
This is page 1Printer: Opaque thisChapter 1The Making of GABLE,a Geometri
 AlgeBra LearningEnvironment in MatlabStephen Mann, Leo Dorst, and Tim Bouma1.1 Introdu
tionGeometri
 algebra extends Cli�ord algebra with geometri
ally meaningfuloperators, and its purpose is to fa
ilitate geometri
al 
omputations. Presenttextbooks and implementation do not always 
onvey this geometri
al 
a-vor or the 
omputational and representational 
onvenien
e of geometri
algebra, so we felt a need for a 
omputer tutorial in whi
h representation,
omputation and visualization are 
ombined to 
onvey both the intuitionand the te
hniques of geometri
 algebra. Current software pa
kages areeither Cli�ord algebra only (su
h as CLICAL [9℄ and CLIFFORD [1℄) ordo not in
lude graphi
s [6℄, so we de
ide to build our own. The result isGABLE (Geometri
 Algebra Learning Environment) a hands-on tutorialon geometri
 algebra that should be a

essible to the se
ond year studentin 
ollege [3℄.The GABLE tutorial explains the basi
s of Geometri
 Algebra in an a
-
essible manner. It starts with the outer produ
t (as a 
onstru
tor of sub-spa
es), then treats the inner produ
t (for perpendilarity), and moves viathe geometri
 produ
t (for invertibility) to the more geometri
al operatorssu
h as proje
tion, rotors, meet and join, and end with to the homogeneousmodel of Eu
lidean spa
e. When the student is done he/she should be ableto do simple Eu
lidean geometry of 
ats using the geometri
 algebra ofhomogeneous blades. For instan
e, the interse
tion between lines 
an beeasily expressed in the basi
 operators:e = e3; % the homogeneous embeddingP = e+ e1/3+e2; % point PQ = e+ e1+e2/2; % point QR = e+ e1/2-e2/4; % point RPQ = join(P,Q); % line PQQR = join(Q,R); % line QRmeet(PQ,QR) % interse
tion of those linesDrawing the obje
ts of geometri
 algebra is an important part of GABLE.
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FIGURE 1.1. Interse
tion of lines.Using them appropriately in this example produ
es Figure 1.1, 
larifyingthe relationship between the 3-D blade-based 
omputations in the homoge-neous model and their geometri
 semanti
s in 2-D Eu
lidean spa
e. Figure1.2 is an illustration of another exer
ise in GABLE, requiring interpolationbetween bive
tors. Obviously, with the geometri
 produ
t we 
an de�neand 
ompute spinors simply; then using the n-th root (by logarithm andexponentiation) we may interpolate between orientations, and apply theresulting spinors to the bive
tors. That generates the �gure.In Se
tion se
:pappus, we give the a more 
omplete example illustratingPappus's theorem.Our desire to visualize meant that we did not need to go beyond 3 dimen-sions, and our implementation fo
uses on C̀ 3;0 (although our implementa-tion is general enough to handle other signatures in 3-dimensional spa
eas well). Sin
e this software is meant for a tutorial, we did not have greateÆ
ien
y 
on
erns (though we did have some), and were most interested inease of implementation and the 
reation of a software pa
kage that 
ouldbe made widely available for tea
hing purposes.These goals led us to implement GABLE in Matlab and to foster distri-bution of geometri
 algebra, it was made to work with the student versionof Matlab. This paper des
ribes our experien
es in developing the pa
kage.We ran into some issues that any implementer of geometri
 algebra will needto de
ide on (representation, 
omputational eÆ
ien
y, stability of inverses);but we also en
ountered insuÆ
iently pre
isely resolved issues in the verystru
ture of geometri
 algebra itself, whi
h the need for straightforwardpra
ti
al use brought out. Among these are the various inner produ
ts,and the pre
ise de�nition and semanti
s of the meet and join operatorsin Eu
lidean geometry (for more general de�nitions see Chapter 3). This
hapter motivates and do
uments our de
isions in these matters.Our representation of geometri
 obje
ts is a re�nement of the 8� 8 rep-resentation that has been presented by others, along the lines suggested
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FIGURE 1.2. Interpolation of orientations for a bive
tor.by Lounesto and Ablamowi
z [8℄pag. 72), [1℄. We 
ompare this represen-tation of geometri
 algebra to matrix representations of Cli�ord Algebrasin Se
tion 1.2. For the important but potentially expensive operation ofinversion (or geometri
 division), we settled on a variation of a methodproposed by Lounesto for C̀ 3;0, whi
h we extend in Se
tion 1.3 to workfor arbitrary signature (in 3 dimensions). At the higher level, Se
tion 1.4gives some detail on our implementation of the meet and join operations,extending them to the non-trivial 
ases of partially overlapping subspa
es.Se
tion 1.5 dis
usses some of the implementation details, in
luding a briefdes
ription of the graphi
s and numeri
al aspe
ts of GABLE. The tutorialitself [3℄ is available on the World Wide Web1 The webpages 
ontain boththe Matlab pa
kage GABLE and the tutorial textbook.1.2 Representation of geometri
 algebraThe �rst de
ision we fa
ed in our implementation was whi
h representationto use for the geometri
 obje
ts. The most natural representation in Matlabwould be a matrix representation. Matrix representations for the geometri
produ
t in the Cli�ord algebras of various signatures are well studied [11℄;for ea
h signature a di�erent matrix algebra results. That is slightly un-1Available at http://www.wins.uva.nl/~leo/
lifford/gable.htmland http://www.
gl.uwaterloo.
a/~smann/GABLE/.



4 Stephen Mann, Leo Dorst, and Tim Boumasatisfa
tory. Moreover, our desire to make our algebra a proper geometri
algebra implies that we should not only represent the geometri
 produ
t,but also the outer and inner produ
ts, and preferably on a par with ea
hother. These issues are dis
ussed in more detail in Se
tion 1.2.4; in brief,we ended up using a modi�ed form of the 8� 8 matrix representation.1.2.1 The matrix representation of GABLEIn GABLE, we represent a multive
tor A as an 8�1 
olumn matrix givingits 
oeÆ
ients relative to a basis for the Cli�ord algebra:
A = [1; e1; e2; e3; e1^e2; e2^e3; e3^e1; e1^e2^e3℄ 266666666664

A0A1A2A3A12A23A31A123
377777777775 ;where fe1; e2; e3g form an orthogonal basis for the ve
tor spa
e of ouralgebra. We will use bold font for the multive
tor, and math font for itss
alar-valued 
oeÆ
ients. The multive
torA is thus represented by an 8�1
olumn matrix [A℄, whi
h we will denote in shorthand asA *) [A℄:Now if we need to 
ompute the geometri
 produ
t AB, we view this asa linear fun
tion of B determined by A, i.e., as the linear transformationAG(B), the `G' denoting the geometri
 produ
t. Su
h a linear fun
tion 
anbe represented by an 8� 8 matrix, determined by A (and the fa
t that weare doing a geometri
 produ
t) a
ting on the 8� 1 matrix of [B℄. We thusexpand the representation [A℄ of A to the 8� 8 geometri
 produ
t matrix[AG℄, and apply this to the 8� 1 representation[B℄ of B:AB *) [AG℄ [B℄:The result of the matrix produ
t [AG℄[B℄ is the 8� 1 matrix representingthe element AB. The matrix entry [AG℄�;� (so in 
olumn � and row �,with � and � running through the indi
es f0; 1; 2; 3; 12; 23; 31; 123g) 
an be
omputed in a straightforward manner from the multipli
ation table of thegeometri
 produ
t:e� e� = 
 e
 () [AG℄
;� = 
A�; (1.1)where the 
 are de�ned in the next se
tion. This 8 � 8 matrix [AG℄ 
anthen be used to evaluate the (bilinear) produ
t AB by applying it to the
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olumn matrix [B℄ using the usual matrix multipli
ation:[AB℄
 = �[AG℄ [B℄�
 =X� [AG℄
;� [B℄� :So for example the identity e1e2 = e12 leads to the matrix entry [AG℄12;2 =A1; this is the only non-zero entry in 
olumn � = 2. In matrix multipli
ationbetween A = A1e1 and B = B2e2 this yields [AB℄12 = [AG℄12;2[B℄2 =A1B2, whi
h is the 
orre
t 
ontribution to the e12 
omponent of the result.In algebrai
 parlan
e, the numbers 
 de�ned above (whi
h depend on�, � and 
) are the stru
ture 
oeÆ
ients of the algebra determined by thegeometri
 produ
t. In parti
ular, ea
h 
 will be a positive or negative fa
tordepending on the basis of the algebra, the permutation of the elements, andthe signature of the algebra.Both the outer and the inner produ
t 
an be implemented as matrixmultipli
ations, sin
e A ^ B and A � B are also linear fun
tions of B,determined by A. So we implementA ^B *) [AO℄ [B℄ and A �B *) [AI ℄ [B℄:The 8�8 matri
es [AO ℄ and [AI ℄ are given below, and they are 
onstru
teda

ording to Equation 1.1 for the outer produ
t and inner produ
t, respe
-tively.1.2.2 The representation matri
esUsing the re
ipe of Equation 1.1, we 
an 
ompute the a
tual matri
es. The 
values of Equation 1.1 
ontain signed produ
ts of �is. These represent thesignature (and metri
) through their de�nition as �i � eiei. We furtherde�ne �ij � �i�j and �ijk � �i�j�k .Geometri
 produ
t matrix:[AG℄ =2666666664
A0 �1A1 �2A2 �3A3 ��12A12 ��23A23 ��13A31 ��123A123A1 A0 �2A12 ��3A31 ��2A2 ��23A123 �3A3 ��23A23A2 ��1A12 A0 �3A23 �1A1 ��3A3 ��31A123 ��13A31A3 �1A31 ��2A23 A0 ��12A123 �2A2 ��1A1 ��12A12A12 �A2 A1 �3A123 A0 �3A31 ��3A23 �3A3A23 �1A123 �A3 A2 ��1A31 A0 �1A12 �1A1A31 A3 �2A123 �A1 �2A23 ��2A12 A0 �2A2A123 A23 A31 A12 A3 A1 A2 A0

3777777775(1.2)
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t matrix:[AO℄ = 2666666664
A0 0 0 0 0 0 0 0A1 A0 0 0 0 0 0 0A2 0 A0 0 0 0 0 0A3 0 0 A0 0 0 0 0A12 �A2 A1 0 A0 0 0 0A23 0 �A3 A2 0 A0 0 0A31 A3 0 �A1 0 0 A0 0A123 A23 A31 A12 A3 A1 A2 A0

3777777775 (1.3)Inner produ
t matrix:[AI ℄ = 2666666664
A0 �1A1 �2A2 �3A3 ��12A12 ��23A23 ��31A31 ��123A1230 A0 0 0 ��2A2 0 �3A3 ��23A230 0 A0 0 �1A1 ��3A3 0 ��13A310 0 0 A0 0 �2A2 ��1A1 ��12A120 0 0 0 A0 0 0 �3A30 0 0 0 0 A0 0 �1A10 0 0 0 0 0 A0 �2A20 0 0 0 0 0 0 A0

3777777775(1.4)Note the relation between these matri
es: the inner produ
t matrix andthe outer produ
t matrix both have all non-zero elements taken from thegeometri
 produ
t matrix. Note also the la
k of signature in the outerprodu
t matrix; this is in agreement with the fa
t that it forms a (non-metri
) Grassmann algebra that may be viewed as a geometri
 algebra ofnull ve
tors, for whi
h all �i equal 0.The reader may realize from this matrix des
ription that we have im-plemented an inner produ
t that di�ers from Hestenes' inner produ
t [4℄:we prefer the 
ontra
tion de�ned in [7℄, sin
e we found that its geometri
semanti
s is mu
h more 
onvenient. We will motivate this in Se
tion 1.4.3.We have implemented other inner produ
ts as well (see next se
tion), butthe 
ontra
tion is the default.1.2.3 The derived produ
tsIt is 
ommon to take the geometri
 produ
t as basi
, and de�ne the otherprodu
ts using it by sele
ting appropriate grades. This 
an be the basisfor an implementation; the Maple pa
kage at Cambridge [6℄ has been so
onstru
ted. For our 
omparative dis
ussion below, we state the de�ni-tions; these 
an be used in a straightforward manner to derive the matrixrepresentations.� Outer produ
t A ^B =Xr;s hhAirhBisis+r: (1.5)



1. Making of Gable 7where h�ir is the grade operator taking the part of grade r of a mul-tive
tor.� Contra
tion inner produ
tA
B =Xr;s hhAirhBisis�r ; (1.6)where the grade operator for negative grades is zero (we thank Sven-son [12℄ for this way of writing the 
ontra
tion). Note that this impliesthat `something of higher grade 
annot be 
ontra
ted onto somethingof lower grade'. For s
alar � and a general non-s
alar multive
tor Awe get �
A = �A and A
� = 0.� Modi�ed Hestenes inner produ
tThis is a variation of the Hestenes inner produ
t that �xes its oddbehavior for s
alars (whi
h messes up the meet operation, as dis
ussedin Se
tion 1.4.3): A �M B =Xr;s hhAirhBisijs�rj: (1.7)For s
alar � and a general non-s
alar multive
tor A we get � �M A =�A = A �M �.� Hestenes inner produ
tThe original Hestenes produ
t di�ers from Equation 1.7 in that the
ontributions of the s
alar parts of A and B are expli
itly set to zero.Note that mixed-grade multive
tors require expansion of a double sum inall these produ
ts. We prefer 
ontra
tion be
ause it simpli�es the meet andjoin operators, as we will dis
uss further in Se
tion 1.4.3 after des
ribingmeet and join.1.2.4 Representational issues in geometri
 algebraFor Cli�ord algebras of arbitrary signature (p; q) (whi
h means p+q spatialdimensions, of whi
h p basis ve
tors have a positive square, and q have anegative square) linear matrix representations have long been known. Werepeat part of the table of su
h representations in Table 1.1, see [11℄. Inthis table, IR(n) are n � n real matri
es, C(n) are n � n 
omplex-valuedmatri
es, IH(n) are n � n quaternion-valued matri
es, 2IR(n) are orderedpairs of n � n real matri
es (whi
h you may think of as a blo
k-diagonal2n� 2n matrix 
ontaining two real n�n real matri
es on its diagonal andzeroes elsewhere), and similarly for the other number systems.The various representations are non-equivalent, so the table 
an be usedfor arguments on unique representations. Note that the Cli�ord algebras for



8 Stephen Mann, Leo Dorst, and Tim Boumaq = 0 q = 1 q = 2 q = 3p = 0 IR(1) C(1) IH(1) 2IH(1)p = 1 2IR(1) IR(2) C(2) IH(2)p = 2 IR(2) 2IR(2) IR(4) C(4)p = 3 C(2) IR(4) 2IR(4) IR(8)p = 4 IH(2) C(4) IR(8) C(8)TABLE 1.1. Matrix representations of Cli�ord algebras of signatures(p; q).a 3-dimensional spa
e 
an have many di�erent representations dependingon the signature. Though this is not a problem for implementations, itmakes it harder to obtain a parametri
 overview on the metri
 propertiesof the various spa
es, and a representation that 
ontains the signature asparameters �i has our slight preferen
e.The outer produ
t forms a Grassmann algebra. We have been unableto �nd a similar representation table in the literature on Grassmann alge-bras, but at least for even-dimensional Grassmann algebras this is easilyestablished. A Cli�ord algebra with signature (p; p) 
an be 
onverted intoa 2p-dimensional Grassmann algebra by pairing of the basis ve
tors withpositive and negative signature. The table then shows that the Grassmannalgebra of even dimension p is isomorphi
 to IR(2p). Odd dimensions 
anbe seen as subalgebras of the next even dimension.The inner produ
t is not asso
iative, and is therefore not isomorphi
 toa matrix algebra.Our initial ex
lusive interest in C̀ 3;0 suggests the representation C(2),with elements represented as� (A0 +A3) + i(A12 +A123) (A1 +A31) + i(�A2 +A23)(A1 �A31) + i(A2 +A23) (A0 �A3) + i(�A12 +A123) � ;but this works only for the geometri
 produ
t; the other produ
ts wouldthen have to be implemented using the grade operator. We prefer a rep-resentation in whi
h all three produ
ts are representable on a par, and inwhi
h signatures are parameterized. This desire to represent arbitrary sig-natures parametri
ally ne
essitates viewing C̀ 3;0 as a subalgebra of C̀ 3;3,and therefore to 
hoose a representation in IR(8).This algebra IR(8) also 
ontains a representation of the outer produ
tas a 
ertain kind of lower-triangular matri
es (in fa
t, Equation 1.2 worksni
ely: the matrix produ
t of two su
h matri
es faithfully represents theouter produ
t). For arbitrary signatures, there 
annot exist a 
hange ofrepresentation in whi
h both the outer produ
t matri
es and the geometri
produ
t matri
es 
ould be redu
ed to a smaller size (i.e., brought onto ablo
k-diagonal representation of the same kind), sin
e we need the full IR(8)to handle those signatures anyway.



1. Making of Gable 9Now the need to represent the inner produ
t as well indi
ates that we
an not represent the elements of the algebra by matri
es in their fun
tionas both operator (i.e., �rst fa
tor) and operand (i.e., se
ond fa
tor). Wetherefore swit
h to the view where ea
h produ
t is seen as a linear fun
tionof the operand, parameterized by the operator, as detailed in Se
tion 1.2.1.We maintain the IR(8)-representation of these linear fun
tions, but theynow operate on 8-dimensional ve
tors representing the operand (ratherthan forming an algebra of operators). Thus we arrive at the representationwe have 
hosen (also for the geometri
 produ
t), with the operator matri
esnaturally de�ned as in Equation 1.1.It should be 
lear that the same reasoning suggests an IR(2n) representa-tion of the geometri
 algebra of n-dimensional spa
e of arbitrary signatures,with matri
es de�ned for the three produ
ts in the same way.1.2.5 Computational eÆ
ien
yIf we would represent our obje
ts as 8 � 8 matri
es of reals, the resultingmatrix multiply to implement the geometri
 produ
t would 
ost 512 multi-pli
ations and 448 additions. Further, using the 8�8 matrix representation,to 
ompute the outer produ
t and/or inner produ
t, we would have to usethe grade operator (or, for the outer produ
t, pay the expansion 
ost to
onvert to the outer produ
t 8 � 8 matrix representation). Addition ands
alar multipli
ation of elements in this form require 64 additions and 64multipli
ations respe
tively. This method is extremely ineÆ
ient and wewill not dis
uss it further.The 
omputational eÆ
ien
y of the 8 � 1 format is better and is sum-marized in Table 1.3, where the notation (a;m) denotes the number ofadditions and multipli
ations required. With the 8� 1 format, the 
ost of
omputing a produ
t is the 
omputational 
ost of having to expand one ofthe one of the 8� 1 matri
es to an 8� 8 matrix and then multiply it by an8� 1 matrix at a 
ost of 64 multipli
ations, 56 additions, and the 
ost ofexpansion. When we in
lude the 
ost of signatures in the expansion 
ost,then the total 
ost is in
reased by 48 multipli
ations.It is of 
ourse possible to use the table of Cli�ord algebra isomorphismsas a literal guide to the implementation. Let us 
onsider the 
osts of imple-menting the spe
ial 
ase of the 3-dimensional Cli�ord algebras; Table 1.1shows that this involves implementation of C(2), 2IR(2) and 2IH(1). In allrepresentations the operations of addition and s
alar multipli
ation havetake 8 
oating point additions and 8 
oating point multipli
ations, respe
-tively (in the IR(8) representation, these operations are performed on the8� 1 matri
es representing the obje
ts).To 
ompute the geometri
 produ
t we need to multiply elements. The
omplexity of the basi
 multipli
ations is: one 
omplex multiply is (4; 2);one double real multiply takes (2; 0); one quaternion multiply takes (16; 12).For a full matrix implementation to produ
e the geometri
 produ
t this



10 Stephen Mann, Leo Dorst, and Tim Boumaa ^ b 0 1 2 30 0 1 2 31 1 2 3 (4)2 2 3 (4) (5)3 3 (4) (5) (6)TABLE 1.2. Grade of the outer produ
t of blades. Along the top rowand left 
olumn are the grades of blades a and b; the table gives thegrade of the outer produ
t of these blades. Note that if the grade isgreater than 3, then the result will be 0.yields for C(2) a 
omplexity of (32; 16); for 2IR(2) a 
omplexity of (16; 8); for2IH(1) a 
omplexity of (32; 24). Depending on the stru
ture of the algebra,one may thus be fortunate by a fa
tor of two. These should be 
ompared toour IR(8) implementation a
ting on 8� 1 matri
es, whi
h has a 
omplexityof (110; 56), for general signatures. This is a fa
tor of 3 worse than 2IH(1),the most expensive of the other three representations. If we 
onsider onlyC̀ 3;0, then we have no signature 
ost, and IR(8) 
osts (64; 56) 
ompared to(32; 16) for C(2). Table 1.3 
ompares the 
ost of several operations of ourIR(8) implementation without signature 
ost and of C(2).To implement a full geometri
 algebra, these spe
i�
 geometri
 produ
timplementations need to be augmented with a grade operation to extra
telements of the grade desired, a

ording to Equations 1.6 and 1.5. For C(2)it takes (0; 8) to extra
t the eight separate elements, and presumably thesame for 2IH(1) and 2IR(2). For simpli
ity of dis
ussion, when extra
ting asingle grade, we will assume that it 
osts 3 additions (although for s
alarsand trive
tors, the 
ost is only 1 addition).This pro
ess of a geometri
 produ
t followed by grade extra
tion is simpleif the obje
ts to be 
ombined are blades (rather than general multive
tors).Su
h an operation requires a geometri
 produ
t followed by grade extra
-tion, whi
h for C(2) has a total worst 
ase 
ost of (32; 19), although theremay be some additional 
ost to test for the grade of the blade, et
., whi
hwould add (0; 16) to the 
ost ((32; 35) total) if we need to perform a fullgrade extra
tion of ea
h operand.When taking the outer or inner produ
t of multive
tors that are notblades, the use of the geometri
 produ
t and grade extra
tion be
omes quiteexpensive, sin
e we must implement a double sum (see Equations 1.5, 1.6,and 1.7). A naive implementation of this formula would require 16 geomet-ri
 produ
ts and grade extra
tions, an additional 12 additions to 
ombinethe results for ea
h grade, and 8 additions to re
onstru
tion the result, fora total 
ost of (512; 324). However, looking at Table 1.2, we see that thatsix of these geometri
 produ
ts will always be 0, and we 
an easily rewriteour 
ode to take advantage of this. This modi�
ation to the 
ode redu
esthe 
ost to (320; 210).By unbundling the loop and simplifying the s
alar 
ases (i.e., multiplying



1. Making of Gable 11Operation 8� 1 C(2)addition (0; 8) (0; 8)s
alar multipli
ation (8; 0) (8; 0)grade extra
tion (0; 0) (0; 8)geometri
 produ
t (64; 56) (32; 16)other produ
ts of blades (64; 56) (32; 19)other produ
ts of multive
tors (64; 56) (111; 79)TABLE 1.3. Comparison of 
osts for 8� 1 and C(2).B by the s
alar portion of A redu
es 4 geometri
 produ
ts to one 
oatingpoint addition (to extra
t the s
alar) and 8 
oating point multiplies, andmultiplying A by the s
alar portion of B redu
es 3 more geometri
 produ
tsto one addition and 7 
oating point multiplies) we 
an get the 
ost downto (32 � 3 + 15; 19 � 3 + 2 + 12 + 8) = (111; 79). Further spe
ial 
asing ofthe ve
tor and bive
tor terms 
an redu
e this 
ost to (33; 45) (details ofthe analysis 
an be found in [10℄), but note that in doing this (a) we haveleft the 
omplex representation for 
omputing these produ
ts and (b) ea
hprodu
t will need its own spe
ial 
ase 
ode.Note that the above dis
ussion is on the 
ost of writing spe
ial 
ase 
odefor the outer produ
t only. If we 
hoose this route, we would also need towrite spe
ial 
ase 
ode for ea
h of the inner produ
ts and possibly for ea
hdimensional spa
e in whi
h we wish to work. A reasonable 
ompromiseof spe
ial 
ases versus general 
ode for the 
omplex representation wouldbe to handle the s
alars as spe
ial 
ases and write the loops to avoid the
ombinations that will always give zero. Table 1.3 
ompares the 
osts ofusing the 8�1 representation and the C(2) representation, assuming we dothe these optimizations for the C(2) produ
ts of multive
tors.Asymptoti
 
ostsIf we are interested in arbitrary dimensional spa
es, then we need to look atthe asymptoti
 
osts. Table 1.4 summarizes the 
osts of the 
omplex and ofthe n�1 representation (where n = p+q is the dimension of the underlyingve
tor spa
e) for the geometri
 produ
t and for the other produ
ts (e.g,inner and outer produ
ts) on blades and for the other produ
ts on generalmultive
tors. In this table, we only give the top term in the 
ost expression,ignoring grade extra
tion, et
., for the 
omplex representation of otherprodu
ts. Use of only this top order term also ignores the savings a
hievedfor the 
omplex representation by not 
omputing the produ
ts whose gradeis higher than n and spe
ial 
asing the s
alar produ
ts; su
h optimizationsroughly equate to a fa
tor of two savings. Note that we use the 
omplexrepresentation as a 
oarse representative of the other representations; inthe other 
ases we would use the quaternion or double-real representation,whi
h 
ost roughly a fa
tor of 2 less than the 
omplex representation.
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 Other produ
ts Other produ
tsProdu
t on blades on multive
torsComplex 2(3n+1)=2 2(3n+1)=2 n22(3n+1)=2n� 1 22n 22n 22nTABLE 1.4. Comparison of 
osts of various methods, with n being thedimension of the underlying ve
tor spa
e.From the table, we see that asymptoti
ally the 
omplex representation isalways best. However, substituting number in these equations shows thatfor small n, the n�1 representation is best when performing inner or outerprodu
ts of general multive
tors, with the 
ross-over point being aroundn = 14. But when n is 14, the 
ost of even the geometri
 produ
t inthe 
omplex representation is extremely large, requiring roughly 3 � 106multipli
ations.For smaller n, the 
omplex representation is better than the n� 1 rep-resentation for the geometri
 produ
t and the produ
ts of blades, whilethe n � 1 representation is 
omputationally less expensive than the 
om-plex representation for the other produ
ts of general multive
tors. Howeverthe other produ
ts of general multive
tors are rarely (if ever) performedin our present understanding of what 
onstitute geometri
ally signi�
ant
ombinations. Thus, in general the 
omplex/quaternion/double-real repre-sentation will be more eÆ
ient than the n � 1 representation by a fa
torof 2n=2. The 
on
lusion must be that on
e one has de
ided on a parti
ulargeometry for one's appli
ation, re
e
ted in a parti
ular signature, it makessense to implement it literally using the isomorphism of Table 1.1.For our tutorial in 3 dimensional spa
es, the 
ost of the 8� 1 represen-tation is only a fa
tor of three more expensive than the 
omplex represen-tation. Sin
e we were writing tutorial 
ode, we felt this 
ost was more thano�set by the expli
itness of the signature and ease of implementation.1.3 InversesIn Matlab, the obvious way to 
ompute the inverse of a geometri
 obje
tMis to express it in the 8� 8 geometri
 produ
t matrix representation, [M℄.Then inversion of [M℄ may be done using the Matlab matrix inverse routine,and the �rst 
olumn of [M℄�1 will be the representation of the inverse ofM. However, when we implemented this method for 
omputing the inverse,we found that it introdu
ed small numeri
al errors on rather simple data,and thus was less stable than we would like. We investigated a methodof Lounesto's that was more stable in our testing, and is 
omputationally
onsiderably more eÆ
ient than a matrix inverse.Lounesto [8℄ (pag. 57) proposes a method to 
ompute inverses in Cli�ordalgebras of 3-dimensional spa
es. We dis
uss it now, and extend it slightly.



1. Making of Gable 13Lounesto's tri
k is based on the observation that in three dimensions (andthat is essential!) the produ
t of a multive
torM and its Cli�ord 
onjugateM only has two grades, a s
alar and a pseudos
alar (the Cli�ord 
onjugateis the grade involution of the reverse of a multive
tor). Let Mi denote thepart of M of grade i, though we will write M0 for the s
alar part. Then we
omputeMM = (M0 +M1 +M2 +M3)(M0 �M1 �M2 +M3)= (M20 �M21 �M22 +M23) + 2(M0M3 �M1 ^M2);and the �rst bra
keted term is a s
alar, the se
ond a trive
tor.Further, at least in Eu
lidean 3-spa
e, if su
h an obje
t of the form `s
alarplus trive
tor' N0 + N3 is non-zero, then it has an inverse that is easily
omputed: (N0 +N3)�1 = N0 �N3N20 �N23 :Please note that not all multive
tors have an inverse, not even in a Eu-
lidean spa
e: for instan
e M = 1 + e1 leads to MM = 0, so this Mis non-invertible. In a non-Eu
lidean spa
e, the denominator may be
omezero even when N0 and N3 are not, and we need to demand at least thatN20 6=N23. (When it exists, the inverse is unique. This follows using the as-so
iativity of the geometri
 produ
t: if A and A0 are left and right inversesof B, respe
tively, then A = A(BA0) = (AB)A0 = A0. Therefore any leftinverse is a right inverse, and both are identi
al to the inverse.)These two fa
ts 
an be 
ombined to 
onstru
t an inverse for an arbitrarymultive
tor M (still in Eu
lidean 3-spa
e) as follows:M�1 =MM�1M�1 =M(MM)�1 = M �(MM)0 � (MM)3�(MM)20 � (MM)23The following two lemmas and their proofs demonstrate the 
orre
tness ofLounesto's method in 3-dimensional spa
es of arbitrary signature.Lemma 1.1. M�1 exists if and only if (MM)�1 exists.Proof: First, assume thatM�1 exists. Then 1 =M�1M = (M�1M�1)(MM),so that (MM)�1 =M�1M�1, whi
h exists.Se
ondly, assume that (MM)�1 exists. Then we have 1 = (MM)(MM)�1 =M(M(MM)�1), so that M�1 =M(MM)�1, whi
h exists.Lemma 1.2. Let N = N0 +N3. Then i� N20 6= N23, N�1 exists and equals(N0 +N3)�1 = N0 �N3N20 �N23Proof: Assume N20 6= N23, then (N0 +N3) (N0 �N3)=(N20 �N23) = (N20 +



14 Stephen Mann, Leo Dorst, and Tim Bouma8� 1 C(2)Term Naive Good S
alar Naive Good S
alarM (0,0) (0,0) (0,0) (0,8) (0,8) (0,8)MM (64,56) (64,56) (64,56) (32,16) (32,16) (32,16)MM�1 (4,1) (4,1) (0,0) (4,1) (4,1) (0,0)M(MM)�1 (64,56) (16,8) (8,0) (32,16) (16,8) (8,0)Total (132,113) (84,65) (72,56) (64,41) (52,33) (40,24)TABLE 1.5. Cost of Lounesto's inverse.N3N0 � N0N3 �N23)=(N20 �N3)2 = (N20 �N23)=(N20 �N23) = 1, so N�1 is asstated.Now assume that N�1 exists. Then if N3 = 0 the result is trivial. If N3 6= 0and N0 = 0 the result is trivial. So take N3 6= 0 and N0 6= 0. Let K be the inverseof N = N0 +N3. Then it needs to satisfy(N0 +N3)(K0 +K1 +K2 +K3) = 1;so, written out in the di�erent grades(N0K0 +N3K3) + (N0K1 +N3K2) + (N0K2 +N3K1) + (N0K3 +N3K0) = 1Straightforward algebra on the terms of grade 0 and 3 yields (N20 �N23)K3+N3 =0, and sin
e N3 6= 0 this gives N20 6= N23. Then the 
ase above shows that theinverse is N�1 = (N0 �N3)=(N20 �N23).Table 1.5 summarizes the 
osts to 
ompute the inverse for both the 8�1representation and for the C(2) representation. In this table, we give threealgorithms for ea
h representation: a naive algorithm, that does not try toexploit any extra knowledge we have about the terms we are manipulat-ing; a good algorithm, that exploits the stru
ture of (MM)�1, whi
h is as
alar plus a pseudo-s
alar, and thus does not require a full produ
t whenmultiplied by M; and a s
alar version that 
an be used when (MM)�1 isa s
alar. This last 
ase o

urs when M is a blade, a s
alar plus a bive
tor,or a ve
tor plus the pseudo-s
alar, whi
h 
overs most of the geometri
allysigni�
ant obje
ts we manipulate.Note that in this table we have omitted the 
ost of the six negationsneeded to 
ompute the Cli�ord 
onjugate. Also note that the 
omplexrepresentation requires 8 additions when 
omputing the Cli�ord 
onjugatebe
ause it has to separate and re
ombine the s
alar and pseudo-s
alar partof the geometri
 obje
t.Lounesto's method is 
omputationally mu
h 
heaper than the matrix in-verse method, with a good implementation of Lounesto's method requiring149 Matlab 
oating point operations for the 8 � 1 representation, whilethe Matlab matrix inverse routine on 8� 8 matri
es requires 1440 Matlab
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oating point operations. Lounesto's method really makes 
onvin
ing useof the spe
ial stru
ture of our matri
es. While a faster matrix inversionroutine may be available, it is unlikely that there will be a general routine
apable of inverting our spe
ial 8 � 8 matrix in fewer than 149 
oatingpoint operations (whi
h is after all little more than twi
e the number ofmatrix elements!). Further, in pra
ti
e we found our modi�ed Lounesto in-verse to 
ompute a more numeri
ally stable inverse than the matrix inverseroutine provided by Matlab (perhaps not surprising, sin
e it involves feweroperations).Had we used the C(2) representation of elements in our geometri
 algebra,the 
ost of matrix inversion would have dropped dramati
ally, with Matlabrequiring only 260 
oating point operations to invert a 2� 2 
omplex ma-trix. However, Lounesto's method using the 
omplex representation onlyrequires 75 
oating point operations. Thus Lounesto's inversion method isalso less expensive in the C(2) representation.1.4 Meet and JoinThe geometri
 interse
tion and union of subspa
es is done by the meet andjoin operations. These have mostly been used by others in the 
ontextof proje
tive geometry, whi
h has led to the negle
t of some s
alar fa
torsand signs (sin
e they do not matter in that appli
ation). This issue waspartly treated in [2℄, but the development of the tutorial required somemore investigation of those s
alar fa
tors. This se
tion reports on that.1.4.1 De�nitionThe meet and join operations are geometri
al `produ
ts' of a higher orderthan the elementary produ
ts treated before. They are intended as geomet-ri
al interse
tion and union operators on (sub)spa
es of the algebra. Sin
esubspa
es are represented by pure blades, these operations should only beapplied to blades.Let blades A and B 
ontain as a 
ommon fa
tor a blade C of maximumgrade (this is like a `largest 
ommon divisor' in the sense of the geometri
produ
t), so that we 
an writeA = A0 ^C and B = C ^B0(note the order!). We will a
tually 
hoose A0 and B0 to be perpendi
ularto C, so that we may also write the fa
torization in terms of the geometri
produ
t: A = A0C and B = CB0 (but note that A0 and B0 are in generalnot mutually perpendi
ular!). If A and B are disjoint, then C is a s
alar(a 0-blade). We now de�ne meet and join asjoin(A;B) = A0 ^C ^B0 and meet(A;B) = C:
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torization is not unique: we may multiply C by a s
alar 
.This a�e
ts the join result by 1=
 and the meet by 
, so meet and join arenot well-de�ned. (Sin
e 
 may be negative, not even the orientation of theresults is de�ned unambiguously.) So these operations are hard to de�nein a Cli�ord algebra; but for a Geometri
 Algebra, they de�nitely desired.Many geometri
 
onstru
tions are a
tually insensitive to the magnitudeand/or sign of the blade representing the subspa
e. A prime example isthe proje
tion (x
A)=A onto the subspa
e represented by A { there is notproblem using for A the out
ome of a meet or join.In our implementation, we do want to guarantee that meet and join ofthe same subspa
es 
an be used 
onsistently, so we do need to base bothon the same fa
torization. We 
an make the 
omputational relationshipsbetween meet and join expli
it. The de�nition gives for the join, giventhe meet (where the fra
tion denotes right-division):join(A;B) = Ameet(A;B ) ^ B: (1.8)Note that this is only valid if the meet is an invertible blade. In non-Eu
lidean spa
es there may therefore be a problem with this equation andthe fa
torization on whi
h it is built: if C is a null blade (i.e., a blade withnorm 0, non-invertible) then we 
annot 
ompute A0 in terms of A from thefa
torization equation A = A0C, and therefore not 
ompute join(A;B) =A0 ^ B from the meet (or vi
e versa, by a similar argument). We thushave to limit join and meet to non-null blades; whi
h means that werestri
t ourselves to Eu
lidean spa
es only. (A
tually, anti-Eu
lidean spa
esin whi
h all signatures are�1 would obviously be permissible as well.) Sin
eno blades are now null-blades, we 
an agree to make the 
ommon fa
torC a unit blade (so that jCj = 1) leaving only the sign of its orientationundetermined. But please be aware that this is a rather arbitrary partial�xing of the s
alar fa
tor!By duality relative to join(A;B) and symmetry of a s
alar-valued 
on-tra
tion (or inner produ
t) it follows from Equation 1.8 that1 = Ameet(A;B) 
 Bjoin(A;B) = Bjoin(A;B) 
 Ameet(A;B) :The division by meet(A;B) 
an be fa
tored out (this is due to the 
ontain-ment relationship of the fa
tors of the 
ontra
tion and easy to prove usingthe te
hniques in [2℄) and we obtainmeet(A;B) = Bjoin(A;B) 
A: (1.9)Thus we 
an start from either meet or join and 
ompute the other in a
onsistent manner. The symmetry of the equations means that either way



1. Making of Gable 17join(A;B) 0 1 2 30 0 1 2 31 1 2(1) 3(2) 32 2 3(2) 3(2) 33 3 3 3 3A ^B 0 1 2 30 0 1 2 31 1 2(;) 3(;) ;2 2 3(;) ; ;3 3 ; ; ; (B=I3)
A 0 1 2 30 3 2 1 01 2 1(;) 0(;) 12 1 0(;) 1(;) 23 0 1 2 3TABLE 1.6. The result of the join in 3-spa
e 
an often be 
omputedusing the wedge produ
t.is equally feasible.2 For a more detailed dis
ussion on algebra of in
iden
esee 
hapter 3and 
hapter 7.1.4.2 ImplementationWe saw that the three issues, fa
torization of A and B, 
omputing theirjoin (smallest 
ontaining superspa
e) and 
omputing their meet (largest
ommon subspa
e) are intertwined; giving any one determines the othertwo (at least in Eu
lidean signatures).We have 
hosen to use the join (i.e., the smallest 
ommon spa
e ofA and B) as the one to implement, and to base the meet on it usingEquation 1.9. In prin
iple, this determination of the smallest 
ommon spa
eis a minimization problem, whi
h may be solved by starting with a spa
ethat is too big and redu
ing it, or by growing one that is too small. In either
ase, the general 
ase will involve some administration of polynomial time inthe number of blades, and therefore exponential in the dimensionality of thespa
e. We have not solved this general issue; in the 3-dimensional Eu
lideanspa
e of interest in the tutorial the join is fairly easy to implement 
aseby 
ase.In Table 1.6 we show the dimension of the 3-spa
e join operator onoperands of di�erent dimensions. In this table, we have indi
ated the gradeof the results, with ; indi
ating a zero result, and results in bra
kets in-di
ating alternative out
omes in degenerate 
ases. First observe that thede�nition implies that for disjoint spa
es A and B, fa
tored by a s
alar2Equation 1.9 is frequently extended to provide a 3-argument meet fun
tion relativeto a general blade I: meet(A;B; I) � (B=I) �A. However, sin
e the geometri
 signi�
an
eof using anything but join(A;B) as third argument is un
lear, we will not use it. Also,beware that some writers may swit
h the order of the arguments in this formula!



18 Stephen Mann, Leo Dorst, and Tim BoumaC = 1, join(A;B) equals A ^ B. In parti
ular, we see in Table 1.6 thatA ^B equals join(A;B) unless the dimensions of A and B are too high(sum ex
eeds 3), with some ex
eptional degenera
ies when the grades are1 and 2. So we may use the outer produ
t as a basis for an algorithm. Thetable shows that of (B=I3)
A may aid in treating some of the non-outer-produ
t 
ases, where I3 is the pseudos
alar of our 3-dimensional Eu
lideanspa
e (details below).This has led us to 
onsider two algorithms for the 
omputation of thejoin:� Algorithm AFor non-degenerate arguments, we 
an implement join(A;B) by
omputing the quantity J = A ^ B. If J is non-zero, then it isthe result we want. Otherwise, if the grade of one of the argumentsequals 3, the result is proportional to this argument. For instan
e, letgrade (A) = 3, then a possible fa
torization of B is through B = C�(with B0 = � a s
alar) whi
h yields join(A;B) = A ^ B0 = �A. Ifwe 
hoose the 
ommon fa
tor to be a unit blade, then � = �jBj, sothat the result is join(A;B) = �jBjA. We 
hoose, arbitrarily, thepositive sign.That leaves the ex
eptions. When not both grades are 2, the resultis proportional to the argument of highest grade, by a s
alar fa
tordepending on the other argument (by the same reasoning as above,taking that s
alar fa
tor equal to the norm implies 
onsidering the
ommon fa
tor to be a unit blade). When both grades are 2, we needto �nd whether these 2-blades are 
oin
ident or not. If they are not,then their join is proportional to I3, so we may use Equation 1.8to 
ompute a 
arrier for this 
ommon subspa
e: M = (B=I3)
A.We normalize this to a unit blade: C = M=jMj, and then returnjoin(A;B) = (A=C) ^ B as the proper multiple of I3. If they are
oin
ident, the 
omputation of M yields zero (whi
h is how we maydete
t it) and we return jAjB or, equivalently up to the undeterminedsign, jBjA.� Algorithm BFor non-degenerate arguments, we 
an implement join(A;B) by
omputing the quantity J = A ^ B. If J is non-zero, then it is theresult we want. Otherwise, we 
ompute M = (B=I3)
A. If M isnon-zero, then it is proportional to the meet (sin
e pre
isely in those
ases, the join is proportional to the blade I3 of grade 3). The 
om-mon fa
tor C is then the unit blade C =M=jMj, so the join is thenA0 ^C ^B0 = (A=C) ^B.In the degenerate 
ases indi
ated in parentheses in the table for thejoin, both J andM of the previous paragraph are zero. Whi
h degen-erate 
ase we have is readily determined by testing the grade ofA and
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tors or bive
tors, then they must be parallel. Thefa
toring is thus A = �C and B = C�, with both � and � s
alars.The result of the join is then join(A;B) = ��C = �B = �A. We
an implement this as jAjB or jBjA, if we agree to fa
tor out a unitblade C. If exa
tly one of A and B is a ve
tor 
, then the other mustbe a bive
tor 
ontaining this ve
tor as a fa
tor. The fa
torization isnow A = a
 and B = �
, so join(A;B) = �a
 = �A (if A is thebive
tor) or A = �
 and B = 
b, so join(A;B) = �B (if B is thebive
tor). If we �x the 
ommon blade 
 to be a unit blade, this maybe implemented as jBjA or jAjB, respe
tively.Algorithm A is 
omputationally faster sin
e it mostly does testing of gradesto establish the ex
eptional 
ases. Algorithm B has a simpler 
onditionalstru
ture, leading to simpler 
ode. It is the one we implemented.With the join found, the meet is 
omputed from Equation 1.9. Althougheither is only determined only up to a s
alar, they are 
onsistent in the senseof those equations, and their relative magnitudes may therefore be used toderive geometri
ally meaningful results.1.4.3 Why we use a 
ontra
tion as inner produ
tWe gave three di�erent inner produ
t de�nitions in Se
tion 1.2.3, and westill owe the explanation on why we prefer the 
ontra
tion, whi
h has beenused so rarely in geometri
 algebra. The main reason is that Hestenes'original inner produ
t (abbreviated as HIP) has some features that makeit less suitable for straightforward geometri
 interpretations. This showsup rather 
learly when it is used in the meet operation, and in proje
tionoperations. The former 
an be �xed by treating the s
alars di�erently, thelatter requires more and leads to the 
ontra
tion.Suppose we take the meet of I3 and a ve
tor a, in the 3-dimensionalspa
e with pseudos
alar I3. We would obviously expe
t the out
ome tobe a multiple of a, sin
e the meet should have the semanti
s of geometri
interse
tion, and the interse
tion of the subspa
e spanned by I3 and thesubspa
e spanned by a should be the same subspa
e spanned by a. Thejoin of I3 with any subspa
e is I3, so we may use Equation 1.9 to 
omputethe meet. Using the Hestenes inner produ
t, denoted as �H , we obtain:meetH(a; I3) = (I3=I3) �H a = 1 �H a = 0;sin
e the HIP with a s
alar is zero. On the other handmeetH(I3; a) = (a=I3) �H I3 = a:So the meetH is severely asymmetri
al, whi
h is unexpe
ted for an oper-ation that should be geometri
 interse
tion. In this 
ase, it is due to theawkward properties of s
alars (whi
h [5℄ page 20 notes, but does not �x).
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an �x this by modifying the Hestenes inner produ
t to a new innerprodu
t denoted �M , the same as �H ex
ept for s
alars. For s
alars, we de-mand that � �M u = �u for s
alar �, and any multive
tor u. This leadsto the modi�ed Hestenes inner produ
t de�ned in Equation 1.7. We willabbreviate it as modi�ed HIP.For non-s
alars this modi�ed HIP has a 
ertain symmetry in grades ofthe arguments: the inner produ
t of a blade of grade r with one of grade s,or vi
e versa is a blade of grade jr�sj. The 
ontra
tion of Equation 1.6 doesnot have this property: it a
tually `
ontra
ts' the �rst argument inside these
ond, one 
annot 
ontra
t something of a bigger grade onto somethingof a smaller grade. For its use in the meet, this is a distin
tion without adi�eren
e, sin
e in the evaluation of Equation 1.9 as (B=join(A;B))
A,the �rst argument blade of the inner produ
t has a grade that never ex
eedsthat of the se
ond argument blade.But the sele
tion of the inner produ
t also has an e�e
t on the evaluationof the proje
tion. For blades, Hestenes and Sob
zyk [5℄ de�ne the proje
tionof A into B as (A �H B) �H B�1. Some problems with s
alars are noted (see[5℄, page 20) whi
h we 
an �x by using �M instead. Using that but followingthe reasoning of [5℄, we 
an then show that the proje
tion 
an be simpli�edto (A �M B)=B if grade (A) � grade (B), and zero otherwise. Rightly, [5℄prefers the new algebrai
 form sin
e it makes proofs easier. Yet there is stillthis 
onditional split into 
ases; when treating blades of grades not knowna priori this may lead to lots of 
ases and still make work hard.Using the 
ontra
tion, the proje
tion onto the blade B 
an be de�ned as(A
B)=B, for all arguments A. This is automati
ally zero when A ex
eedsB; sin
e the algebrai
 properties of the 
ontra
tion are similar to those ofthe (extended) HIP, most proofs still work un
hanged in their me
hani
s,but now do not require 
areful 
onditional splits dependent on the grades ofthe arguments 
ompli
ating the reasoning. Geometri
ally interpreted, the
ontra
tion impli
itly 
ontains subspa
e relationships, in the sense thatthe blades resulting from the simple formula A
B must be 
ontained in B,and so must the result of the division by B to produ
e the a
tual proje
-tion. This therefore en
odes something that must be added as a separate
on
ept when using the (modi�ed) HIP: that subspa
es may be 
ontainedinside ea
h other; Hestenes' 
onditions on the grade impose this expli
itly;the 
ontra
tion does it impli
itly without additional stru
ture, and thusprovides a simpler algebra without sa
ri�
ing any geometry.In summary, the 
hoi
e between HIP and modi�ed HIP is 
lear: use themodi�ed HIP or you will get a mu
h more 
ompli
ated geometri
 interse
-tion operation as meet. It 
an probably be �xed with some grade testing,but this is not as elegant as �xing the inner produ
t instead. Our preferen
efor the 
ontra
tion is based on the algebra and geometri
al semanti
s that



1. Making of Gable 21permits a simpler proje
tion operator.3 Again, this 
an be �xed with appro-priate grade testing, but we prefer the more straightforward modi�
ationof the inner produ
t.The power of the meet and join de�ned in this way { making essentialusage of the 
ontra
tion { shows in the 
onne
tion fun
tion in GABLE(see [3℄): it is possible to give an algorithm without 
ases to 
ompute thetranslation to make the meet between two aÆne subspa
es non-trivial.Here `
ase-less' means: no internal separate treatment of situations, allsituations are 
omputed using the same formula (whether point-to-point,line-to-line, line-to-point, parallel lines). Moreover, this formula is also validin arbitrarily dimensional (Eu
lidean) spa
e. The fa
t that we 
an do thisshows that we are beginning to have the right primitive operations at ourdisposal in a 
omputational language for geometry.1.5 Implementation detailsAs with any software pa
kage, we en
ountered a number of implementa-tion details. Here we highlight the more interesting and important details;further dis
ussion on the implementation 
an be found in our te
hni
alreport [10℄.1.5.1 Matlab obje
tsThe Matlab language has obje
ts. For our implementation of the geometri
algebra, we 
reated a GA obje
t, whi
h stores the 8�1 matrix representing ageometri
 obje
t. No other information is stored in the obje
t. The bene�tof using an obje
t is that we were able to overload the `*' and `^' operatorsto perform the geometri
 produ
t and the inner produ
t respe
tively. Wealso overloaded `+' and `-' (both binary and unary) to add, subtra
t, andnegate geometri
 obje
ts.Operations su
h as dual, inverse, and exponentiation we left as namedroutines (dual, inverse, and gexp respe
tively), although we did overloadthe `/' operator to allow for right-division by a geometri
 obje
t. I.e., theexpression A/B is 
omputed as A*inverse(B).3It is of some 
on
ern that the 
ontra
tion 
ombines the notions of perpendi
ularityand 
ontainment in one operation (for A
B is 
ontained in B and perpendi
ular toA), and we need to investigate whether the remainder of the stru
ture of geometri
algebra enables their disentanglement; the proje
tion operation suggests that it does.We should also mention an alternative de�nition of the 
ontra
tion, as the adjoint ofthe outer produ
t in terms of an extension of the bilinear form, whi
h demonstrates itsbasi
 algebrai
 tidiness (see [7℄) and its ni
ely `dual' relationship to the outer produ
t.This makes for improved duality relationships, see [2℄.
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FIGURE 1.3. Graphi
al representation of ve
tor, bive
tor, trive
torWe also overloaded `==' and `~=' to allow for the 
omparison of geometri
obje
ts.1.5.2 Graphi
sSin
e we wanted a visual tutorial, we 
reated graphi
al representationsfor all blades, and used Matlab rendering 
ommands to draw them. Thefollowing table summarizes our representations:Type Representation Orientations
alar Text above window Signve
tor Line from origin Arrow headbive
tor Disk 
entered at origin Arrows along edgetrive
tor Line drawn sphere Line segments going out or inFigure 1.3 illustrates the ve
tor, bive
tor, and trive
tor; the axes are putin automati
ally by Matlab.We 
hose the disk as our representation for bive
tors sin
e with ourmatrix representation of the geometri
 obje
ts, we do not ne
essarily havethe de�ning ve
tors for the bive
tor (whi
h may not even exist, as is the
ase if the bive
tor was 
reated as the dual of a ve
tor). Without su
hve
tors, we 
an not use the standard parallelogram representation of thebive
tor. There is a similar issue with the trive
tor (i.e., we were unableto use a parallelepiped as its representation) and thus we used the sphere.However, we also provide demonstration routines to illustrate the morestandard representations of bive
tors and trive
tors; the user must thenprovide the basis on whi
h to de
ompose them.Obje
ts of mixed grade presented a more diÆ
ult problem. While it iseasy to draw the s
alar, ve
tor, bive
tor, and trive
tor 
omponents inde-pendently, this is not parti
ularly illustrative. In parti
ular, we needed to�nd a way to illustrate the operations of the inner, outer, and geometri
produ
ts. The �rst two are fairly easy to demonstrate: we have two sub-windows, in the former we draw the operands and in the latter we draw theresult. The geometri
 produ
t is more diÆ
ult to illustrate. So in addition



1. Making of Gable 23to providing a routine to show the operands and result of the geometri
produ
t, we presented examples of using the geometri
 produ
t as an op-erator to perform rotations and interpolation between orientations, ratherthan as a (
omposite) obje
t by itself.1.5.3 Dealing with numeri
al issuesNumeri
ally, some routines (parti
ularly the inverse routine) may 
reatesmall error terms. For example, we might get a Geometri
 Obje
t thatshould be a ve
tor, but has a small (on the order of 10�16) bive
tor term.Several of our routines (e.g., the drawing routines) 
he
k to make surethat the arguments are blades, and su
h numeri
al errors, though small,will 
ause these routines to fail. For example, while the numeri
al error
auses no parti
ular 
omputational problems, some routines will reje
t su
hgeometri
 obje
ts as not being blades. Thus, we wrote gazv, whi
h sets allsmall terms of a geometri
 obje
t to zero.The routine gazv will set to zero all terms of a GA that are smallerin absolute value than 1e-15, giving a warning when it does so. Whendeveloping 
ode, it is a good idea to use gazv to over
ome small numeri
alproblems, and on
e the 
ode is debugged swit
h to grade (sin
e presumablyyou know the grade you want). Although you 
ould use grade from thebeginning, its use might hide some bugs that the system would otherwiseautomati
ally 
at
h for you. We additionally wrote two similar routines:GAZ, whi
h is identi
al to gazv ex
ept that it does not produ
e a warningmessage, and blade whi
h 
onverts a geometri
 obje
t into a blade.Sin
e this software is meant for a tutorial, our == and ~= operators 
om-pare to within a numeri
al toleran
e. Thus, ve
tors, et
., di�ering by onlysmall amounts will be 
onsidered equal. If an exa
t equality is desired, onemay use the eeq fun
tion. Any further testing will require extra
ting the
oordinates using inner.Other than these small round-o� errors (usually introdu
ed by inverse),we en
ountered no numeri
al problems in developing GABLE. However, itshould be noted that we did not perform extremely 
omplex 
omputations,and further testing of our software is needed to better assess its numeri
alstability.1.6 Example: Pappus's theoremAs a more 
omplete example of GABLE, we present an illustration of Pap-pus's theorem, whi
h says take any two lines and three points on ea
h line(P1 P2 P3 and Q1 Q2 Q3), 
ross-join the point (i.e., build the line segmentsP1Q2, P1Q3, P2Q1, P2Q3, P3Q1, and P3Q2) and 
ompute the interse
tion ofthe three 
ross-joined pairs of segments (i.e., interse
t P1Q2 with P2Q1, P2Q3
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FIGURE 1.4. Illustration of Pappus's theorem 
reated by GABLE.with P3Q2, and P3Q1 with P1Q3), and then these three points of interse
tionwill be 
ollinear.To illustrate this theorem, we �rst need to 
onstru
t six points and drawthe relevant line segments. For this example, we have 
hosen to let e3 bethe homogeneous 
oordinate:>> P1 = e3+e1; P2 = e3+2*e1; P3 = e3+4*e1;>> Q1 = e3+e2; Q2 = e3+e1+2*e2; Q3 = e3+2*e1+3*e2;>> DrawPolyline({P1,P3},'r'); DrawPolyline({Q1,Q3},'r');>> DrawPolyline({P1,Q2},'k'); DrawPolyline({P1,Q3},'k');>> DrawPolyline({P2,Q1},'k'); DrawPolyline({P2,Q3},'k');>> DrawPolyline({P3,Q1},'k'); DrawPolyline({P3,Q2},'k');>> GAview([0,90℄);The DrawPolyline 
alls draw the line segments of Pappus's theorem. Nextwe want to 
ompute the interse
tion of 
orresponding line segments. As a�rst step, we need to 
ompute ea
h line segment (the join of two pointson the segment) and as a se
ond step we need to interse
t pairs of linesegment (the meet of the two segments). Note that the meet will give usa homogeneous point, and we need to normalize its 
oordinates to put thepoint ba
k in the homogeneous plane:>> %...>> H3 = meet(join(P1,Q2),join(P2,Q1)); A3 = H3/inner(H3,e3);>> H2 = meet(join(P1,Q3),join(P3,Q1)); A2 = H2/inner(H2,e3);>> H1 = meet(join(P2,Q3),join(P3,Q2)); A1 = H1/inner(H1,e3);>> DrawHomogeneous(e3,H1,'n','g');>> DrawHomogeneous(e3,H2,'n','g');>> DrawHomogeneous(e3,H3,'n','g');>> DrawPolyline({A1,A3},'b')The resulting GABLE drawing appears in Figure 1.4. Two other examplesthat appear in our tutorial are an illustration of Napoleon's theorem andan illustration of Morley's triangle.
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lusionsIn GABLE, our Matlab pa
kage for the geometri
 algebra tutorial, we have
hosen an 8� 1 representation of multive
tors, to be expanded to an 8� 8matrix representation when they are used as operands in the elementaryprodu
ts (geometri
 produ
t, inner produ
t, outer produ
t). In our detailed
omparison of the 
omplexity of this representation with representationsbased on the isomorphisms of Cli�ord algebras with matrix algebras, this
hoi
e appeared not always the most eÆ
ient for software used in an a
tualappli
ation (rather than a mere tutorial), espe
ially if the signature of thespa
e required 
ould be known beforehand, and if one would deal mostlywith pure blades. Further developments in the pra
ti
al use of geometri
algebra should show whether blades are indeed suÆ
ient for our needs. Ifappli
ations would require many inner and outer produ
t of multive
tors ofmixed grade, then our expli
it representation of these produ
ts by matri
esshould be 
onsidered.GABLE is an implementation of 3-dimensional Cli�ord algebras witharbitrary signature. The generalization to arbitrary dimensions is readilyobtained from Equation 1.1. However, as noted earlier in this paper, highdimensional Cli�ord algebras are 
omputationally expensive, and ratherthan use our n� 1 representation, a spe
i�
 
omplex, et
., representationmay be preferred (although you would then lose the arbitrary signatureproperty).For the geometri
 division, we have extended Lounesto's method to 
om-puter inverses to work in 3-dimensional spa
es of arbitrary signatures; butit should be emphasized that the method does not work in spa
es of higherdimensions sin
e it is based on properties of the Cli�ord 
onjugation that donot generalize to su
h spa
es. In those spa
es, an inversion of the geometri
produ
t matrix will be required.The need to make geometri
al ma
ros for interse
tion and 
onne
tionof geometri
al obje
ts `without 
ase statements' ne
essitated a detailedstudy of the join and meet operations and their relationship. We have nowembedded them properly into the geometri
 algebra of blades, even thoughea
h is only determined up to a s
alar fa
tor; the key is to realize that bothare based on the same fa
torization of blades. The tutorial shows thatdespite this unknown s
alar, geometri
ally signi�
ant quantities based onthem are unambiguously determined. This expli
it realization appears to benew. Further, the GABLE meet and join operators only work for Eu
lideansignature; further resear
h is needed to extend these operations to arbitrarysignature. Likewise the GABLE implementation of meet and join exploitsimpli�
ations that o

ur in three dimensions; the implementation of higherdimensional meet and join operations will require more 
omplex 
ode.At the start of this proje
t, we thought it would be straight-forward toimplement this software using results in the literature. However, we foundthe literature la
king in several areas, whi
h we have partly addressed in



26 Stephen Mann, Leo Dorst, and Tim Boumathis paper. As a result of our work, we now have GABLE, a Matlab pa
kageand tutorial that should ease the learning of geometri
 algebra for peoplenew to the subje
t. Moreover, we have found the pa
kage useful for testingout ideas and results in our own resear
h.1.8 A
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knowledge the funding of Stephen Mann's sabbati
al bythe Dut
h Organization for S
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 Resear
h (NWO), and the funding ofTim Bouma's summer stay by the University of Amsterdam.A.1 Inner produ
t matri
esHestenes Inner Produ
t matrix:[AI ℄ =2666666664
0 �1A1 �2A2 �3A3 ��12A12 ��23A23 ��13A31 ��123A1230 0 �2A12 ��3A31 ��2A2 ��23A123 �3A3 ��23A230 ��1A12 0 �3A23 �1A1 ��3A3 ��31A123 ��13A310 �1A31 ��2A23 0 ��12A123 �2A2 ��1A1 ��12A120 0 0 �3A123 0 0 0 �3A30 �1A123 0 0 0 0 0 �1A10 0 �2A123 0 0 0 0 �2A20 0 0 0 0 0 0 0

3777777775Modi�ed Hestenes Inner Produ
t matrix:[AI ℄ =2666666664
A0 �1A1 �2A2 �3A3 ��12A12 ��23A23 ��13A31 ��123A123A0 A0 �2A12 ��3A31 ��2A2 ��23A123 �3A3 ��23A23A0 ��1A12 A0 �3A23 �1A1 ��3A3 ��31A123 ��13A31A0 �1A31 ��2A23 A0 ��12A123 �2A2 ��1A1 ��12A12A0 0 0 �3A123 A0 0 0 �3A3A0 �1A123 0 0 0 A0 0 �1A1A0 0 �2A123 0 0 0 A0 �2A2A0 0 0 0 0 0 0 A0

3777777775Contra
tion Inner Produ
t Matrix:[AC ℄ = 2666666664
A0 �1A1 �2A2 �3A3 ��12A12 ��23A23 ��31A31 ��123A1230 A0 0 0 ��2A2 0 �3A3 ��23A230 0 A0 0 �1A1 ��3A3 0 ��13A310 0 0 A0 0 �2A2 ��1A1 ��12A120 0 0 0 A0 0 0 �3A30 0 0 0 0 A0 0 �1A10 0 0 0 0 0 A0 �2A20 0 0 0 0 0 0 A0

3777777775
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