Counting Pruned Bézier Curves

Ron Goldman and Stephen Mann

Abstract. Removing some intermediate computations from the
de Casteljau algorithm for Bézier curves generates a new class of
curves called pruned Bézier curves. This class of curves includes
the classical Ball curves and their generalizations as well as curves
evaluated by Horner’s method. Here, we study the combinatorics
of pruned Bézier curves. By solving recurrence relations we derive
closed formulas for the number of pruned curves of various types,
including those that are non-degenerate (bushes), those that are
variation diminishing (hedges), those whose algorithms are sym-
metric, and those whose algorithms are distinct. We also observe
that combinatorially these non-degenerate pruned Bézier schemes
(bushes) are related to binary and ternary trees.

81. Introduction

The de Casteljau algorithm for evaluating Bézier curves consists of re-
peated affine combinations that can be arranged in a triangular fashion [6].
Trimming some of the nodes from this triangular diagram gives the com-
putation for Ball curves, for curves in monomial form, and more generally
for several classes of polynomial curves known as pruned Bézier curves.

In earlier work [2], the geometry of two classes of pruned Bézier curves
— bushes and hedges — were investigated. Bushes are non-degenerate
curves; their basis functions are linearly independent. Hedges are variation
diminishing curves; their basis functions are totally positive. Both bushes
and hedges are affine invariant and lie in the convex hull of their control
points.

The pruning rules for bushes are that a node x in the triangle diagram
may be removed if

e 1 is a leaf node

e x has exactly one parent
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Fig. 1. Illustration of pruning process for bushes. Dark nodes indicate
computations; hollow nodes indicate control points.
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Fig. 2. All degree 3 hedges.

e 7 has a sibling with exactly two parents

An example of the pruning process for depth 3 bushes appears in Fig-
ure 1. The pruning rules for hedges are the same as for bushes, with one
additional restriction on when a node x may be pruned:

e z’s sibling is also a leaf

All depth 3 hedges are shown in Figure 2.

A key distinction between the pruning rules for bushes and hedges is
the following. For hedges, if we delete k£ > 0 nodes from one side of the
jth level, we must delete at least k + 1 nodes from the same side of the
j + 1st level, whereas for bushes, we need only delete k£ nodes from the
J + 1st level.

In this paper, we will count the number of bushes of depth n and
the number of hedges of depth n. In addition, we will consider restricted
classes of bushes and hedges, and count the number of members in these
classes.

82. Counting Hedges

We start by counting the number of right hedges. In a right hedge, we
are allowed to remove nodes only from the right side of the hedge. Left
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Fig. 3. Removing k£ nodes from bottom layer.

hedges can be defined in a similar fashion. In a right hedge with k& nodes
removed from the bottom layer, the only other nodes that may be removed
form a triangle above those removed from the bottom layer (Figure 3).

Lemma 1. Let H}' denote the number of right hedges we can generate if
we remove at most k nodes from the right side of the nth level, with k < n.
Then H}} = 2k,

Proof: By induction on k. Base case: kK = 0. In this case, no nodes are
removed, so H} = 1.

Assume that H = 2t for 0 < i < k.

Let EH]' denote the number of hedges with exactly k nodes removed
from the right side of the nth level. To count the number of right hedges,
Hy! |, we can form when removing up to k + 1 nodes from the bottom
row, we will sum FH}, for ¢ =0 to k + 1.

The number of right hedges we can form when we remove exactly 4
nodes from the bottom layer is equal to the number of right hedges we
can form when we remove up to ¢ — 1 nodes on the next layer, (see the
shaded region in Figure 3). Thus, for i > 0

BH = H,
and FHy = 1. Invoking the inductive hypothesis yields
kel k+1 k+1
By =Y BHY <14 Y 13 2
=0 i=1 i=1
O

Note that the number of left hedges of depth n that can be generated
by removing at most k& nodes from the nth level is equal to H} .
We are now ready to count the total number of hedges of depth n.
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Theorem 1. Let H™ denote the number of hedges of depthn. Then H"™ =
(n+1)2"72

Proof: Hedges of depth n are generated by removing nodes from the left
side and nodes from the right side. As long as no more than n — 1 nodes
in total are removed from the bottom layer, removing additional nodes at
higher levels in the hedge can be done independently on the left and right
sides.

To count the total number of hedges we can form when we remove
exactly ¢ nodes from the bottom left, we multiply the number of left hedges
we can generate when removing exactly 7 nodes from the bottom level by
the number of right hedges that result from removing up to n—1—i nodes
from the bottom level.

Thus, the number of hedges we can form when we remove exactly 4
nodes from the left (with n > i > 0)is EH* x H_,_; =21 x2n=171 =
2"=2, We compute H" by counting the number of hedges we can generate
when we remove exactly ¢ nodes on the left, and summing over i:

n—i—1

n—1
H" = Y EH!'-H}
=0

n—1
= Hp ,+ Z HP - Hy

i=1

n—1
_ 2n—1 + Z 21—1271—1—1

i=1
= 2"l (n—-1)2"?=(n+1)2"2

O

2.1. The Number of Symmetric Hedges
The number of symmetric hedges of depth n (SH™) is equal to the
number of right hedges where the nodes removed do not extend past the
middle. Counting even and odd n separately gives us
SH®" = HM =2""1
SH2n+1 — H27L+1 — 2?7,

and we see that SH™ = 2[(n=2)/2]
2.2. The Number of Distinct Hedges

When we calculated H", we counted hedges with the same symmetry
twice. The number of distinct hedges of depth n (DH™, where we count
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symmetric hedges only once) will be half the sum of the total number of
hedges and the number of symmetric hedges. Again counting even and
odd n separately gives us

SH2n H2n
DH*" = 7; =2""2 4 (2n +1)2°"7°
SH2n+1 H2n+1
DHQn—‘,—l _ ;— _ 271,—1 =+ (2” + 2)22n—2

and we see that

DH™ = 2l(n=1/21=1 4 (5 4 1)2n=3,

83. Counting Bushes

The method we used for counting hedges (i.e., counting left and right
hedges independently) will not work for bushes, since for bushes once
we remove nodes from the left and right on the bottom layer, the nodes
we can remove at higher layers are not independent. Instead, to count
the number of bushes of depth n, we begin by counting the number of
symmetric bushes. We will show that the number of symmetric bushes of
depth 2n is equal to the number of bushes of depth n.

3.1. Symmetric Bushes

Let SB™ denote the number of symmetric bushes of depth n, let SBY
denote the number of depth n symmetric bushes with at most 2k nodes
removed from the nth level and let £SB} denote the number of depth n
symmetric bushes with exactly 2k nodes removed from the nth level. The
key observation in counting the number of symmetric bushes is

ESBy =SBy

This result is illustrated in the left diagram of Figure 4; if we remove ex-
actly k nodes from each side of the bottom level of a depth n symmetric
bush (the light gray region in the figure), then we can form symmetric
bushes by removing nodes in the dark gray regions of the figure, symmet-
rically across the vertical line. For this equality to hold in all cases, we
must make the following special definition:

SB2" = SB2" . 1)

The need for this boundary condition is seen in the right diagram of Fig-
ure 4, where having removed two nodes on either side of the bottom level,
we are unable to remove two nodes on either side of the next higher layer,
since that would remove node D from the bush.
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D

Fig. 4. Nlustration of ESB} = SBZ_l.

To compute the number of symmetric bushes, we note that SB} (the
number of symmetric bushes of depth n with at most £ nodes removed
from each side on the nth level) is equal to the number of symmetric
bushes of depth n with exactly & nodes removed from each side plus the
number of symmetric bushes of depth n with no more than k£ — 1 nodes
removed from each side. This observation gives us

SBy = ESB}+SB}
= SBI'4+SBp (2)

when 1 < k < [(n —1)/2]. When k = 0, we note that SBj = 1. The
closed form solution of this recurrence (with boundary condition (1)) can
be found using standard combinatorial techniques (see for example [1]):

n_ (ntk-1\ (n+k-1\ _/n+k-1
SBy = ( i b1 2 ko9 ) (3)
Note that the correctness of the closed form can by checked by verifying
that (3) satisfies (2) and (1).
To count all bushes, we will need SB2", so we note that, with a bit of
simplification, we have the following:

SB* = SB2",

_ §3£)12> B (3:__22> - 2(3:__32)

n
SB2n+1 _ SBZ?H—I

(o)

n+1
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(0,0, (0,0), (1,1), (1,1) ~ (0,0), (1,0

0), (1,1), (2,1)

Fig. 5. Bushes as sequences of pairs of integers.

0,0,1,1 0,0,0,1

Fig. 6. Symmetric bushes as sequences of integer.

3.2. Characteristic Sequences and Bushes

Let aj denote the number of nodes removed from the kth level of a bush
from the left; let by denote the number of nodes removed from the kth
level on the right; and let ¢ denote the number of nodes removed from
the kth level of each side of a symmetric bush.

We can now describe a bush of depth n abstractly as a sequence of
pairs of integers, (a1,b1),...,(an,by) with 0 = a; < ag < --- < a, and
0=0 <by<:---<by,and 0 < ap + b, < k — 1. Figure 5 gives two
examples of bushes and their corresponding sequences of integer pairs. We
can also describe symmetric bushes of depth 2n abstractly as sequences
of integers, c¢1,...,con, Where 0 =c; < -+ < cop, With 0 < g1 <k —1
and 0 < co, < k — 1. Figure 6 shows two examples of symmetric bushes
and their corresponding sequences of integers.

Theorem 2. There is a bijection between the number of bushes of depth
n and the number of symmetric bushes of depth 2n.

Proof: We know ¢; = 0. For all other ¢;, the following gives a mapping
of the sequences of integer pairs corresponding to a bush of depth n to the
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integer sequence corresponding to a symmetric bush of depth n:

Cok—1 = G +br_1
Cor, = ap+ by

Reversing the process, starting with a; = b; = 0, we find that for a;, b;,
with ¢ > 1 we have

ar = cop—1—br_1
b].c = Cor — Q.

These mappings of sequences establish a bijection between bushes of depth
n and symmetric bushes of depth 2n. O

Corollary 1. Let B™ denote the number of bushes of depth n. Then

B" — (2211)
771 .

3.3. Distinct Bushes

Let DB(n) denote the number of distinct bushes of depth n. The number
of distinct bushes is half the sum of the number of bushes of depth n and
the number of symmetric bushes of depth n. Counting even and odd n
separately, we have

SB 4 B §B2n 4 SBin

DB(2n) = ) 5
26+ ()
4n
DBEn+1) = SBQ"Jrl;BQ”+1 _ Sp2ntt J;SB‘““r2
o, e

2n+2 4dn+2

3.4. Right bushes

We shall now count the number of right bushes of depth n and show that
this count is equal to the number of binary trees with n nodes.

Let B} denote the number of bushes with at most & nodes removed
from the right side of the nth level and let £B}’ denote the number of
bushes with exactly k nodes removed from the right side of the nth level.
As with symmetric bushes, the key observation in counting the number of
right bushes is that

EBy =B},
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but with the boundary condition
B = B (4)

n—1-

We now establish a recurrence relation for right bushes by observing
that the number of depth n right bushes with at most & nodes removed
from the nth level is equal to the number of right bushes where we remove
exactly k nodes from the right plus the number of right bushes of depth n
where we remove at most k£ — 1 nodes from the right. Thus, for 1 < k < n,

B! = EB!'+ B!,
By~ + By,

and B} = 1.
Solving for a closed form solution of this recurrence with boundary
condition 4 in a manner similar to that used for symmetric bushes gives

Bn— n+k n+k\  (n+1—-Fk)(n+k)!
Pk k—1) El(n+1)!
The number of binary and ternary trees with n nodes is well known [4,
7]. From our explicit formulas, we observe the following two relationships
between right bushes and binary trees, and between bushes and ternary
trees.

Theorem 3. B

o1 the number of binary trees with n nodes

(n+1—Fk)(n+k)
El(n + 1)!

Theorem 4. B" = the number of ternary trees with n nodes

(2nt1)

n

84. Open Questions and Future Work

We have derived closed formulas both for the number of hedges and for
the number of bushes of a fixed depth. Suppose, however, that instead of
fixing the depth, we fix the number of nodes — or equivalently the number
of processors [5] — in the evaluation algorithm. We would like to know
how many hedges or bushes we can construct if we are limited to a fixed
number of processors. Preliminary investigations lead us to believe that
answers to these types of questions are related to the theory of integer
partitions — that is, to the representations of positive integers by sums
of other positive integers. Closed formulas that count different kinds of
integer partitions are typically hard to come by, but recurrence relations
and even generating functions are often available. We plan to study this
topic further and report on our results in a future paper.
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