authors have used line drawing renditions to show
the visual quality of their surfaces. We have found shaded images more
useful in detecting various shape defects. For example, the line drawing in
Figure 8.8 is a plot of isoparametric lines of the Clough-Tocher interpolant
to a function defined as the sum of three Gaussian functions. A shaded
image of the same surface (Plate 1) is far more informative. To see more
subtle defects we found that Gaussian curvature plots of the interpolants
were often helpful. (The Gaussian curvature at a point on a surface is the
product of the minimum and maximum normal curvature of the surface at
the point.)

All implemented schemes produced surfaces with shape defects that were
readily apparent in the shaded images or Gaussian curvature plots. However,
a scheme should not be considered “good” just because it passes these two
visual tests. Until a good quantitative measure of shape is devised, a surface
fitting scheme should also be tested by a variety of other methods, such as
reflection lines and isophotes [30], to determine surface quality.

8.6.2 Data Sets.

A variety of data sets were used to test the surface fitting schemes. Several
of these are shown in Figures 8.9a-e. In these figures, the lines represent
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Figure 8.9: Some of the data sets used: a) A Franke function b) Sphere
¢) Capsule d) Torus e) Octahedron.

the edges of the triangulated data. The data points are located at the
intersection of the lines.

One of the data sets is a sampling of one of the so-called Franke func-
tions [13] (Figure 8.9a). The underlying functionis z = %e_%[(m_'5)2+(y_'5)2].
The data sets of the sphere and the torus are samplings of those surfaces;
the vertices and tangent planes of the octahedron data set have also been
sampled from a sphere. The “capsule” data set is a sampling of a truncated
cylinder with hemispherical caps.

The sphere data sets tended to be particularly “mild”, as the entire
surface has positive Gaussian curvature, that is, it has no flat spots or saddle
points. The capsule data set was constructed to see if “ringing” would occur
along the boundaries between the cylinder and the hemispheres. The torus is
probably the most interesting data set, as it has regions of positive, negative,
and zero Gaussian curvature. One problem with the dense data sets is
that they are somewhat complex, making the resulting surfaces difficult to
analyze. The octahedron data set was chosen because it was simple enough
to allow us to develop intuition governing the failure of the schemes.

Two materials (i.e., surface reflectance parameters) were used to con-
struct the surfaces appearing in Plates 1-8. The material used in Plates 1,
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2, 7, and 8 has a gray diffuse component with a white specular component.
The surfaces in Plates 3, 4, 5, and 6 were false shaded to show the Gaussian
curvature of the surface. Areas of strongly positive Gaussian curvature are
shaded white, with the intensity dropping to a dark gray as the Gaussian
curvature goes to zero. Regions of negative Gaussian curvature, which occur
at saddle points, were not present in these figures.

8.6.3 Results of Comparison.

The goal of our survey was to find which interpolation schemes produced
“nice” surfaces and which schemes did not. We implemented and tested all
of the schemes described in Section 8.5 except for the three mentioned in
Section 8.5.3. Jensen’s and Shirman-Sequin’s schemes were similar enough
that it seemed adequate to implement only one of them. We chose to im-
plement Shirman and Sequin’s scheme using Jensen’s generalization of the
cross boundary tangents. The software we developed to test these schemes
is discussed elsewhere [24]. To our surprise, all of the schemes we tested per-
formed rather poorly. Moreover, they all suffered from shape defects that
are qualitatively similar.

Scalar Data.

Initially, we used sparse samplings of some of the Franke functions [13] for
our data sets. Running two scalar data schemes on this input, we noticed
several problems. First, as has been noted by many others (cf. [11, 12]),
we found that the estimation of normals is a difficult problem, and second,
these schemes fail to produce nice surfaces on data with high variation.

We decided not to address the problem of normal estimation, choosing
to focus instead on performance of the methods once normals had been
determined. Even when using normals sampled from a known surface, the
shapes of the interpolants were still rather poor. As expected, most of the
schemes seemed to perform better on data with less variation, that is, data
that was nearly planar.

Parametric Data.

When we started working with parametric data schemes we looked at the
interpolants for the data sets shown in Figures 8.9b-e. The shaded images
of the interpolants constructed by most schemes for the dense data sets
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usually have acceptable visual appearance, but Gaussian curvature plots
indicate that there are subtle problems with them.

For example, inspection of Gaussian curvature plots for interpolants to
the sphere data reveals that the patches are mostly flat, with a few areas of
high curvature (Plate 5). These effects occurred fairly uniformly for most
schemes, with additional curvature discontinuities appearing along the in-
terior boundaries produced by split domain schemes that are not present
in the convex combination schemes. As a representative scheme, we show
pictures of the surfaces constructed by Shirman and Sequin’s scheme.

The one scheme that had additional kinds of difficulties to those prob-
lems mentioned above was Piper’s scheme. Surfaces constructed by this
scheme often exhibit displeasing undulations near the patch boundaries.
This appears to be a result of numerical instabilities, occurring when the
scalar functions of Equations 8.2 are nearly constant (and, thus, when the
3 X 5 system of equations nearly reduces to a 2 X 5 system). We decided
not to address these numerical stability issues, focusing instead on the other
schemes.

Shaded images of the interpolants to the torus data revealed problems
more serious than the ones mentioned above (Plate 7). Images of Gaussian
curvature indicated that there were large variations of curvature, even within
a single patch. Discontinuous jumps from positive to negative curvature were
also observed along patch boundaries.

Images of Gaussian curvature for interpolants to the simple data set of
the octahedron (Plate 2) clearly show that curvature is concentrated near
the vertices and boundary curves (Plate 3). The center of the patch (or
patches) created for a face tend to be relatively flat by comparison. These
problems were similar for all the schemes, which was somewhat unexpected,
considering that the split domain schemes construct surfaces in a very dif-
ferent fashion from the convex combination schemes.

Some of these problems could be alleviated by manually adjusting the
scalar shape parameter of Jensen’s scheme. For example, the curvature of
the surfaces constructed for the octahedron could be spread over the patches
somewhat more uniformly, but there are still flat spots on these surfaces.
The improvements possible for the torus data set are less significant. It is
also unclear how to set automatically the value of this parameter.
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Figure 8.10: The construction of the tangent at P for the curve from P to

Q. |T| = [P - Q|.

8.6.4 Boundary Curves.

The construction of boundary curves was a common element in all our im-
plementations. Following constructions given by Piper and Shirman-Sequin,
we originally used the following method for constructing a cubic boundary
curve for an edge of the data set: The end points of the curve are set to in-
terpolate the end points of the edge. Next, tangent directions are computed
for each end point by perpendicularly projecting the vector along the edge
into the tangent plane at each end point; these vectors are then scaled to be
of length equal to the length of the edge (see Figure 8.10). The boundary
curve is then set to be the cubic polynomial curve matching this data.

As published, the surveyed schemes used a variety of methods for con-
structing boundary curves. However, the differences between these methods
are minor. Shirman and Sequin use the method mentioned above. Her-
ron and Jensen essentially assume that the boundary curves have already
been constructed. Nielson constructs cubic boundary curves whose tangents
agree in direction with the tangents in the above construction, but leaves the
length as a free parameter. Piper’s scheme is unique among these schemes
in that it constructs quartic boundary curves; the end point tangents have
the same direction as those in the method presented above, but are shorter
in length.

Curvature plots of boundary curves constructed as above showed that
as the tangent vectors become more perpendicular to the vector along the
edge the curvature along the curve is concentrated near the end points (Fig-
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(b)

Figure 8.11: Bézier curves and their curvature plots. (a) Curves constructed
using projection method. (b) Curve constructed by de Boor-Hollig-Sabin
method.

ure 8.11a), leaving a relatively flat region in the middle of the curve. In
all the surface schemes we implemented, this flatness was then propagated
inward in the patch construction, resulting in relatively large flat areas in
the middle of the patches. This suggested that it might be possible to im-
prove the curvature distribution of the patches by improving the curvature
distribution of the boundary curves.

In a paper by de Boor, Héllig, and Sabin [5], a method is given for
constructing planar cubic curves that interpolate to positions, tangent lines,
and curvatures at two end points. More importantly for our purposes, these
curves were observed to have relatively uniform curvature distributions. In
Figure 8.11b, for example, the curvature values are taken from the circle
passing through the data points with the given tangents. If the curvature
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values at the end points had not been equal, the resulting curves would have
been approximations to an ellipse.

To determine if using boundary curves with a more uniform distribution
of curvature would yield surfaces with better shape, the de Boor-Hollig-
Sabin curve construction technique was integrated into each of the surface
fitting schemes. The resulting interpolants all show improvement in shape,
with the interpolants to the simpler data sets showing more improvement
than the interpolants to more complex ones. Interpolants to the sphere data
set, for example, exhibit nearly uniform distribution of Gaussian curvature
(Plate 6).

The results for the octahedron data set are not as encouraging. The
curvature is spread along the patches somewhat more uniformly, but the
patches are still flat in the interior (Plate 4). Additional improvements can
be made by manually adjusting Jensen’s shape parameter.

The improvement in the shape of the interpolants for the torus data set
are minor. Using the de Boor-Héllig-Sabin method yields an interpolant
that is a better approximation to the torus (using a radial distance metric);
however, while the shape defects are alleviated somewhat, the shaded image
of the surface still shows many of the shape defects apparent in the surface
produced by the standard boundary curve method (Plates 7 and 8). So,
while the de Boor-Héllig-Sabin boundary curve method appears to improve
the shape of the interpolants, it is not a complete solution. There are also
several problems with using this method for constructing boundary curves.

First, in order to have the curvature information needed by the de Boor-
Hollig-Sabin scheme, second fundamental forms (cf. doCarmo [6]) must be
associated with the vertices of the data sets. If the data are sampled from
a C? function, then second fundamental forms can be calculated directly.
If only the data points are available, then second fundamental forms must
be estimated. It is not clear at this time how difficult it is to make these
estimates.

A more serious problem is that there are from zero to three cubic curves
which match the curvature data [5]. For our purposes, if there are zero curves
that interpolate the data, then the boundary curves must be computed by
some other method. If there are multiple solutions, then a choice must be
made between these solutions.

The case of multiple solutions revealed another interesting fact. In the
cases we saw, all of the solution curves given by the de Boor-Hoéllig-Sabin
method have essentially the same shape. These solutions differ primarily in
their parametrizations. For the sphere data, for example, there are three
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distinct cubic curves that match the end point data. The solution that is
most nearly uniform in parameterization gives the surface shown in Plate 6.
However, when one of the less uniform parameterizations is used, large lumps
appear in the surface. Thus, both the shape and the parameterization of
the boundary curves are important.

Another issue concerning the use of the de Boor-Hollig-Sabin method for
constructing boundary curves is that it mandates the use of planar curves.
Thus, a plane must be chosen in which to place each boundary curve. The
choice of this plane can be thought of as a free parameter. The plane we
used is the one containing the edge, and whose normal vector is the cross
product of the vector along the edge and the average of the normals at the
end points. It is unclear how restricting the boundary curves to lie in a
plane affects the shape of the surfaces.

8.7 Summary and Recommendations.

At the beginning of our study we did not expect to find a method that
would work well for arbitrarily placed data. It soon became clear, however,
that we had drastically underestimated the difficulty of the problem. As
expected, the schemes produced poor interpolants to extremely sparse data
sets. More surprising was how hard it was to produce good interpolants for
any but the most benign data sets. In particular, we observed the following:

o Although different schemes constructed surfaces in different fashions,
all surfaces displayed similar shape defects.

e The primary cause of the shape defects appears to be in the con-
struction of boundary curves. Flatness on the boundary curves is
propagated inward, resulting in flat spots on the surface.

The shape and parameterization of the boundary curves greatly influ-
ences the shape of the patches. To construct surfaces with better shape, a
curve construction method must be found that spreads the curvature uni-
formly along the boundary curves. One way to construct such curves might
be to relax the locality condition on the schemes and do some form of global
optimization on the boundary curves, perhaps something similar to Nielson’s
minimum norm networks [25, 27]. Alternatively, a local method based on
curvature interpolation and de Boor-H6llig-Sabin’s method seems promising,
at least for approximating known surfaces. A disadvantage of such an ap-
proach is that good methods of estimating second fundamental forms would
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need to be developed. It is also unclear what ramifications the restrictions
to planar boundary curves might have.

Improving the shape of boundary curves, however, is not a complete
solution to the construction of surfaces free of unnecessary shape defects.
Many schemes provide additional shape parameters that can be adjusted to
improve the appearance of the interpolant. Such shape parameters may be
useful in interactive design applications, but it is important to develop meth-
ods for setting good default values. In the approximation of known surfaces,
it is also important to understand how differential geometric properties of
the known surface can be used to set the free parameters.

8.7.1 Recommendations.

Since all of the schemes produce surfaces with similar shapes, we recommend
using the Shirman-Sequin scheme, but only because it constructs polynomial
patches rather than the rational polynomial patches built by most of the
other schemes. The use of polynomial patches simplifies the calculation of
derivatives, curvature, etc. of the interpolant. Although the domain split
introduces extra artifacts in the surfaces, such as the creation of long, thin
triangles, the major shape defects are common to all schemes.

Triangular Gregory patches are often suggested as the scheme of choice.
However, it is hard to determine differential information since the patches
are rational polynomials of fairly high degree. Further, we found that this
scheme is extremely sensitive to the settings of the free parameters. While
this might be desirable in some situations, it appears to be difficult to control
these shape parameters and to determine reasonable default values for them.

Estimating second fundamental forms at the data points appears to have
two benefits. First, the second fundamental form can be used to solve the
vertex consistency problem. It can also be used to produce boundary curves
with more uniform curvature, resulting in surfaces with better shape. When
approximating known surfaces, the surface can be sampled for position,
tangent, and second fundamental form (assuming it is C'?). Using all of this
information in the construction of the approximating surface, a higher order
of convergence should be achievable.
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Appendix 1

This appendix gives Herron’s setting of the control point C; (Figure 8.7).
We will denote the tangent from point V; to V; as T;;. In the construction
of patch F;, Herron implicitly sets C; to be:

)

C, = 11_2{_?,‘, —2T31‘|‘Tzk lJ—I_ [ (%)_Q(
+5[R(3) -2} + B,

W=

where L
Ef = V + 5T+ V + =T

@l—‘

and R(t) = k(t) - C(t) (from Section 8.4.3) and

Q(t) = 6t(1—1t)p;(t)- V;+ 6t(1 —t)pr(t) - Vi
+[(1—8)%pi(t) + 26(1 — t)p;(t)] - T
+[t%p;(t) + 2¢(1 —t)Pk( )] - T
+(1- )2Tﬂ + 2Ty

Here p;(t) and pi(t) are the scalar functions
pi(t) =t(rji+res+1)—rji—1

and
pr(t) = (1 —t)(rji+ 7 + 1) — s — 1,

where 7;; and r; are:

Tii =
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Plate 1. Clough-Tocher interpolant constructed using estimated nor-
mals.

Plate 2. Shirman-Sequin interpolant constructed for octahedron data
set.

Plate 3. Gaussian curvature plot of the Shirman-Sequin interpolant con-
structed for octahedron data set (Plate 2).

Plate 4. Gaussian curvature plot of the interpolant constructed for octa-
hedron data set using de Boor-Héllig-Sabin method for computing boundary
curves.

Plate 5. Gaussian curvature plot of the Shirman-Sequin interpolant con-
structed for sphere data set.

Plate 6. Gaussian curvature plot of the interpolant constructed for
sphere data set using de Boor-Hollig-Sabin method for computing boundary
curves.

Plate 7. Shirman-Sequin interpolant constructed for torus data set.

Plate 8. Interpolant constructed for torus data set using de Boor-Hollig-
Sabin method for computing boundary curves.
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