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Abstract

A high-order-of-approximation surface patch is used to
construct continuous, approximating surfaces. This patch,
together with a relaxation of tangent plane continuity, is
used to approximate offset surfaces, algebraic surfaces, and
S-patches.

1. Introduction

Many researchers have investigated the problem of inter-
polating a triangulated set of data. For parametric data, a va-
riety of approaches have been proposed, most of which cre-
ateG1 surfaces that interpolate position and normal infor-
mation at the vertices. Unfortunately, while these schemes
produce surfaces that are mathematically smooth, the sur-
faces usually fail to look smooth. (See [LMD92, MLL+92]
for surveys of triangular, parametric interpolation schemes,
and for a discussion of problems with these schemes.)

One problem with theG1 schemes is that a fairly high
degree surface patch is required to satisfy the continuity
conditions. However, after meeting the continuity con-
straints, several degrees of freedom remain unset. While
these degrees of freedom can be used as shape parame-
ters, they should be given good default values automatically.
Typically, these degrees of freedom are set using simple
heuristics. Unfortunately, these simple choices yield sur-
faces with severe shape defects.

There are several approaches to improving the set-
tings of these excess degrees of freedom. Several re-
searchers are investigating using global optimization for set-
ting them [CG91, MS92]. The resulting surfaces, while
computationally expensive to construct, have better shape
than those constructed using simple heuristics.

Subdivision surfaces provide an alternative surface con-

struction approach. Many subdivision schemes (such as
Catmull-Clark and Loop subdivision [CC78, Loo87]) are
approximating schemes and not well suited to this problem.
Others, such as the butterfly scheme [DLG90] are interpo-
latory, and could be used to solve this problem. See, for
example, Warren’s course notes for an introduction to sub-
division schemes [War98].

A different approach is taken in this paper. Rather than
developing improved settings of the excess degrees of free-
dom, I use a cubic patch technique of DeRose-Mann that
leaves few degrees of freedom unset after matching geo-
metric constraints. The resulting surface patch has better
shape the those built by theG1 schemes. Then, to construct
a piecewise polynomial surface, I relax the continuity con-
ditions fromG1 to ε-G1 (ε-G1 is defined in Section 3.1).

In the next section, I review the cubic interpolant, a patch
that interpolates the data at the corners of a triangle to sec-
ond order. Then in Section 3, I introduce the notion of ap-
proximate continuity (ε-G1) and show how to use the cubic
interpolant to produceε-G1 approximations to offset sur-
faces, algebraic surfaces, and S-patches.

2. The Cubic Interpolant

There are several free parameters in mostG1 schemes.
Experience has shown that using simple heuristics to set
these parameters leads to surfaces that fail to appear vi-
sually smooth. To improve surface quality, one could use
more principled settings of the remaining degrees of free-
dom, using for example, numerical optimization. Alterna-
tively, for surface approximation, the excess degrees of free-
dom could be set using additional data sampled from the un-
derlying surface. In this section, I take the latter approach
and review a construction of DeRose-Mann that sets the de-
grees of freedom in a degree three triangular Bézier patch
by matching higher order derivative information at the data
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Figure 1. The domain triangle and control
points of a cubic B ézier patch P

points.
If the data given at the vertices includes position, normal,

and curvature, then in general, we can interpolate it with
triangular, cubic B́ezier patches. In the following, a single
patch will be calledP. The domain ofP is given by the
triangle4rst. The control points ofP are denoted with
standard multi-index notation (Figure 1). The problem we
wish to solve is:

Given: Three points, with associated normals and
second fundamental forms, (Vi, N̂i, II i), i ∈
{r, s, t}.

Find: A cubic polynomial surface patch that in-
terpolates this data.

The data at each input point imposes eight constraints on
the patch: three for position, two for the normal, and three
for the second fundamental form. For two linearly indepen-
dent vectors~u and~v in the tangent plane of a patchP at
Vr, P must satisfy the following constraints to interpolate
the data atVr :

P(r) = Vr,

< D~uP(r), N̂r > = 0,

< D~vP(r), N̂r > = 0,

< D~u~uP(r), N̂r > = −IIr(~u, ~u),

< D~v~vP(r), N̂r > = −IIr(~v, ~v),

< D~u~vP(r), N̂r > = −IIr(~u, ~v).

Similar constraints are imposed by the other two corners.
The total number of constraints on the patch is therefore 24.
A quadratic polynomial patch has only 18 degrees of free-
dom and cannot in general be used to solve this problem. A
cubic patch is the minimum degree polynomial patch that
can be used; it has 30 degrees of freedom in its ten control
points.

The construction proceeds as follows: each boundary of
the patch is built to interpolate the data that two corners
with a planar geometric Hermite curve using the method

of de Boor-Hollig-Sabin [dBHS87]. This leaves unset the
center control point (P111). Each second fundamental forms
at the data points place a planar constraint on this control
point; we find its setting by intersecting these three planes
as described in the next paragraph.

The center control point influences the mixed partial at
the three corners of the patch. Letting~u = 3(P210−P300)
and~v = 3(P201 −P300), the mixed partial’s normal com-
ponent at the cornerVr is

IIr(~u, ~v) = − < D~u~vP(r), N̂r >

= − < 6(P111 + P300 −P210 −P201), N̂r >

= −6 < P111 −P300, N̂r > .

Thus,P agrees with the mixed partial information atVr

if P111 is placed anywhere in the plane passing though the

point P300 − II r(~u,~v)
6 N̂r and perpendicular tôNr. Each

corner restrictsP111 to such a plane. In general, these three
planes can be intersected to find a unique position forP111

that satisfies all the input constraints.
Details of this construction can be found in a paper by

DeRose-Mann [DM92]. I shall refer to this patch as the
cubic interpolant. It is conjectured that this patch has fifth
order approximation [Man92].

3. Applications

Most interpolation techniques construct a piecewise con-
tinuous surface with patches that meet with tangent plane
continuity. Many applications, however, build a physical
approximation to the mathematical surface that is not tan-
gent plane continuous. For example, in a manufacturing
process, machining tools create surfaces that are only ap-
proximately continuous. Thus, it may be advantageous to
relax the continuity conditions earlier in the design process
if it simplifies the construction, simplifies the representa-
tion, improves efficiency, or improves the surface shape. In
this section, I use the cubic interpolant to construct approx-
imately tangent plane continuous surfaces.

3.1 Approximate Continuity

In the previous section, a surface patch was fit to a trian-
gle of data without considering the discontinuity in surface
normals between neighboring patches. As all the degrees of
freedom in each patch are used to match derivative informa-
tion, we are unable to form aG1 join in general. To ensure
some degree of smoothness, I use the following relaxation
of tangent plane continuity:

Definition: Let S be a piecewiseC1, globallyC0

surface. DefineS to beε-G1 if the the maximum
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Figure 2. Mesh refinement.

angle between two surface normals at any pointp
onS is bounded byε.

As stated, the definition ofε-G1 allow for a surface to have
a “razor edge”. However, such surfaces should not be con-
sideredε-G1 for ε ≤ 90 degrees. Note that aG1 surface is
ε-G1 for everyε ≥ 0.

3.2 A Piecewise Cubic Surface Scheme

In this section, I show how to create anε-G1 surface
with the cubic interpolant that interpolates a triangular net
of data. For a triangular net of data, we can construct a cubic
interpolant patch for each face. A surface constructed in
this way is globallyC0, andG2 at the data points (although
occasionally the second order data can not be interpolated,
in which case the surface is onlyG1 at those vertices).

However, neighboring patches of this surface may join
with largeG1 discontinuities along boundary curves. So
after constructing the surface, the discontinuities between
normals on the boundaries are checked. If the discontinuity
along an edge is determined to be small enough, the edge is
left unchanged. If the discontinuity is large, then the mesh
is refined adaptively in that region as shown in Figure 2.

The refinement process generates new data points. At
each new point, the position, normal and surface curvature
must be determined. When approximating a known surface,
this data is sampled from the surface. The cubic interpolant
is then used to construct patches for the new faces, and the
process is repeated. If the conjecture mentioned at the end
of Section 2 holds, then we expect this process to terminate
quickly.

One slight difficulty occurs when the cubic interpolant is
used to approximate a surface with a smooth boundary. The
above method restricts the boundaries of the cubic patches
to be planar. Since the particular plane used for each patch
boundary is chosen independent of the other patches, the re-
sulting boundary of the surface will not in general beG1. To
achieve aG1 surface boundary, I sample the tangents of the
surface along the boundary and fit a non-planar geometric
Hermite space curve to the data [Man92].

To ensure that the piecewise cubic surface isε-G1 for
a givenε, we need to bound the discontinuity in surface
normals between two cubic patches. Currently, I sample
the normals of both patches at ten locations on their com-
mon boundary and use the maximum discontinuity between
these pairs of normals as an estimate of the maximum dis-
continuity along the entire boundary.

4. Approximation of Known Functions

One application of the cubic interpolant is to approxi-
mate known functions. In this section, I use the cubic in-
terpolant to approximate algebraic surfaces, offset surfaces,
and S-patches. For all three applications, the primary prob-
lem is the computation of the second fundamental forms.

The question of “how large a discontinuity in the nor-
mal is acceptable” is a difficult question to answer. For
visual smoothness, the allowable deviation from equal nor-
mals will depend on the material properties of the surface. I
will evaluate surface quality by visually examining the sur-
face. For the red, diffuse material used in this paper, I em-
pirically determined that angles less than one degree are not
visible in shaded images, and used one degree as my stop-
ping criteria for the subdivision. Note that the visibility of
the discontinuity is also a function of the viewing angle and
of the direction to the light source. In addition to using a
bound on the angle, the surfaces shown in this paper were
evaluated by rotating the objects and looking at them from
various angles.

4.1 Algebraic surfaces

An algebraic surface is an implicit polynomial surface.
That is, it is the set of all points such that the equation

P (x, y, z) = 0

is satisfied, whereP is a polynomial inx, y, and z. Al-
gebraic surfaces and parametric polynomial surfaces both
have uses in CAGD. Sometimes it is useful to convert be-
tween the two representations. While a parametric surface
can always be converted to implicit form, it is sometimes
impossible to convert an algebraic surface to a parametric
polynomial surface. If an approximation to the algebraic
surface is acceptable, then the cubic interpolant can be used
to obtain a piecewise polynomial approximation.

Since the evaluation of an algebraic function is zero for
points on the surface, as a first step we must locate points
on the implicit surface. This is typically done by search-
ing a portion of space, leading to the related difficulty of
determining which region of space to search. Here, I as-
sume that the region of interest is given, and I use a vari-
ation of marching cubes to find an initial sampling of the
surface [HDD+92].

The data points in the marching cubes mesh are only near
the surface. Thus, the points are projected back onto the im-
plicit surface, and normals and curvature data are added us-
ing the method of Schweitzer and DeRose [SD]. Schweitzer
and DeRose show that iff is the blossom [Ram87] of an al-
gebraic functionF , andp is a point onF , then the normal
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of F atp is given by

N̂(p) =
∑3
i=1 f(êi,p, . . .p)êi

(
∑3
i=1 f(êi,p, . . .p)2)1/2

,

where{ê1, ê2, ê3} is a basis for the space. The second fun-
damental form ofF(p) = 0 is

IIp(~u, ~v) =
(n− 1)f(~u, ~v,p, . . . ,p)

(
∑3
i=1 f(êi,p, . . .p)2)1/2

.

Starting from this initial mesh, the cubic interpolant is fit to
the data, and the mesh is refined where needed.

Meshes for the function4x2+2y2+z2−4 = 0 are given
in Figure 3. The number of faces in each mesh appears
below the mesh. The left most mesh is the initial mesh, and
the remaining four show the mesh after 1, 2, 3, and 4 levels
of refinement. In Figure 7, the Gaussian curvature plots of
the surface corresponding to these meshes are shown in two
views: one matching the view of the meshes in Figure 3,
and one from the top. The image in the bottom right is a
shaded image of the final surface. The final surface isε-G1

for ε = 0.4 degrees.
The above example is fairly simple. In particular, there

are no degeneracies in the surface (i.e., singular points, sin-
gular lines, etc). In the presence of degeneracies, a different
algorithm would have to be devised to compute the initial
mesh, as the marching cubes algorithm fails to account for
the degeneracies.

4.2 Offset surfaces

Given a surfaceS, the offset surfaceS∗ is computed by
moving a fixed distance along the normals toS. More pre-
cisely, if N̂S is the normal toS, then

S∗(t) = S(t) + dN̂S(t),

whered is a fixed constant. Offset surfaces have applica-
tions in NC-machining, where the point of tool motion is
offset from the surfacing being machined.

An offset surface is typically more complex mathemat-
ically than the base surface. For example, ifS is a para-
metric polynomial surface, then the offset toS is not in
general a parametric polynomial surface. This causes dif-
ficulties for many modeling systems, as such systems are
equipped to deal with parametric polynomial surfaces but
cannot explicitly represent offsets to polynomial surfaces.
Often, however, users are satisfied with an approximation
to the offset surface.

To approximate offsets to surfaces with the cubic inter-
polant, the offset surface must be sampled at a variety of
locations for position, tangent plane, and second fundamen-
tal form. If we have a sampling of the base surface, then a

Refinement Level Color
6+ white
5 light green
4 lavender
3 red
2 blue
1 yellow-brown
0 dark green

Table 1. Refinement color map.

sampling of the offset surface can be computed as follows:
The position is given by the definition of the offset surface.
The mapping of a vector~v in the tangent plane ofS to ~v∗

in the tangent plane ofS∗ is given by the following:

D~v∗S∗ = D~vS + dD~vN̂S

= ~v − d(IIS(~v, p̂1)p̂1 + IIS(~v, p̂2)p̂2), (1)

wherep̂1 andp̂2 are the principal directions ofS. Note that
~v∗ is a linear combination of vectors in the tangent plane of
S. Thus, we have

N̂S∗(p) = N̂S(p).

Further note that~v∗ is parallel to~v if and only if~v is a prin-
cipal direction. This fact may be used to show that principle
directions on the base surface map to principal directions on
the offset surface.

The mapping of curvatures in a principal direction~p hav-
ing curvaturek is

~p∗ = ~p− dII(~p, ~p)~p
= (1− dk)~p,

implying that the curvature of the offset surface in direction
~p∗ is k/(1 − dk). The mapping of the principal directions
gives us a complete characterization of the second funda-
mental form ofS∗.

On the left in Figure 8 is an offset to a bicubic tensor
product B-spline surface consisting of nine bicubic patches.
The cubic interpolant approximation to this surface appears
in the center of this figure. The cubic interpolant surface
was refined seven times; the surface consists of 148 patches
and isε-G1 for ε = 0.72 degrees. A map showing the
refinement level appears on the right in the figure. Table 1
gives the mapping of colors to levels of refinement. The
small region that was refined six and seven times occurs
along the surface’s right edge.

Note that in this example, the boundary of the offset
surface is composed of fourG1 curves. To constructG1

boundaries for the approximation, I sampled the tangents
of the boundary of the offset surface (Equation 1) and con-
structed non-planar geometric Hermite curves.
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Figure 3. Meshes for the function 4x2 + 2y2 + z2 − 4 = 0.

L B

S

Figure 4. A five sided S-patch.

4.3 S-Patches

For most purposes in CAGD, we can use three and
four sided surface patches. Sometimes, however,n-sided
patches are needed, wheren is greater than four. An S-
patch is one type of patch that can interpolate a face with
an arbitrary number of vertices. However, there are several
difficulties in using S-patches, two of which are of inter-
est to us here. First, S-patches have high rational degree,
making them computationally expensive to evaluate. And
second, the representation of S-patches with many sides is
large. In this section I show how to approximate aG1 S-
patch network with the cubic interpolant, reducing both the
computation and storage costs.

An S-patch is the composition of two maps,S = B ◦
L. The mapL is a rational map from a regularn-gon to
ann − 1-simplex; the mapB is a B́ezier simplex. Thus,
the compositionS is a map from ann-gon to ann-sided
surface patch (Figure 4). Thedepthof an S-patch is defined
to be the degree ofB. Loop and DeRose give a detailed
description of S-patches [LD89].

A few properties of S-patches are worth mentioning
here. First, S-patches are a generalization of both trian-
gular B́ezier patches and of tensor product Bézier patches:
three sided S-patches are Bézier patches, and tensor product
Bézier patches are a special case of four sided S-patches. A
second property is that while in general S-patches are ra-
tional polynomial surfaces, their boundaries are polynomial
curves.

The first step in creating anε-G1 approximation to an
S-patch network is to find an initial triangulation of the S-
patches. The easiest approach is to subdivide each S-patch

at the center of its domain and split then-sided patch inton
triangular regions. Each one of these triangular regions can
now be approximated with a cubic interpolant patch.

To make such an approximation, we must compute nor-
mals and second fundamental forms at the sample points.
Since we know the rational polynomial equation for the S-
patch, we can compute these values directly. Essentially,L
is a function of two variables, sayx andy, andB is a B́ezier
simplex. BlossomingB gives the following form forS:

S(x, y) = B(L(x, y))
= b(L(x, y), . . . ,L(x, y)).

To compute the first and second fundamental form, we need
to take partial derivatives ofS:

DxS(x, y) = db (DxL(x, y), . . . ,L(x, y)) ,

Dx,xS(x, y) = d(d− 1)b
(
DxL(x, y),DxL(x, y),

L(x, y), . . . ,L(x, y)
)

+

nb (Dx,xL(x, y), . . . ,L(x, y)) ,

whered is the degree ofB.Similar formulas give the deriva-
tives with respect toy and the mixed partials [Man92]. With
this information, we can compute the normal and second
fundamental form at a point onS.

The boundaries between S-patches pose a slight problem
when approximating a network of S-patches. Since the S-
patch surface might be onlyG1, the second fundamental
forms of two S-patches meeting along a boundary do not in
general agree. For the cubic interpolant approximation, two
different second fundamental forms will be used, one for
each S-patch of the original surface. Note that the resulting
approximation will only beG1 at the vertices.

However, this use of two second fundamental forms
introduces a difficulty with the boundary curves of the
patches. Consider the situation at the boundary between
two S-patches. Two cubic interpolant patches will be con-
structed, one on each side of the S-patch boundary. If the
curvatures used to construct these two boundary curves fails
to match, then two different geometric Hermite curves will
be constructed, and the approximation will not beC0. To
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S-Patch Cubic
Branch Interpolant

Sides 4 5 3
Depth 3 6 3
Number in surface 20 4 238
Control points per patch 20 210 10
Total control points 1240 2380

Relative Cost Per Point 2 42 1
Total Cost For Surface 1000 238

Table 2. Approximation of S-patch branch sur-
face.

avoid this problem, I sample the tangents and curvatures
directly from the boundary curves of the S-patches. A non-
planar geometric Hermite curve is then fit to this data. Note
also that if the S-patches are of depth no greater than three,
then we can use the boundary of the S-patches as the bound-
ary curves for the cubic interpolant patches.

4.3.1 Results

I give two examples of approximating an S-patch sur-
face with the cubic interpolant. Both S-patch surfaces are
from [LD90, Loo92]. The initial mesh for the first example
(the branch mesh) appears on the left in Figure 5. Shaded
images of the S-patch surface, of the cubic interpolant ap-
proximation to this surface, and of the refinement map ap-
pear in Figure 9.

The branch S-patch surface is comprised of twenty-four
S-patches. Twenty of these are four sided patches of depth
three, while four are five sided patches of depth six. The
cubic interpolant surface was refined three times; the final
approximation isε-G1 for ε = 0.04 degrees and has 238
patches.

A comparison of the storage requirements appears in Ta-
ble 2. With no sharing of vertices, the S-patch surface re-
quires 1240 vertices. The cubic interpolant requires 2380
vertices for the approximation. If sharing is used, the cu-
bic interpolant storage cost decreases to roughly half (1100
points), while the S-patch scheme decreases to about 1000
points.

The primary advantage to using the cubic interpolant to
approximate S-patches is in time required to evaluate a point
on the surface. The cost to evaluate S-patches of high de-
gree is expensive compared to the cost of evaluating the cu-
bic interpolant. For example, it is about 42 times as expen-
sive to evaluate a depth six, five sided S-patch than it is to
evaluate the cubic interpolant. The cost increases dramati-
cally as the number of sides increases; as seen in the next
example, it is 92 times as expensive to evaluate a depth six,

Figure 6. Ring mesh.

six sided S-patch than it is to evaluate the cubic interpolant.
The total cost of tessellating the example S-patch sur-

face is about 4.2 times as expensive as evaluating its cubic
interpolant approximation. Note that the tessellation of the
cubic interpolant approximation has 2.4 times the number
of triangles in the S-patch tessellation. Thus, the cost per
triangle of the tessellation of the S-patch is about 10 times
as expensive as the cost for the cubic interpolant. Further,
the S-patch evaluation costs used in the table only account
for the evaluation of the B́ezier simplex; they do not include
the cost of evaluating theL function.

The second example is of the ring mesh shown in Fig-
ure 6. Shaded images of the initial S-patch surface and the
approximation appear in Figure 10. A comparison of the
costs and storage is given in Table 3. Here the evaluation
cost for the S-patch surface is about 4.2 times that of the
cubic interpolant approximation, while the number of tri-
angles in the cubic interpolant tessellation is about 3 times
that of the S-patch surface. The cubic interpolant surface is
ε-G1 for ε = 0.052 degrees. (The number of control points
in a depth six, six sided S-patch is unrelated to the num-
ber of cubic interpolant patches in the approximation; the
fact that these two quantities are equal in this example is a
coincidence.)

As a final note, S-patches have a large number of control
points. Ideally, our approximation of the S-patch surfaces
would require less storage. This was not the case in either
of the above two examples. However, in these examples,
we could not hope to get a reduction in storage cost as the
initial cubic interpolant approximations have roughly the
same number of control points as the S-patch surface (1000
and 1480 for the cubic interpolant surfaces versus 1240 and
1768 for the S-patch surfaces).

This large number of control points needed in the initial
approximation is due to approximating the bicubic patches
with cubic interpolant patches (20 control points for the
bicubic patch versus 80 control points for the four cubic
interpolant patches). The cubic interpolant initial approxi-
mation to S-patches with more sides results in a significant
reduction in control points (462 for a six sided, depth six
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Figure 5. The branch mesh and its refinements.

S-patch Cubic
Ring Interpolant

Sides 3 4 6 3
Depth 6 3 6 3
Number in surface 4 31 2 462
Control points per patch 56 20 462 10
Total control points 1768 4620

Relative Cost Per Point 5.6 2 92 1
Total Cost For Surface 1379 462

Table 3. Approximation of S-patch ring sur-
face.

S-patch versus 60 for six cubic interpolant patches). Thus,
a reduction in storage costs could be achieved by approxi-
mating only the high degree S-patches, leaving the bicubic
patches in tensor product form.

5. Conclusions

In this paper, I have presented a construction for a trian-
gular polynomial surface patch that interpolates the data at
three points to second order. I then used this patch to make
ε-G1 approximations of algebraic surfaces, offset surfaces,
and S-patches.

There are several areas for further research relating to
the cubic interpolant and approximate continuity. First, the
bounding of the discontinuity in surfaces normals along the
boundaries is quite simplistic. For cubic patches, the dis-
continuity can be determined analytically by finding the
roots of two polynomials, one of eighth degree, the other
of nineteenth degree. However, better techniques should be
devised.

The original motivating problem was to fit a smooth sur-
face to parametric scattered where only positional informa-
tion is known. Ideally, we could use the cubic interpolant
to interpolate such data. Extending the cubic interpolant to
approximate such data sets would require estimating nor-
mals and second fundamental forms at the data points, and

possibly generating additional data points if refinement is
necessary.
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Figure 7. Curvature plots of surfaces fit to
4x2 + 2y2 + z2 − 4 = 0. The bottom row shows
the curvature plot and the surface after four
refinements. (The final surface is ε-G1 for
ε = 0.4 degrees.)
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Figure 8. An offset to a bicubic.

Figure 9. The S-patch “branch” surface.

Figure 10. The S-patch “ring” surface.
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