
A Parametric Hybrid Triangular B�ezier PatchStephen Mann and Matthew DavidchukAbstract. We describe a parametric hybrid B�ezier patch that, in ad-dition to blending interior control points, blends boundary control points.This boundary blend is necessary to generalize a functional cross-boundaryconstruction that relies on the natural parameterization of the functionalsetting. When interpolating irregularly scattered data and when increas-ing the tessellation of the data mesh, the new scheme shows improvementover representative parametric data �tting schemes.x1. IntroductionA large number of local parametric triangular surface schemes have been devel-oped over the past �fteen years (see [10] for a survey of such schemes). Theseschemes are local in that changes to part of the data only a�ect portions ofthe surface near the changed data. Surprisingly, all of these schemes exhibitsimilar shape defects. On closer inspection, it is seen that these schemes allhave a large number of free parameters that are set using simple heuristics.By manually adjusting these parameters, one can improve the shape of thesurfaces [7].One way to improve automatically the shape of the constructed surfaces isto use variational methods. Several authors have used such schemes to improvethe shape of the constructed surfaces, but usually at a high computationalcost due to the global nature of the solution (e.g., [11]). Similarly, we can uselocal optimization methods to set the free parameters and improve the shape,although the results are not as good as the global methods [8].In this paper, we will investigate a local, non-optimization method forimproving the construction of the cross-boundary derivatives in a triangu-lar parametric scheme. This is a generalization of the hybrid scattered data�tting scheme of Foley and Opitz [2] (their method is similar to a result inde-pendently developed by Goodman and Said [4]). The resulting surfaces showlarge improvement in shape over other local, parametric, triangular surface�tting techniques. More precisely, given a triangle of data (a set of three ver-tices with normals), our scheme constructs a hybrid, parametric patch thatMathematical Methods for Curves and Surfaces II 1Morten D�hlen, Tom Lyche, Larry L. Schumaker (eds.), pp. 1{3.Copyright oc 1998 by Vanderbilt University Press, Nashville, TN.ISBN 1-xxxxx-xxx-x.All rights of reproduction in any form reserved.
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102Fig. 1. Domain control net for the Foley-Opitz hybrid B�ezier patch.interpolates the positions and normals at the corners. When used to �ll atriangular polyhedron, the resulting surface patches will meet with tangentplane continuity. x2. The Foley-Opitz SchemeFoley and Opitz [2] present a method for interpolation of scattered data abovethe plane using a \hybrid" cubic B�ezier patch based on Nielson's scheme [12].A hybrid cubic patch is similar to a cubic B�ezier patch, except the interiorcontrol point is a rational blend of three points. With the Foley-Opitz method,the cubic patch boundaries are completely determined by the triangle verticesand normals. The three inner control points are constructed using a C1 crossboundary construction that gives the hybrid patch cubic precision.Figure 1 shows the domain control net for two neighboring triangles. p2p2p2p2p2p2p2p2p2is one of the three interior control points associated with the left triangle andq2q2q2q2q2q2q2q2q2 is one of the three interior control points associated with the right triangle.Foley and Opitz compute p2p2p2p2p2p2p2p2p2 as follows. Let r, s, and t be the barycentriccoordinates of c003c003c003c003c003c003c003c003c003 with respect to b003b003b003b003b003b003b003b003b003, b030b030b030b030b030b030b030b030b030, and b003b003b003b003b003b003b003b003b003. If both patches ifFigure 1 form a single cubic, then from subdividing B�ezier cubics it can beshown thatp2p2p2p2p2p2p2p2p2 = �c102c102c102c102c102c102c102c102c102 + c012c012c012c012c012c012c012c012c012 � r2(b300b300b300b300b300b300b300b300b300 + b210b210b210b210b210b210b210b210b210) � 2rs(b210b210b210b210b210b210b210b210b210 + b120b120b120b120b120b120b120b120b120)� 2rtb201b201b201b201b201b201b201b201b201 � 2stb021b021b021b021b021b021b021b021b021� s2(b120b120b120b120b120b120b120b120b120 + b030b030b030b030b030b030b030b030b030)� t2(b102b102b102b102b102b102b102b102b102 + b012b012b012b012b012b012b012b012b012)�=(2(r + s)t) :The point q2q2q2q2q2q2q2q2q2 is forced by continuity conditions to beq2q2q2q2q2q2q2q2q2 = rp2p2p2p2p2p2p2p2p2 + sb120b120b120b120b120b120b120b120b120 + tb210b210b210b210b210b210b210b210b210:When applied to data that does not come from a cubic, the Foley-Opitz con-struction of p2p2p2p2p2p2p2p2p2 and q2q2q2q2q2q2q2q2q2 ensures that the two triangles have a C1 join along theircommon border. Identical calculations would be made to ensure C1 continuityacross the remaining two edges giving three settings for the interior controlpoints of each of the two patches.
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Fig. 2. Isophotes of interpolants to the Franke data set.Fig. 3. One plane per patch pair.The three interior points (p0p0p0p0p0p0p0p0p0, p1p1p1p1p1p1p1p1p1, p2p2p2p2p2p2p2p2p2) are blended with Nielson's rationalblend functions, ai(t0; t1; t2) = tjtktitj + titk + tjtk ; i 6= j 6= k: (1)giving b111b111b111b111b111b111b111b111b111(t0; t1; t2) = a0(t0; t1; t2)p0p0p0p0p0p0p0p0p0 + a1(t0; t1; t2)p1p1p1p1p1p1p1p1p1 + a2(t0; t1; t2)p2p2p2p2p2p2p2p2p2:After blending, we are left with a 10 point cubic B�ezier patch, which is eval-uated at (t0; t1; t2) in the standard way.Figure 2 shows isophote plots [5] of the Franke data set [3] (on the left),and isophote plots of this data interpolated with Clough-Tocher (middle) andFoley-Opitz (right) patches. The C1 discontinuities in the isophote lines occuralong patch boundaries, and are visible as shape artifacts in shaded images [9].The Foley-Opitz interpolant is generally smoother than the Clough-Tocherinterpolant. x3. A Hybrid, Parametric, Cubic SchemeOur goal is to create a parametric version of the Foley-Opitz scheme to bringits good surface quality to the parametric setting. There are two problemswe must solve to create this parametric version of the Foley-Opitz method:Finding local parameterizations for the Foley-Opitz cross-boundary method,and �nding blend functions for the resulting points that have the appropriateproperties.The Foley-Opitz cross-boundary construction relies on a natural parame-terization between patch pairs since the barycentric coordinates of neighboringpatches with respect to each other are key in determining the tangent plane�elds. In the parametric setting, there is no prede�ned association betweenpatch domains. Therefore, some association between neighboring patch do-mains must be made in order to use Foley's tangent plane �eld construction.
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030cV 1 =Fig. 6. Control net after blending parametric hybrid control points.cross boundary construction determines the interior control points.After the control points from three B�ezier patches are calculated, they canbe used to formulate the parametric hybrid patch. However, blending is notas straight forward as in the functional case { boundary points are includedin the blend. Figure 6 illustrates the control net for the parametric patch.Each point cijkcijkcijkcijkcijkcijkcijkcijkcijk is a rational blend of the associated control points from thethree B�ezier patches shown in Figure 4. The points c300c300c300c300c300c300c300c300c300; c030c030c030c030c030c030c030c030c030, and c003c003c003c003c003c003c003c003c003 areconstants, the remaining boundary control points are rational blends of twoB�ezier patch boundary control points, and the interior point c111c111c111c111c111c111c111c111c111 is a blendof three points.The blend formulationmust preserve the important properties of the threeunderlying B�ezier patches, boundary curves and cross boundary derivatives,when evaluating along the edges. The corner control points are constants sono blending function is needed. The blending function for the interior controlpoints is the same as used in Foley's functional construction, giving usc111(uuuuuuuuu)c111(uuuuuuuuu)c111(uuuuuuuuu)c111(uuuuuuuuu)c111(uuuuuuuuu)c111(uuuuuuuuu)c111(uuuuuuuuu)c111(uuuuuuuuu)c111(uuuuuuuuu) = a0(uuuuuuuuu)b111;0b111;0b111;0b111;0b111;0b111;0b111;0b111;0b111;0 + a1(uuuuuuuuu)b111;1b111;1b111;1b111;1b111;1b111;1b111;1b111;1b111;1 + a2(uuuuuuuuu)b111;2b111;2b111;2b111;2b111;2b111;2b111;2b111;2b111;2where the ai are de�ned in (1). The boundary control points are blended togive two properties:1) When evaluated along a boundary the parametric Foley control pointsbecome the control points of one of the three B�ezier patches2) The tangent plane �eld of the parametric hybrid patch along a boundarymatches the tangent plane �eld along the same boundary of one of thethree B�ezier patches.An asymmetric blend of the following form has both of these propertieshij(u0; u1; u2) = (1� ui)uj2(1� ui)uj2 + (1� uj)ui2 (2)This blending function is used to weight all the non-vertex boundary B�eziercontrol points:cijk(u0; u1; u2) = hij(u0; u1; u2)bijk;ibijk;ibijk;ibijk;ibijk;ibijk;ibijk;ibijk;ibijk;i + hjibijk;kbijk;jbijk;jbijk;jbijk;jbijk;jbijk;jbijk;jbijk;jbijk;j ;



6 S. Mann and M. Davidchukfor ijk being any permutation of 012. For example, the V1V2V1V2V1V2V1V2V1V2V1V2V1V2V1V2V1V2 boundary controlpoints would bec012c012c012c012c012c012c012c012c012(u0; u1; u2) = h01(u0; u1; u2)b012;0b012;0b012;0b012;0b012;0b012;0b012;0b012;0b012;0 + h10(u0; u1; u2)b012;1b012;1b012;1b012;1b012;1b012;1b012;1b012;1b012;1c021c021c021c021c021c021c021c021c021(u0; u1; u2) = h02(u0; u1; u2)b021;0b021;0b021;0b021;0b021;0b021;0b021;0b021;0b021;0 + h20(u0; u1; u2)b021;2b021;2b021;2b021;2b021;2b021;2b021;2b021;2b021;2When evaluated along the V1V2V1V2V1V2V1V2V1V2V1V2V1V2V1V2V1V2 edge u0 = 0 we getc012c012c012c012c012c012c012c012c012(0; u1; u2) = b012;0b012;0b012;0b012;0b012;0b012;0b012;0b012;0b012;0; c021c021c021c021c021c021c021c021c021(0; u1; u2) = b021;0b021;0b021;0b021;0b021;0b021;0b021;0b021;0b021;0since Equation (2) gives h0j(0; u1; u2) = 1 and hi0(0; u1; u2) = 0. The V1V2V1V2V1V2V1V2V1V2V1V2V1V2V1V2V1V2boundary curve is the cubic B�ezier curve given by the control points b030b030b030b030b030b030b030b030b030,b021;0b021;0b021;0b021;0b021;0b021;0b021;0b021;0b021;0, b012;0b012;0b012;0b012;0b012;0b012;0b012;0b012;0b012;0, and b003b003b003b003b003b003b003b003b003, which gives us C0 continuity. This blend also gives usC1 continuity, as described in Davidchuk's thesis [1].The control points fb300b300b300b300b300b300b300b300b300; b030b030b030b030b030b030b030b030b030; b003b003b003b003b003b003b003b003b003; b~i;jb~i;jb~i;jb~i;jb~i;jb~i;jb~i;jb~i;jb~i;jg are blended to form the ten con-trol points of a standard cubic B�ezier patch, labeled as c~ic~ic~ic~ic~ic~ic~ic~ic~i(uuuuuuuuu). The B�ezierpatch de�ned by the c~ic~ic~ic~ic~ic~ic~ic~ic~i is then evaluated at uuuuuuuuu. The concise de�nition isFFFFFFFFF (uuuuuuuuu) = Xj~ij=3B3~i (uuuuuuuuu)c~ic~ic~ic~ic~ic~ic~ic~ic~i(uuuuuuuuu)x4. Choice of planeThere is freedom in the choice of the projection plane, and there are some re-strictions. The orientation, not the position, of the plane determines the posi-tions of the control points thus giving two rotational degrees of freedom. Theplane should be constructed geometrically from the given information { trian-gle vertices and normals. The two B�ezier patches must not have overlappingdomains on the plane so the orientation is restricted to being \underneath"both patches.One failsafe method of choosing a plane is to take the plane perpendicularto the bisecting plane of the two neighboring triangles and that contains theircommon edge. With this choice of plane, the projection of the triangles willlie on opposite sides of the projection of their common edge, so the patchdomains will never overlap.However, a better choice is the plane perpendicular to the average ofthe normals at the two data points, and either date point. Although thisconstruction is not guaranteed to give us a valid plane (i.e., the two projectionof the two triangles along the edge may overlap), it does in general give usbetter shaped surfaces [1].
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Fig. 8. Triangular Gregory patches and our scheme �t to a cat data set.xResultsTo test our surface construction method, we used it to �t patches to a catdata set (where normals are estimated) and to samplings of a torus (wherenormals come from the torus). We compared our method to Triangular Gre-gory patches [6]. In Figure 7, we see isophote plots of both methods �t toa 10x10 sampling of the torus. The isophotes for our method are noticeablysmoother.In Figure 8, we see shaded images of both methods �t to a cat data set.This data set has 366 vertices and 698 faces. Normals to the vertices wereestimated by a simple averaging of face normals. Many of the shape artifactsthat appear on triangular Gregory patches our not present on the surfaceconstructed by our scheme.One drawback to our scheme is that as the tangent planes on either side ofan edge become perpendicular to the edge, the interior points of the boundarycurve move towards in�nity. Thus, normal estimation becomes a critical step.
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