A Parametric Hybrid Triangular Bézier Patch

Stephen Mann and Matthew Davidchuk

Abstract. We describe a parametric hybrid Bézier patch that, in ad-
dition to blending interior control points, blends boundary control points.
This boundary blend is necessary to generalize a functional cross-boundary
construction that relies on the natural parameterization of the functional
setting. When interpolating irregularly scattered data and when increas-
ing the tessellation of the data mesh, the new scheme shows improvement
over representative parametric data fitting schemes.

§1. Introduction

A large number of local parametric triangular surface schemes have been devel-
oped over the past fifteen years (see [10] for a survey of such schemes). These
schemes are local in that changes to part of the data only affect portions of
the surface near the changed data. Surprisingly, all of these schemes exhibit
similar shape defects. On closer inspection, it is seen that these schemes all
have a large number of free parameters that are set using simple heuristics.
By manually adjusting these parameters, one can improve the shape of the
surfaces [7].

One way to improve automatically the shape of the constructed surfaces is
to use variational methods. Several authors have used such schemes to improve
the shape of the constructed surfaces, but usually at a high computational
cost due to the global nature of the solution (e.g., [11]). Similarly, we can use
local optimization methods to set the free parameters and improve the shape,
although the results are not as good as the global methods [8].

In this paper, we will investigate a local, non-optimization method for
improving the construction of the cross-boundary derivatives in a triangu-
lar parametric scheme. This is a generalization of the hybrid scattered data
fitting scheme of Foley and Opitz [2] (their method is similar to a result inde-
pendently developed by Goodman and Said [4]). The resulting surfaces show
large improvement in shape over other local, parametric, triangular surface
fitting techniques. More precisely, given a triangle of data (a set of three ver-
tices with normals), our scheme constructs a hybrid, parametric patch that
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Fig. 1. Domain control net for the Foley-Opitz hybrid Bézier patch.

interpolates the positions and normals at the corners. When used to fill a
triangular polyhedron, the resulting surface patches will meet with tangent
plane continuity.

§2. The Foley-Opitz Scheme

Foley and Opitz [2] present a method for interpolation of scattered data above
the plane using a “hybrid” cubic Bézier patch based on Nielson’s scheme [12].
A hybrid cubic patch is similar to a cubic Bézier patch, except the interior
control point is a rational blend of three points. With the Foley-Opitz method,
the cubic patch boundaries are completely determined by the triangle vertices
and normals. The three inner control points are constructed using a C* cross
boundary construction that gives the hybrid patch cubic precision.

Figure 1 shows the domain control net for two neighboring triangles. ps
is one of the three interior control points associated with the left triangle and
g2 is one of the three interior control points associated with the right triangle.

Foley and Opitz compute py as follows. Let r, s, and ¢ be the barycentric
coordinates of cgps with respect to bpos, bpso, and bpes. If both patches if
Figure 1 form a single cubic, then from subdividing Bézier cubics it can be
shown that

P2 = (0102 + eo12 — 7% (bsoo + b210) — 275(b210 + b120) — 2rtbagy — 2stboas
— 5%(b120 + boso) — t*(bro2 + 5012))/(2(7' + s)t) '

The point gz is forced by continuity conditions to be

q2 = rp2 + sbizo + th210-

When applied to data that does not come from a cubic, the Foley-Opitz con-
struction of p; and ga ensures that the two triangles have a C'! join along their
common border. Identical calculations would be made to ensure C*! continuity
across the remaining two edges giving three settings for the interior control
points of each of the two patches.
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Fig. 2. Isophotes of interpolants to the Franke data set.
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Fig. 3. One plane per patch pair.

The three interior points (po, p1, p2) are blended with Nielson’s rational
blend functions,

tits o
(o t1,t) = J k. 1
a'(Oa 1y 2) titj‘|‘titk‘|‘tjtk, 7’7£]7£ ()

giving
b111(to,t1,t2) = ao(to,t1,t2)po + a1(to,t1,t2)p1 + az(to,t1,t2)p2.

After blending, we are left with a 10 point cubic Bézier patch, which is eval-
uated at (¢o,t1,¢2) in the standard way.

Figure 2 shows isophote plots [5] of the Franke data set [3] (on the left),
and isophote plots of this data interpolated with Clough-Tocher (middle) and
Foley-Opitz (right) patches. The C! discontinuities in the isophote lines occur
along patch boundaries, and are visible as shape artifacts in shaded images [9].
The Foley-Opitz interpolant is generally smoother than the Clough-Tocher
interpolant.

§3. A Hybrid, Parametric, Cubic Scheme

Our goal is to create a parametric version of the Foley-Opitz scheme to bring
its good surface quality to the parametric setting. There are two problems
we must solve to create this parametric version of the Foley-Opitz method:
Finding local parameterizations for the Foley-Opitz cross-boundary method,
and finding blend functions for the resulting points that have the appropriate
properties.

The Foley-Opitz cross-boundary construction relies on a natural parame-
terization between patch pairs since the barycentric coordinates of neighboring
patches with respect to each other are key in determining the tangent plane
fields. In the parametric setting, there is no predefined association between
patch domains. Therefore, some association between neighboring patch do-
mains must be made in order to use Foley’s tangent plane field construction.
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Fig. 4. Domain control net for parametric hybrid patch.
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Fig. 5. Tangent plane field control points along the bpsoboos edge.

Our approach is to choose a plane for each patch pair (Figure 3), project
the corner points of both patches onto the plane, and then perform Foley’s
C! construction. Three sets of control points are calculated for each hybrid
patch — each set representing a C'! construction along one triangle edge. The
three sets of control points will share the same triangle corner vertices but in
general differ in the rest of the boundary and interior control points.

We must blend both boundary and interior control points to produce the
final interpolant. Figure 4 shows the domain control net for a parametric
version of Foley’s scheme. The structure is similar to Foley’s — the control
points are organized like the control points of a cubic triangular Bézier patch
except a group of control points correspond to a single, regular cubic control
point.

When constructing the tangent plane field along a particular boundary,
only two parametric hybrid patches are involved and consequently only two
Bézier patches are needed for the construction. Each Bézier patch contributes
seven control points to a parametric hybrid patch, as in Figure 5. These
control points determine the tangent plane field along that boundary. To
construct the seven points, a plane is chosen as a parameterization for the two
Bézier patches allowing the construction as in Foley’s functional scheme. Once
the plane is chosen, the Bézier patch control points are completely determined
by the triangle vertices and the associated normals — Hermite interpolation
over a plane completely determines the cubic boundary curves and Foley’s
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Fig. 6. Control net after blending parametric hybrid control points.

cross boundary construction determines the interior control points.

After the control points from three Bézier patches are calculated, they can
be used to formulate the parametric hybrid patch. However, blending is not
as straight forward as in the functional case — boundary points are included
in the blend. Figure 6 illustrates the control net for the parametric patch.
Each point ¢;j& is a rational blend of the associated control points from the
three Bézier patches shown in Figure 4. The points ¢300,Cos0, and coos are
constants, the remaining boundary control points are rational blends of two
Bézier patch boundary control points, and the interior point €317 is a blend
of three points.

The blend formulation must preserve the important properties of the three
underlying Bézier patches, boundary curves and cross boundary derivatives,
when evaluating along the edges. The corner control points are constants so
no blending function is needed. The blending function for the interior control
points is the same as used in Foley’s functional construction, giving us

c111(u) = ao(u)bi11,0 + a1 (w)bi11,1 + az(u)bii12

where the a; are defined in (1). The boundary control points are blended to
give two properties:
1) When evaluated along a boundary the parametric Foley control points
become the control points of one of the three Bézier patches
2) The tangent plane field of the parametric hybrid patch along a boundary
matches the tangent plane field along the same boundary of one of the
three Bézier patches.

An asymmetric blend of the following form has both of these properties

(1 — uy)u;?
1-— ui)uf + (1 — u]')uﬂ

(2)

hij(’u,(),’ll,l,’llg) == (

This blending function is used to weight all the non-vertex boundary Bézier
control points:

cijr(wo,u1,u2) = hij(uo, w1, u2)bijri + hjibijn,kbijr,j,
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for 17k being any permutation of 012. For example, the V43 V5 boundary control
points would be

c012(u0,u1,u2) = h01(u0,u1,u2)5012,0 + hlo(uo,ul,m)bom,l

0021(u07u17u2) = h02(u07u17u2)b021,0 + h20(u07u17u2)b021,2

When evaluated along the V1V, edge ug = 0 we get
6012(0,U1,u2) = 5012,0, 0021(0,u1,u2) = 5021,0

since Equation (2) gives ho;(0,u1,u2) = 1 and h(0,u1,uz) = 0. The V1 V3
boundary curve is the cubic Bézier curve given by the control points bgso,
bo21,0, bo12,0, and bgos, which gives us C° continuity. This blend also gives us
C! continuity, as described in Davidchuk’s thesis [1].

The control points {bseo, boso, boos, b;’ j} are blended to form the ten con-
trol points of a standard cubic Bézier patch, labeled as ¢z(u). The Bézier
patch defined by the ¢; is then evaluated at u. The concise definition is

F(u) = )  Bi(u)ey(u)

lil=3

§4. Choice of plane

There is freedom in the choice of the projection plane, and there are some re-
strictions. The orientation, not the position, of the plane determines the posi-
tions of the control points thus giving two rotational degrees of freedom. The
plane should be constructed geometrically from the given information — trian-
gle vertices and normals. The two Bézier patches must not have overlapping
domains on the plane so the orientation is restricted to being “underneath”
both patches.

One failsafe method of choosing a plane is to take the plane perpendicular
to the bisecting plane of the two neighboring triangles and that contains their
common edge. With this choice of plane, the projection of the triangles will
lie on opposite sides of the projection of their common edge, so the patch
domains will never overlap.

However, a better choice is the plane perpendicular to the average of
the normals at the two data points, and either date point. Although this
construction is not guaranteed to give us a valid plane (i.e., the two projection
of the two triangles along the edge may overlap), it does in general give us
better shaped surfaces [1].
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Fig. 7. Triangular Gregory patches and our scheme fit to a torus.

Fig. 8. Triangular Gregory patches and our scheme fit to a cat data set.

S§Results

To test our surface construction method, we used it to fit patches to a cat
data set (where normals are estimated) and to samplings of a torus (where
normals come from the torus). We compared our method to Triangular Gre-
gory patches [6]. In Figure 7, we see isophote plots of both methods fit to
a 10x10 sampling of the torus. The isophotes for our method are noticeably
smoother.

In Figure 8, we see shaded images of both methods fit to a cat data set.
This data set has 366 vertices and 698 faces. Normals to the vertices were
estimated by a simple averaging of face normals. Many of the shape artifacts
that appear on triangular Gregory patches our not present on the surface
constructed by our scheme.

One drawback to our scheme is that as the tangent planes on either side of
an edge become perpendicular to the edge, the interior points of the boundary
curve move towards infinity. Thus, normal estimation becomes a critical step.



8

S. Mann and M. Davidchuk

Acknowledgments. This research was funded by the Natural Sciences and
Engineering Research Council of Canada

10.

11.

12.

References

. Davidchuk, M., A Parametric Tybrid trianglar Bezier Patch, dissertation,

Master’s, University of Waterloo (Waterloo ON), 1997.

Foley, T. A. and K. Opitz, Hybrid Cubic Bezier Triangle Patches, in
Mathematical Methods in Computer Aided Geometric Design II, T. Lyche
and L. Schumaker (eds), Academic Press, New York, 1992, 275-286.

Franke, R., A critical comparison of some methods for interpolation of
scattered data, Report NPS-53-79-003, Naval Postgraduate School, 1979.
Goodman, T. N. T. and H. B. Said, A ! triangular interpolant suit-
able for scattered data interpolation, Commun. Appl. Numer. Methods 7
(1991), 479-485.

Hagen, H., S. Hahmann, T. Schreiber, Y. Nakajima, B. Wordenweber,

and P. Hollemann-Grundetedt, Surface interrogation algorithms, Comp.

Graphics and Applics. 12 (1992), 53-60.

. Longhi, L., Interpolating patches between cubic boundaries, Technical

Report T.R. UCB/CSD 87/313, University of California, Berkeley, 1986.

Mann, S., Surface Approximation Using Geometric Hermite Patches, dis-
sertation, Doctoral, University of Washington (Seattle, WA), 1992.

Mann, S., Using local optimization in surface fitting, in Mathematical
Methods for Curves and Surfaces, Morten Deahlen, Tom Lyche, Larry L.
Schumaker (eds), Vanderbilt University Press, Nashville & London, 1995,
323-332.

Mann, S., Cubic precision Clough-Tocher interpolation, submitted for
publication.

Mann, S., C. Loop, M. Lounsbery, D. Meyers, J. Painter, T. DeRose,
and K. Sloan, A survey of parametric scattered data fitting using trian-

gular interpolants, in Curve and Surface Design, H. Hagen (ed), STAM
Publications, STAM, Philadelphia PA, 1992, 145-172.

Moreton, H. P. and C. H. Séquin, Functional Optimization for Fair Sur-
face Design, Computer Graphics (ACM SIGGRAPH) 26 (1992), 167-
176.

Nielson, G. M., A transfinite, visually continuous, triangular interpolant,
in Geometric Modeling: Algorithms and New Trends, G. E. Farin (ed),
SIAM Publications, Philadelphia, 1987, 235-245.

Stephen Mann and Matthew Davidchuk
Computer Science Department
University of Waterloo,

Waterloo, ON, N2L 2R7, CANADA

smann@cgl .uwaterloo.ca, mdavidch@cgl.uwaterloo.ca



