This is page 1
Printer: Opaque this

Chapter 1

The Making of GABLE,
a Geometric AlgeBra Learning
Environment in Matlab

Stephen Mann, Leo Dorst, and Tim Bouma

1.1 Introduction

Geometric algebra extends Clifford algebra with geometrically meaningful
operators, and its purpose is to facilitate geometrical computations. Present
textbooks and implementation do not always convey this geometrical fla-
vor or the computational and representational convenience of geometric
algebra, so we felt a need for a computer tutorial in which representation,
computation and visualization are combined to convey both the intuition
and the techniques of geometric algebra. Current software packages are
either Clifford algebra only (such as CLICAL [9] and CLIFFORD [1]) or
do not include graphics [6], so we decide to build our own. The result is
GABLE (Geometric Algebra Learning Environment) a hands-on tutorial
on geometric algebra that should be accessible to the second year student
in college [3].

The GABLE tutorial explains the basics of Geometric Algebra in an ac-
cessible manner. It starts with the outer product (as a constructor of sub-
spaces), then treats the inner product (for perpendilarity), and moves via
the geometric product (for invertibility) to the more geometrical operators
such as projection, rotors, meet and join, and end with to the homogeneous
model of Euclidean space. When the student is done he/she should be able
to do simple Euclidean geometry of flats using the geometric algebra of
homogeneous blades. For instance, the intersection between lines can be
easily expressed in the basic operators:

e = e3; % the homogeneous embedding

P = e+ el/3+e2; % point P

Q = e+ el+e2/2; % point Q

R = e+ el/2-e2/4; ¥, point R

PQ = join(P,Q); % line PQ

QR = join(Q,R); % line QR

meet (PQ,QR) % intersection of those lines

Drawing the objects of geometric algebra is an important part of GABLE.

2 Stephen Mann, Leo Dorst, and Tim Bouma

FIGURE 1.1. Intersection of lines.

Using them appropriately in this example produces Figure 1.1, clarifying
the relationship between the 3-D blade-based computations in the homoge-
neous model and their geometric semantics in 2-D Euclidean space. Figure
1.2 is an illustration of another exercise in GABLE, requiring interpolation
between bivectors. Obviously, with the geometric product we can define
and compute spinors simply; then using the n-th root (by logarithm and
exponentiation) we may interpolate between orientations, and apply the
resulting spinors to the bivectors. That generates the figure.

In Section sec:pappus, we give the a more complete example illustrating
Pappus’s theorem.

Our desire to visualize meant that we did not need to go beyond 3 dimen-
sions, and our implementation focuses on (¢s o (although our implementa-
tion is general enough to handle other signatures in 3-dimensional space
as well). Since this software is meant for a tutorial, we did not have great
efficiency concerns (though we did have some), and were most interested in
ease of implementation and the creation of a software package that could
be made widely available for teaching purposes.

These goals led us to implement GABLE in Matlab and to foster distri-
bution of geometric algebra, it was made to work with the student version
of Matlab. This paper describes our experiences in developing the package.
We ran into some issues that any implementer of geometric algebra will need
to decide on (representation, computational efficiency, stability of inverses);
but we also encountered insufficiently precisely resolved issues in the very
structure of geometric algebra itself, which the need for straightforward
practical use brought out. Among these are the various inner products,
and the precise definition and semantics of the meet and join operators
in Euclidean geometry (for more general definitions see Chapter 3). This
chapter motivates and documents our decisions in these matters.

Our representation of geometric objects is a refinement of the 8 x 8 rep-
resentation that has been presented by others, along the lines suggested

1. Making of Gable 3

FIGURE 1.2. Interpolation of orientations for a bivector.

by Lounesto and Ablamowicz [8]pag. 72), [1]. We compare this represen-
tation of geometric algebra to matrix representations of Clifford Algebras
in Section 1.2. For the important but potentially expensive operation of
inversion (or geometric division), we settled on a variation of a method
proposed by Lounesto for (3, which we extend in Section 1.3 to work
for arbitrary signature (in 3 dimensions). At the higher level, Section 1.4
gives some detail on our implementation of the meet and join operations,
extending them to the non-trivial cases of partially overlapping subspaces.
Section 1.5 discusses some of the implementation details, including a brief
description of the graphics and numerical aspects of GABLE. The tutorial
itself [3] is available on the World Wide Web! The webpages contain both
the Matlab package GABLE and the tutorial textbook.

1.2 Representation of geometric algebra

The first decision we faced in our implementation was which representation
to use for the geometric objects. The most natural representation in Matlab
would be a matrix representation. Matrix representations for the geometric
product in the Clifford algebras of various signatures are well studied [11];
for each signature a different matrix algebra results. That is slightly un-

L Available at http://www.wins.uva.nl/"leo/clifford/gable.html
and http://www.cgl.uwaterloo.ca/"smann/GABLE/.

4 Stephen Mann, Leo Dorst, and Tim Bouma

satisfactory. Moreover, our desire to make our algebra a proper geometric
algebra implies that we should not only represent the geometric product,
but also the outer and inner products, and preferably on a par with each
other. These issues are discussed in more detail in Section 1.2.4; in brief,
we ended up using a modified form of the 8 x 8 matrix representation.

1.2.1 The matriz representation of GABLE

In GABLE, we represent a multivector A as an 8 x 1 column matrix giving
its coefficients relative to a basis for the Clifford algebra:

Ao
Ay
Ay
Az
Ap |
A3
Az
Ajas

A= [1, e, ez, e3, el/\eg, 132/\1337 63/\61, el/\eg/\eg]

where {e;, ez, es} form an orthogonal basis for the vector space of our
algebra. We will use bold font for the multivector, and math font for its
scalar-valued coeflicients. The multivector A is thus represented by an 8 x 1
column matrix [A], which we will denote in shorthand as

A = [A]

Now if we need to compute the geometric product AB, we view this as
a linear function of B determined by A, i.e., as the linear transformation
A% (B), the ‘G’ denoting the geometric product. Such a linear function can
be represented by an 8 x 8 matrix, determined by A (and the fact that we
are doing a geometric product) acting on the 8 x 1 matrix of [B]. We thus
expand the representation [A] of A to the 8 x 8 geometric product matrix
[A“], and apply this to the 8 x 1 representation[B] of B:

AB = [AY[BI.

The result of the matrix product [A“][B] is the 8 x 1 matrix representing
the element AB. The matrix entry [A%], s (so in column a and row £,
with o and 8 running through the indices {0, 1,2, 3,12,23,31,123}) can be
computed in a straightforward manner from the multiplication table of the
geometric product:

eaes =ce, <= [A°], 5=cA,, (1.1)

where the c are defined in the next section. This 8 x 8 matrix [AG] can
then be used to evaluate the (bilinear) product AB by applying it to the

1. Making of Gable 5

8 X 1 column matrix [B] using the usual matrix multiplication:

(AB], = ([A)[B]) =3 [A%5[Bls.
B

So for example the identity e;es = e, leads to the matrix entry [AG]1272 =
Aj; this is the only non-zero entry in column # = 2. In matrix multiplication
between A = Alel and B = B262 this ylelds [AB]12 = [AG]1272[B]2 =
A1 B>, which is the correct contribution to the e;2 component of the result.

In algebraic parlance, the numbers ¢ defined above (which depend on
a, f and v) are the structure coefficients of the algebra determined by the
geometric product. In particular, each ¢ will be a positive or negative factor
depending on the basis of the algebra, the permutation of the elements, and
the signature of the algebra.

Both the outer and the inner product can be implemented as matrix
multiplications, since A A B and A - B are also linear functions of B,
determined by A. So we implement

AAB = [A°][B] and A-B = [A/][B]

The 8 x 8 matrices [A°] and [A] are given below, and they are constructed
according to Equation 1.1 for the outer product and inner product, respec-
tively.

1.2.2 The representation matrices

Using the recipe of Equation 1.1, we can compute the actual matrices. The ¢
values of Equation 1.1 contain signed products of ¢;s. These represent the
signature (and metric) through their definition as o; = e;e;. We further
define Oij = 005 and Oijk = 0i0;j0.

Geometric product matrix:

[A9] =

r Ao o014 0242 03As —o12A12 —023A23 —013431 —012314123}
Ay Ao 02A12 —o03A31 —02A> —o023A123 0343 —023A23
Ar —o01412 Ao 03423 o141 —03As —o031A4123 —o13431
As 01431 —o2423 Ap —o124123 0242 —01A1 —012412
A —A Ay 03A123 Ao 03A31 —03A23 0343
Azz 01A123 —As A» —o1Aa1 Ao 01412 o141
Aai As 024123 —Ai 02A23 —o2A12 Ao 0245

L A2z Ass Az A1 As Ay Az Ao

(1.2)

6 Stephen Mann, Leo Dorst, and Tim Bouma

Outer product matrix:

I Ao 0 0 0
Ay Ao 0 0
Ao 0 Ao 0
As 0 0 Ao

— A12 —A2 Al 0 Ao

Ass 0 —Asz A 0

A1 Az 0 -A1 0

A2z Axz Asr A Az Ay

o

bOOOOOOO

o
L

:}:BOOOOOO

%]

Inner product matrix:

[Ao 01A1 024 03A3 —012A12 —023A2s —031A31 —0123A123]
0 A 0 0 —02A> 0 03As —023A23
0 0 Ao 0 o1 A1 —O'3A3 0 _0'131431
[A[] — 0 0 0 Ao 0 0'2142 —O’1A1 —012A12
— 0 0 0 0 Ao 0 0 0'3143
0 0 0 0 0 Ao 0 o1A1
0 0 0 0 0 0 Ao 024>
L O 0 0 0 0 0 0 Ap i
(1.4)

Note the relation between these matrices: the inner product matrix and
the outer product matrix both have all non-zero elements taken from the
geometric product matrix. Note also the lack of signature in the outer
product matrix; this is in agreement with the fact that it forms a (non-
metric) Grassmann algebra that may be viewed as a geometric algebra of
null vectors, for which all ¢; equal 0.

The reader may realize from this matrix description that we have im-
plemented an inner product that differs from Hestenes’ inner product [4]:
we prefer the contraction defined in [7], since we found that its geometric
semantics is much more convenient. We will motivate this in Section 1.4.3.
We have implemented other inner products as well (see next section), but
the contraction is the default.

1.2.3 The deried products

It is common to take the geometric product as basic, and define the other
products using it by selecting appropriate grades. This can be the basis
for an implementation; the Maple package at Cambridge [6] has been so
constructed. For our comparative discussion below, we state the defini-
tions; these can be used in a straightforward manner to derive the matrix
representations.

e Outer product

AANB = Z<<A>TS>s+r- (1.5)

1. Making of Gable 7

where (-),. is the grade operator taking the part of grade r of a mul-
tivector.

e Contraction inner product

AJB = Z<<A>Ts>s—r7 (1'6)

7,8

where the grade operator for negative grades is zero (we thank Sven-
son [12] for this way of writing the contraction). Note that this implies
that ‘something of higher grade cannot be contracted onto something
of lower grade’. For scalar o and a general non-scalar multivector A
we get o)A = aA and Aja =0.

e Modified Hestenes inner product
This is a variation of the Hestenes inner product that fixes its odd
behavior for scalars (which messes up the meet operation, as discussed
in Section 1.4.3):

A-yB= Z <<A>Ts>|s—r|~ (17)

For scalar o and a general non-scalar multivector A we get a3y A =
alA = A .

e Hestenes inner product
The original Hestenes product differs from Equation 1.7 in that the
contributions of the scalar parts of A and B are explicitly set to zero.

Note that mixed-grade multivectors require expansion of a double sum in
all these products. We prefer contraction because it simplifies the meet and
join operators, as we will discuss further in Section 1.4.3 after describing
meet and join.

1.2.4 Representational issues in geometric algebra

For Clifford algebras of arbitrary signature (p, ¢) (which means p+ ¢ spatial
dimensions, of which p basis vectors have a positive square, and ¢ have a
negative square) linear matrix representations have long been known. We
repeat part of the table of such representations in Table 1.1, see [11]. In
this table, IR(n) are n x n real matrices, C(n) are n X n complex-valued
matrices, H(n) are n X n quaternion-valued matrices, 2IR(n) are ordered
pairs of n X n real matrices (which you may think of as a block-diagonal
2n X 2n matrix containing two real n x n real matrices on its diagonal and
zeroes elsewhere), and similarly for the other number systems.

The various representations are non-equivalent, so the table can be used
for arguments on unique representations. Note that the Clifford algebras for

8 Stephen Mann, Leo Dorst, and Tim Bouma

p=0 | R(1 c(1) | m(1) | %m(1)
p=11{°R(1) | R2) [c(2) | H(2)
p=2] B2 | R | ®RA) | c(d
p=3] @ | BE) [R®E) | RE)
p=4] H2) | @ | &) | ¢

TABLE 1.1. Matrix representations of Clifford algebras of signatures
(pv(I)'

a 3-dimensional space can have many different representations depending
on the signature. Though this is not a problem for implementations, it
makes it harder to obtain a parametric overview on the metric properties
of the various spaces, and a representation that contains the signature as
parameters ¢; has our slight preference.

The outer product forms a Grassmann algebra. We have been unable
to find a similar representation table in the literature on Grassmann alge-
bras, but at least for even-dimensional Grassmann algebras this is easily
established. A Clifford algebra with signature (p,p) can be converted into
a 2p-dimensional Grassmann algebra by pairing of the basis vectors with
positive and negative signature. The table then shows that the Grassmann
algebra of even dimension p is isomorphic to IR(2”). Odd dimensions can
be seen as subalgebras of the next even dimension.

The inner product is not associative, and is therefore not isomorphic to
a matrix algebra.

Our initial exclusive interest in (3o suggests the representation C(2),
with elements represented as

(Ao + Az) + (A2 + A123) (A1 + Az1) +i(—Ay + Ass)
(A — A3p) +i(Ax + Aoz) (Ao — As) +i(—A12 + Ai3)

but this works only for the geometric product; the other products would
then have to be implemented using the grade operator. We prefer a rep-
resentation in which all three products are representable on a par, and in
which signatures are parameterized. This desire to represent arbitrary sig-
natures parametrically necessitates viewing Cl3 o as a subalgebra of (/s 3,
and therefore to choose a representation in IR(8).

This algebra IR(8) also contains a representation of the outer product
as a certain kind of lower-triangular matrices (in fact, Equation 1.2 works
nicely: the matrix product of two such matrices faithfully represents the
outer product). For arbitrary signatures, there cannot exist a change of
representation in which both the outer product matrices and the geometric
product matrices could be reduced to a smaller size (i.e., brought onto a
block-diagonal representation of the same kind), since we need the full IR(8)
to handle those signatures anyway.

1. Making of Gable 9

Now the need to represent the inner product as well indicates that we
can not represent the elements of the algebra by matrices in their function
as both operator (i.e., first factor) and operand (i.e., second factor). We
therefore switch to the view where each product is seen as a linear function
of the operand, parameterized by the operator, as detailed in Section 1.2.1.
We maintain the IR(8)-representation of these linear functions, but they
now operate on 8-dimensional vectors representing the operand (rather
than forming an algebra of operators). Thus we arrive at the representation
we have chosen (also for the geometric product), with the operator matrices
naturally defined as in Equation 1.1.

It should be clear that the same reasoning suggests an IR(2") representa-
tion of the geometric algebra of n-dimensional space of arbitrary signatures,
with matrices defined for the three products in the same way.

1.2.5 Computational efficiency

If we would represent our objects as 8 x 8 matrices of reals, the resulting
matrix multiply to implement the geometric product would cost 512 multi-
plications and 448 additions. Further, using the 8 x 8 matrix representation,
to compute the outer product and/or inner product, we would have to use
the grade operator (or, for the outer product, pay the expansion cost to
convert to the outer product 8 x 8 matrix representation). Addition and
scalar multiplication of elements in this form require 64 additions and 64
multiplications respectively. This method is extremely inefficient and we
will not discuss it further.

The computational efficiency of the 8 x 1 format is better and is sum-
marized in Table 1.3, where the notation (a,m) denotes the number of
additions and multiplications required. With the 8 x 1 format, the cost of
computing a product is the computational cost of having to expand one of
the one of the 8 x 1 matrices to an 8 x 8 matrix and then multiply it by an
8 x 1 matrix at a cost of 64 multiplications, 56 additions, and the cost of
expansion. When we include the cost of signatures in the expansion cost,
then the total cost is increased by 48 multiplications.

It is of course possible to use the table of Clifford algebra isomorphisms
as a literal guide to the implementation. Let us consider the costs of imple-
menting the special case of the 3-dimensional Clifford algebras; Table 1.1
shows that this involves implementation of C(2), 2IR(2) and 2H(1). In all
representations the operations of addition and scalar multiplication have
take 8 floating point additions and 8 floating point multiplications, respec-
tively (in the IR(8) representation, these operations are performed on the
8 X 1 matrices representing the objects).

To compute the geometric product we need to multiply elements. The
complexity of the basic multiplications is: one complex multiply is (4,2);
one double real multiply takes (2,0); one quaternion multiply takes (16, 12).
For a full matrix implementation to produce the geometric product this

10 Stephen Mann, Leo Dorst, and Tim Bouma

a

b

W N~ Ol >
W= OO
=W N ==
N2

—~

QU = W DN b
Nt NN

TABLE 1.2. Grade of the outer product of blades. Along the top row
and left column are the grades of blades a and b; the table gives the
grade of the outer product of these blades. Note that if the grade is
greater than 3, then the result will be 0.

yields for C(2) a complexity of (32, 16); for 2IR(2) a complexity of (16, 8); for
(1) a complexity of (32,24). Depending on the structure of the algebra,
one may thus be fortunate by a factor of two. These should be compared to
our IR(8) implementation acting on 8 x 1 matrices, which has a complexity
of (110, 56), for general signatures. This is a factor of 3 worse than 2H(1),
the most expensive of the other three representations. If we consider only
(ls 0, then we have no signature cost, and IR(8) costs (64,56) compared to
(32,16) for C(2). Table 1.3 compares the cost of several operations of our
IR(8) implementation without signature cost and of C(2).

To implement a full geometric algebra, these specific geometric product
implementations need to be augmented with a grade operation to extract
elements of the grade desired, according to Equations 1.6 and 1.5. For C(2)
it takes (0, 8) to extract the eight separate elements, and presumably the
same for 2H(1) and 2R(2). For simplicity of discussion, when extracting a
single grade, we will assume that it costs 3 additions (although for scalars
and trivectors, the cost is only 1 addition).

This process of a geometric product followed by grade extraction is simple
if the objects to be combined are blades (rather than general multivectors).
Such an operation requires a geometric product followed by grade extrac-
tion, which for C(2) has a total worst case cost of (32,19), although there
may be some additional cost to test for the grade of the blade, etc., which
would add (0,16) to the cost ((32,35) total) if we need to perform a full
grade extraction of each operand.

When taking the outer or inner product of multivectors that are not
blades, the use of the geometric product and grade extraction becomes quite
expensive, since we must implement a double sum (see Equations 1.5, 1.6,
and 1.7). A naive implementation of this formula would require 16 geomet-
ric products and grade extractions, an additional 12 additions to combine
the results for each grade, and 8 additions to reconstruction the result, for
a total cost of (512,324). However, looking at Table 1.2, we see that that
six of these geometric products will always be 0, and we can easily rewrite
our code to take advantage of this. This modification to the code reduces
the cost to (320,210).

By unbundling the loop and simplifying the scalar cases (i.e., multiplying

1. Making of Gable 11

Operation 8x1 C(2)
addition (0,8) (0,8)
scalar multiplication (8,0) (8,0)
grade extraction (0,0) (0,8)
geometric product (64,56) (32,16)
other products of blades (64,56) (32,19)
other products of multivectors | (64,56) (111,79)

TABLE 1.3. Comparison of costs for 8 x 1 and C(2).

B by the scalar portion of A reduces 4 geometric products to one floating
point addition (to extract the scalar) and 8 floating point multiplies, and
multiplying A by the scalar portion of B reduces 3 more geometric products
to one addition and 7 floating point multiplies) we can get the cost down
to (32%x3 415,193 + 2+ 12 4+ 8) = (111, 79). Further special casing of
the vector and bivector terms can reduce this cost to (33,45) (details of
the analysis can be found in [10]), but note that in doing this (a) we have
left the complex representation for computing these products and (b) each
product will need its own special case code.

Note that the above discussion is on the cost of writing special case code
for the outer product only. If we choose this route, we would also need to
write special case code for each of the inner products and possibly for each
dimensional space in which we wish to work. A reasonable compromise
of special cases versus general code for the complex representation would
be to handle the scalars as special cases and write the loops to avoid the
combinations that will always give zero. Table 1.3 compares the costs of
using the 8 x 1 representation and the C(2) representation, assuming we do
the these optimizations for the C(2) products of multivectors.

Agsymptotic costs

If we are interested in arbitrary dimensional spaces, then we need to look at
the asymptotic costs. Table 1.4 summarizes the costs of the complex and of
the n x 1 representation (where n = p+¢ is the dimension of the underlying
vector space) for the geometric product and for the other products (e.g,
inner and outer products) on blades and for the other products on general
multivectors. In this table, we only give the top term in the cost expression,
ignoring grade extraction, etc., for the complex representation of other
products. Use of only this top order term also ignores the savings achieved
for the complex representation by not computing the products whose grade
is higher than n and special casing the scalar products; such optimizations
roughly equate to a factor of two savings. Note that we use the complex
representation as a coarse representative of the other representations; in
the other cases we would use the quaternion or double-real representation,
which cost roughly a factor of 2 less than the complex representation.

12 Stephen Mann, Leo Dorst, and Tim Bouma

Geometric Other products Other products

Product on blades on multivectors
Complex | 206n+1)/2 o(Bn+1)/2 ZoBnT1)/2
nxl1 22n 92n 92n

TABLE 1.4. Comparison of costs of various methods, with n being the
dimension of the underlying vector space.

From the table, we see that asymptotically the complex representation is
always best. However, substituting number in these equations shows that
for small n, the n x 1 representation is best when performing inner or outer
products of general multivectors, with the cross-over point being around
n = 14. But when n is 14, the cost of even the geometric product in
the complex representation is extremely large, requiring roughly 3 x 10°
multiplications.

For smaller n, the complex representation is better than the n x 1 rep-
resentation for the geometric product and the products of blades, while
the n x 1 representation is computationally less expensive than the com-
plex representation for the other products of general multivectors. However
the other products of general multivectors are rarely (if ever) performed
in our present understanding of what constitute geometrically significant
combinations. Thus, in general the complex/quaternion/double-real repre-
sentation will be more efficient than the n x 1 representation by a factor
of 27/2. The conclusion must be that once one has decided on a particular
geometry for one’s application, reflected in a particular signature, it makes
sense to implement it literally using the isomorphism of Table 1.1.

For our tutorial in 3 dimensional spaces, the cost of the 8 x 1 represen-
tation is only a factor of three more expensive than the complex represen-
tation. Since we were writing tutorial code, we felt this cost was more than
offset by the explicitness of the signature and ease of implementation.

1.3 Inverses

In Matlab, the obvious way to compute the inverse of a geometric object M
is to express it in the 8 x 8 geometric product matrix representation, [M].
Then inversion of [M] may be done using the Matlab matrix inverse routine,
and the first column of [M] ! will be the representation of the inverse of
M. However, when we implemented this method for computing the inverse,
we found that it introduced small numerical errors on rather simple data,
and thus was less stable than we would like. We investigated a method
of Lounesto’s that was more stable in our testing, and is computationally
considerably more efficient than a matrix inverse.

Lounesto [8] (pag. 57) proposes a method to compute inverses in Clifford
algebras of 3-dimensional spaces. We discuss it now, and extend it slightly.

1. Making of Gable 13

Lounesto’s trick is based on the observation that in three dimensions (and
that is essential!) the product of a multivector M and its Clifford conjugate
M only has two grades, a scalar and a pseudoscalar (the Clifford conjugate
is the grade involution of the reverse of a multivector). Let M, denote the
part of M of grade i, though we will write My for the scalar part. Then we
compute

MM = (Mpy+ M;+ My + Mj)(My—M; — M, + Ms)
= (M§—M7i— M3+ M3) + 2(MyM;z — M; A M),

and the first bracketed term is a scalar, the second a trivector.

Further, at least in Euclidean 3-space, if such an object of the form ‘scalar
plus trivector’ Ny + N3 is non-zero, then it has an inverse that is easily
computed:

(No+N3)~! =

Please note that not all multivectors have an inverse, not even in a Eu-
clidean space: for instance M = 1 + e; leads to MM = 0, so this M
is non-invertible. In a non-Euclidean space, the denominator may become
zero even when Ny and N3 are not, and we need to demand at least that
Ng # N2, (When it exists, the inverse is unique. This follows using the as-
sociativity of the geometric product: if A and A’ are left and right inverses
of B, respectively, then A = A(BA') = (AB)A' = A’. Therefore any left
inverse is a right inverse, and both are identical to the inverse.)

These two facts can be combined to construct an inverse for an arbitrary
multivector M (still in Euclidean 3-space) as follows:

[— Vi M ((MM)O B (MM)3)
- (MM); - (MM);

The following two lemmas and their proofs demonstrate the correctness of
Lounesto’s method in 3-dimensional spaces of arbitrary signature.

Lemma 1.1. M exists if and only if (MM) ™' emists.

Proof: First, assume that M~ ! exists. Then 1 = M-I M = (M-'M!)(MM),
so that (MM) ' = M—I M}, which exists.

Secondly, assume that (MM) ™! exists. Then we have 1 = (MM)(MM) ! =
M(M(MM)™!), so that M™" = M(MM) ™}, which exists. L]

Lemma 1.2. Let N = No + Na. Then iff N # N3, N~ ezists and equals

- No — N3
No+N3)™'=230"—""2
(No+Ns)™ = Tz =g

Proof: Assume N§ # N3, then (Ng + N3) (No — N3)/(Ng — N3) = (N +

14 Stephen Mann, Leo Dorst, and Tim Bouma

8 x 1 c(2)
Term Naive Good Scalar Naive Good Scalar
M (0,0) (0,0) (0,0) (0,8) (0,8) (0,8)
MM (64,56) (64,56) (64,56) (32,16) (32, 16) (32,16)
MM 4D @) (00 4D @) (00
M(MM)! (64,56) (16,8) (8,0) (32,16) (16,8) (8,0)
Total (132,113) (84,65) (72,56) (64,41) (52,33) (40,24)

TABLE 1.5. Cost of Lounesto’s inverse.

N3Np — NoN3 — N3)/(Ng —N3)? = (N§ —N3)/(N§ —N3) =1, s0 N7 is as
stated.

Now assume that N~ ! exists. Then if N3 = 0 the result is trivial. If N3 # 0
and Ny = 0 the result is trivial. So take N3 # 0 and Ng # 0. Let K be the inverse
of N = Ny + N3. Then it needs to satisfy

(No + N3)(Ko + K1 + K2 + K3) = 1,
so, written out in the different grades
(NoKo + N3K3) + (NoKi + N3Ks) + (NoKo + N3Ki) + (NoKs + N3Kg) =1

Straightforward algebra on the terms of grade 0 and 3 yields (N§ —N3)K3+Nj =
0, and since N3 # 0 this gives N¢ # N3. Then the case above shows that the
inverse is N™! = (Ny — N3)/(N§ — N3).

L]

Table 1.5 summarizes the costs to compute the inverse for both the 8 x 1
representation and for the C(2) representation. In this table, we give three
algorithms for each representation: a naive algorithm, that does not try to
exploit any extra knowledge we have about the terms we are manipulat-
ing; a good algorithm, that exploits the structure of (MM)~!, which is a
scalar plus a pseudo-scalar, and thus does not require a full product when
multiplied by M; and a scalar version that can be used when (MM) ™
a scalar. This last case occurs when M is a blade, a scalar plus a bivector,
or a vector plus the pseudo-scalar, which covers most of the geometrically
significant objects we manipulate.

Note that in this table we have omitted the cost of the six negations
needed to compute the Clifford conjugate. Also note that the complex
representation requires 8 additions when computing the Clifford conjugate
because it has to separate and recombine the scalar and pseudo-scalar part
of the geometric object.

Lounesto’s method is computationally much cheaper than the matrix in-
verse method, with a good implementation of Lounesto’s method requiring
149 Matlab floating point operations for the 8 x 1 representation, while
the Matlab matrix inverse routine on 8 x 8 matrices requires 1440 Matlab

1. Making of Gable 15

floating point operations. Lounesto’s method really makes convincing use
of the special structure of our matrices. While a faster matrix inversion
routine may be available, it is unlikely that there will be a general routine
capable of inverting our special 8 x 8 matrix in fewer than 149 floating
point operations (which is after all little more than twice the number of
matrix elements!). Further, in practice we found our modified Lounesto in-
verse to compute a more numerically stable inverse than the matrix inverse
routine provided by Matlab (perhaps not surprising, since it involves fewer
operations).

Had we used the C(2) representation of elements in our geometric algebra,
the cost of matrix inversion would have dropped dramatically, with Matlab
requiring only 260 floating point operations to invert a 2 x 2 complex ma-
trix. However, Lounesto’s method using the complex representation only
requires 75 floating point operations. Thus Lounesto’s inversion method is
also less expensive in the C(2) representation.

1.4 Meet and Join

The geometric intersection and union of subspaces is done by the meet and
join operations. These have mostly been used by others in the context
of projective geometry, which has led to the neglect of some scalar factors
and signs (since they do not matter in that application). This issue was
partly treated in [2], but the development of the tutorial required some
more investigation of those scalar factors. This section reports on that.

1.4.1 Definition

The meet and join operations are geometrical ‘products’ of a higher order
than the elementary products treated before. They are intended as geomet-
rical intersection and union operators on (sub)spaces of the algebra. Since
subspaces are represented by pure blades, these operations should only be
applied to blades.

Let blades A and B contain as a common factor a blade C of maximum
grade (this is like a ‘largest common divisor’ in the sense of the geometric
product), so that we can write

A=A'AC and B=CAB’

(note the order!). We will actually choose A’ and B’ to be perpendicular
to C, so that we may also write the factorization in terms of the geometric
product: A = A’C and B = CB’ (but note that A’ and B’ are in general
not mutually perpendicular!). If A and B are disjoint, then C is a scalar
(a 0-blade). We now define meet and join as

join(A,B) = A’ACAB' and meet(A,B)=C.

16 Stephen Mann, Leo Dorst, and Tim Bouma

Note that the factorization is not unique: we may multiply C by a scalar ~.
This affects the join result by 1/ and the meet by 7, so meet and join are
not well-defined. (Since v may be negative, not even the orientation of the
results is defined unambiguously.) So these operations are hard to define
in a Clifford algebra; but for a Geometric Algebra, they definitely desired.
Many geometric constructions are actually insensitive to the magnitude
and/or sign of the blade representing the subspace. A prime example is
the projection (x]|A)/A onto the subspace represented by A — there is not
problem using for A the outcome of a meet or join.

In our implementation, we do want to guarantee that meet and join of
the same subspaces can be used consistently, so we do need to base both
on the same factorization. We can make the computational relationships
between meet and join explicit. The definition gives for the join, given
the meet (where the fraction denotes right-division):

. A
_]01n(A,B) = m A B. (18)

Note that this is only valid if the meet is an invertible blade. In non-
Euclidean spaces there may therefore be a problem with this equation and
the factorization on which it is built: if C is a null blade (i.e., a blade with
norm 0, non-invertible) then we cannot compute A’ in terms of A from the
factorization equation A = A’C, and therefore not compute join(A,B) =
A’ A B from the meet (or vice versa, by a similar argument). We thus
have to limit join and meet to non-null blades; which means that we
restrict ourselves to Euclidean spaces only. (Actually, anti-Euclidean spaces
in which all signatures are —1 would obviously be permissible as well.) Since
no blades are now null-blades, we can agree to make the common factor
C a unit blade (so that |C|] = 1) leaving only the sign of its orientation
undetermined. But please be aware that this is a rather arbitrary partial
fixing of the scalar factor!

By duality relative to join(A,B) and symmetry of a scalar-valued con-
traction (or inner product) it follows from Equation 1.8 that

_ A | B _ B | A
"~ meet(A,B) - join(A,B) join(A,B) - meet(A,B)’

The division by meet(A,B) can be factored out (this is due to the contain-
ment relationship of the factors of the contraction and easy to prove using
the techniques in [2]) and we obtain

B

t(A,B) = —————
meet(A, B) join(A,B)

JA. (1.9)

Thus we can start from either meet or join and compute the other in a
consistent manner. The symmetry of the equations means that either way

1. Making of Gable 17

join(A,B) [0 1 2 3

0 0 1 2 3

1 1 2(1) 3(2) 3

2 2 3(2) 3(2) 3

3 3 3 3 3
AAB|O 1 2 3 (B/I;)JA |0 1 2 3
0 0 1 2 3 0 3 2 1 0
1 1 2(0) 30) 0 1 2 1(0) o) 1
2 2 30) 0 0 2 1 0@ 10 2
3 30 00 3 0 1 2 3

TABLE 1.6. The result of the join in 3-space can often be computed
using the wedge product.

is equally feasible.? For a more detailed discussion on algebra of incidence
see chapter 3and chapter 7.

1.4.2 Implementation

We saw that the three issues, factorization of A and B, computing their
join (smallest containing superspace) and computing their meet (largest
common subspace) are intertwined; giving any one determines the other
two (at least in Euclidean signatures).

We have chosen to use the join (i.e., the smallest common space of
A and B) as the one to implement, and to base the meet on it using
Equation 1.9. In principle, this determination of the smallest common space
is a minimization problem, which may be solved by starting with a space
that is too big and reducing it, or by growing one that is too small. In either
case, the general case will involve some administration of polynomial time in
the number of blades, and therefore exponential in the dimensionality of the
space. We have not solved this general issue; in the 3-dimensional Euclidean
space of interest in the tutorial the join is fairly easy to implement case
by case.

In Table 1.6 we show the dimension of the 3-space join operator on
operands of different dimensions. In this table, we have indicated the grade
of the results, with @ indicating a zero result, and results in brackets in-
dicating alternative outcomes in degenerate cases. First observe that the
definition implies that for disjoint spaces A and B, factored by a scalar

2Equation 1.9 is frequently extended to provide a 3-argument meet function relative
to a general blade I: meet(A, B,I) = (B/I)- A. However, since the geometric significance
of using anything but join(A, B) as third argument is unclear, we will not use it. Also,
beware that some writers may switch the order of the arguments in this formula!

18 Stephen Mann, Leo Dorst, and Tim Bouma

C =1, join(A,B) equals A A B. In particular, we see in Table 1.6 that
A A B equals join(A,B) unless the dimensions of A and B are too high
(sum exceeds 3), with some exceptional degeneracies when the grades are
1 and 2. So we may use the outer product as a basis for an algorithm. The
table shows that of (B/I3)|A may aid in treating some of the non-outer-
product cases, where I3 is the pseudoscalar of our 3-dimensional Euclidean
space (details below).

This has led us to consider two algorithms for the computation of the
join:

e Algorithm A
For non-degenerate arguments, we can implement join(A,B) by
computing the quantity J = A A B. If J is non-zero, then it is
the result we want. Otherwise, if the grade of one of the arguments
equals 3, the result is proportional to this argument. For instance, let
grade (A) = 3, then a possible factorization of B is through B = Cf
(with B" = 8 a scalar) which yields join(A,B) = AAB' = fA. If
we choose the common factor to be a unit blade, then 8 = £|B|, so
that the result is join(A,B) = +|B|A. We choose, arbitrarily, the
positive sign.

That leaves the exceptions. When not both grades are 2, the result
is proportional to the argument of highest grade, by a scalar factor
depending on the other argument (by the same reasoning as above,
taking that scalar factor equal to the norm implies considering the
common factor to be a unit blade). When both grades are 2, we need
to find whether these 2-blades are coincident or not. If they are not,
then their join is proportional to I3, so we may use Equation 1.8
to compute a carrier for this common subspace: M = (B/I3)|A.
We normalize this to a unit blade: C = M/|M|, and then return
join(A,B) = (A/C) A B as the proper multiple of Is. If they are
coincident, the computation of M yields zero (which is how we may
detect it) and we return |A|B or, equivalently up to the undetermined
sign, |B|A.

e Algorithm B

For non-degenerate arguments, we can implement join(A,B) by
computing the quantity J = A A B. If J is non-zero, then it is the
result we want. Otherwise, we compute M = (B/I3)|A. If M is
non-zero, then it is proportional to the meet (since precisely in those
cases, the join is proportional to the blade I of grade 3). The com-
mon factor C is then the unit blade C = M/|M], so the join is then
A'ANCAB' =(A/C)AB.

In the degenerate cases indicated in parentheses in the table for the
join, both J and M of the previous paragraph are zero. Which degen-
erate case we have is readily determined by testing the grade of A and

1. Making of Gable 19

B. If both are vectors or bivectors, then they must be parallel. The
factoring is thus A = aC and B = Cf, with both a and f scalars.
The result of the join is then join(A,B) = afC = aB = fA. We
can implement this as |A|B or |B|A, if we agree to factor out a unit
blade C. If exactly one of A and B is a vector c, then the other must
be a bivector containing this vector as a factor. The factorization is
now A = ac and B = fc, so join(A,B) = fac = SA (if A is the
bivector) or A = ac and B = c¢b, so join(A,B) = aB (if B is the
bivector). If we fix the common blade c to be a unit blade, this may
be implemented as [B|A or |A|B, respectively.

Algorithm A is computationally faster since it mostly does testing of grades
to establish the exceptional cases. Algorithm B has a simpler conditional
structure, leading to simpler code. It is the one we implemented.

With the join found, the meet is computed from Equation 1.9. Although
either is only determined only up to a scalar, they are consistent in the sense
of those equations, and their relative magnitudes may therefore be used to
derive geometrically meaningful results.

1.4.3 Why we use a contraction as inner product

We gave three different inner product definitions in Section 1.2.3, and we
still owe the explanation on why we prefer the contraction, which has been
used so rarely in geometric algebra. The main reason is that Hestenes’
original inner product (abbreviated as HIP) has some features that make
it less suitable for straightforward geometric interpretations. This shows
up rather clearly when it is used in the meet operation, and in projection
operations. The former can be fixed by treating the scalars differently, the
latter requires more and leads to the contraction.

Suppose we take the meet of I3 and a vector a, in the 3-dimensional
space with pseudoscalar I3. We would obviously expect the outcome to
be a multiple of a, since the meet should have the semantics of geometric
intersection, and the intersection of the subspace spanned by I3 and the
subspace spanned by a should be the same subspace spanned by a. The
join of I3 with any subspace is I3, so we may use Equation 1.9 to compute
the meet. Using the Hestenes inner product, denoted as -g, we obtain:

meetH(a, Ig) = (13/13) cga=1-ga=0,
since the HIP with a scalar is zero. On the other hand
meety (I3, a) = (a/l3) -g I3 = a.

So the meety is severely asymmetrical, which is unexpected for an oper-
ation that should be geometric intersection. In this case, it is due to the
awkward properties of scalars (which [5] page 20 notes, but does not fix).

20 Stephen Mann, Leo Dorst, and Tim Bouma

We can fix this by modifying the Hestenes inner product to a new inner
product denoted -,;, the same as -y except for scalars. For scalars, we de-
mand that « -3 v = awu for scalar «, and any multivector u. This leads
to the modified Hestenes inner product defined in Equation 1.7. We will
abbreviate it as modified HIP.

For non-scalars this modified HIP has a certain symmetry in grades of
the arguments: the inner product of a blade of grade r with one of grade s,
or vice versa is a blade of grade |r—s|. The contraction of Equation 1.6 does
not have this property: it actually ‘contracts’ the first argument inside the
second, one cannot contract something of a bigger grade onto something
of a smaller grade. For its use in the meet, this is a distinction without a
difference, since in the evaluation of Equation 1.9 as (B/join(A,B))]|A,
the first argument blade of the inner product has a grade that never exceeds
that of the second argument blade.

But the selection of the inner product also has an effect on the evaluation
of the projection. For blades, Hestenes and Sobczyk [5] define the projection
of A into B as (A -y B)-g B~!. Some problems with scalars are noted (see
[5], page 20) which we can fix by using -)s instead. Using that but following
the reasoning of [5], we can then show that the projection can be simplified
to (A -y B)/B if grade(A) < grade (B), and zero otherwise. Rightly, [5]
prefers the new algebraic form since it makes proofs easier. Yet there is still
this conditional split into cases; when treating blades of grades not known
a priori this may lead to lots of cases and still make work hard.

Using the contraction, the projection onto the blade B can be defined as
(A]B)/B, for all arguments A. This is automatically zero when A exceeds
B; since the algebraic properties of the contraction are similar to those of
the (extended) HIP, most proofs still work unchanged in their mechanics,
but now do not require careful conditional splits dependent on the grades of
the arguments complicating the reasoning. Geometrically interpreted, the
contraction implicitly contains subspace relationships, in the sense that
the blades resulting from the simple formula A |B must be contained in B,
and so must the result of the division by B to produce the actual projec-
tion. This therefore encodes something that must be added as a separate
concept when using the (modified) HIP: that subspaces may be contained
inside each other; Hestenes’ conditions on the grade impose this explicitly;
the contraction does it implicitly without additional structure, and thus
provides a simpler algebra without sacrificing any geometry.

In summary, the choice between HIP and modified HIP is clear: use the
modified HIP or you will get a much more complicated geometric intersec-
tion operation as meet. It can probably be fixed with some grade testing,
but this is not as elegant as fixing the inner product instead. Our preference
for the contraction is based on the algebra and geometrical semantics that

1. Making of Gable 21

permits a simpler projection operator.® Again, this can be fixed with appro-
priate grade testing, but we prefer the more straightforward modification
of the inner product.

The power of the meet and join defined in this way — making essential
usage of the contraction — shows in the connection function in GABLE
(see [3]): it is possible to give an algorithm without cases to compute the
translation to make the meet between two affine subspaces non-trivial.
Here ‘case-less’ means: no internal separate treatment of situations, all
situations are computed using the same formula (whether point-to-point,
line-to-line, line-to-point, parallel lines). Moreover, this formula is also valid
in arbitrarily dimensional (Euclidean) space. The fact that we can do this
shows that we are beginning to have the right primitive operations at our
disposal in a computational language for geometry.

1.5 Implementation details

As with any software package, we encountered a number of implementa-
tion details. Here we highlight the more interesting and important details;
further discussion on the implementation can be found in our technical
report [10].

1.5.1 Matlab objects

The Matlab language has objects. For our implementation of the geometric
algebra, we created a GA object, which stores the 8 x 1 matrix representing a
geometric object. No other information is stored in the object. The benefit
of using an object is that we were able to overload the ‘*” and ‘"’ operators
to perform the geometric product and the inner product respectively. We
also overloaded ‘+” and ‘=’ (both binary and unary) to add, subtract, and
negate geometric objects.

Operations such as dual, inverse, and exponentiation we left as named
routines (dual, inverse, and gexp respectively), although we did overload
the ‘/” operator to allow for right-division by a geometric object. L.e., the
expression A/B is computed as A*inverse(B).

31t is of some concern that the contraction combines the notions of perpendicularity
and containment in one operation (for A|B is contained in B and perpendicular to
A), and we need to investigate whether the remainder of the structure of geometric
algebra enables their disentanglement; the projection operation suggests that it does.
We should also mention an alternative definition of the contraction, as the adjoint of
the outer product in terms of an extension of the bilinear form, which demonstrates its
basic algebraic tidiness (see [7]) and its nicely ‘dual’ relationship to the outer product.
This makes for improved duality relationships, see [2].

22 Stephen Mann, Leo Dorst, and Tim Bouma

FIGURE 1.3. Graphical representation of vector, bivector, trivector

We also overloaded ‘=="and ‘"=’ to allow for the comparison of geometric
objects.

1.5.2 Graphics

Since we wanted a visual tutorial, we created graphical representations
for all blades, and used Matlab rendering commands to draw them. The
following table summarizes our representations:

Type Representation Orientation

scalar Text above window Sign

vector Line from origin Arrow head

bivector Disk centered at origin Arrows along edge

trivector Line drawn sphere Line segments going out or in

Figure 1.3 illustrates the vector, bivector, and trivector; the axes are put
in automatically by Matlab.

We chose the disk as our representation for bivectors since with our
matrix representation of the geometric objects, we do not necessarily have
the defining vectors for the bivector (which may not even exist, as is the
case if the bivector was created as the dual of a vector). Without such
vectors, we can not use the standard parallelogram representation of the
bivector. There is a similar issue with the trivector (i.e., we were unable
to use a parallelepiped as its representation) and thus we used the sphere.
However, we also provide demonstration routines to illustrate the more
standard representations of bivectors and trivectors; the user must then
provide the basis on which to decompose them.

Objects of mixed grade presented a more difficult problem. While it is
easy to draw the scalar, vector, bivector, and trivector components inde-
pendently, this is not particularly illustrative. In particular, we needed to
find a way to illustrate the operations of the inner, outer, and geometric
products. The first two are fairly easy to demonstrate: we have two sub-
windows, in the former we draw the operands and in the latter we draw the
result. The geometric product is more difficult to illustrate. So in addition

1. Making of Gable 23

to providing a routine to show the operands and result of the geometric
product, we presented examples of using the geometric product as an op-
erator to perform rotations and interpolation between orientations, rather
than as a (composite) object by itself.

1.5.8 Dealing with numerical issues

Numerically, some routines (particularly the inverse routine) may create
small error terms. For example, we might get a Geometric Object that
should be a vector, but has a small (on the order of 1071%) bivector term.
Several of our routines (e.g., the drawing routines) check to make sure
that the arguments are blades, and such numerical errors, though small,
will cause these routines to fail. For example, while the numerical error
causes no particular computational problems, some routines will reject such
geometric objects as not being blades. Thus, we wrote gazv, which sets all
small terms of a geometric object to zero.

The routine gazv will set to zero all terms of a GA that are smaller
in absolute value than le-15, giving a warning when it does so. When
developing code, it is a good idea to use gazv to overcome small numerical
problems, and once the code is debugged switch to grade (since presumably
you know the grade you want). Although you could use grade from the
beginning, its use might hide some bugs that the system would otherwise
automatically catch for you. We additionally wrote two similar routines:
GAZ, which is identical to gazv except that it does not produce a warning
message, and blade which converts a geometric object into a blade.

Since this software is meant for a tutorial, our == and ~= operators com-
pare to within a numerical tolerance. Thus, vectors, etc., differing by only
small amounts will be considered equal. If an exact equality is desired, one
may use the eeq function. Any further testing will require extracting the
coordinates using inner.

Other than these small round-off errors (usually introduced by inverse),
we encountered no numerical problems in developing GABLE. However, it
should be noted that we did not perform extremely complex computations,
and further testing of our software is needed to better assess its numerical
stability.

1.6 Example: Pappus’s theorem

As a more complete example of GABLE, we present an illustration of Pap-
pus’s theorem, which says take any two lines and three points on each line
(P1 P2 P3and Q1 Q2 Q3), cross-join the point (i.e., build the line segments
P1Q2, P1Q3, P2Q1, P2Q3, P3Q1, and P3Q2) and compute the intersection of
the three cross-joined pairs of segments (i.e., intersect P1Q2 with P2Q1, P2Q3

24 Stephen Mann, Leo Dorst, and Tim Bouma

FIGURE 1.4. Illustration of Pappus’s theorem created by GABLE.

with P3Q2, and P3Q1 with P1Q3), and then these three points of intersection
will be collinear.

To illustrate this theorem, we first need to construct six points and draw
the relevant line segments. For this example, we have chosen to let e3 be
the homogeneous coordinate:

>> P1 = e3+el; P2 e3+2xel; P3 = e3+4*el;

>> Q1 = e3+e2; Q2 = e3+el+2*e2; (3 = e3+2xel+3*e2;

>> DrawPolyline({P1,P3},’r’); DrawPolyline({Q1,Q3},’r’);
>> DrawPolyline({P1,Q2},’k’); DrawPolyline({P1,Q3},’k’);
>> DrawPolyline({P2,Q1},’k’); DrawPolyline({P2,Q3},’k’);
>> DrawPolyline({P3,Q1},’k’); DrawPolyline({P3,Q2}, ’k’);
>> GAview([0,90]);

The DrawPolyline calls draw the line segments of Pappus’s theorem. Next
we want to compute the intersection of corresponding line segments. As a
first step, we need to compute each line segment (the join of two points
on the segment) and as a second step we need to intersect pairs of line
segment (the meet of the two segments). Note that the meet will give us
a homogeneous point, and we need to normalize its coordinates to put the
point back in the homogeneous plane:

>> h..

>> H3 = meet(join(P1,Q2),join(P2,Q1)); A3 = H3/inner(H3,e3);
>> H2 = meet(join(P1,Q3),join(P3,Q1)); A2 = H2/inner(H2,e3);
>> H1 = meet(join(P2,Q3),join(P3,Q2)); Al = H1/inner(H1,e3);

>> DrawHomogeneous(e3,H1,’n’,’g’);
>> DrawHomogeneous(e3,H2,’n’
>> DrawHomogeneous (e3,H3, 'n’
>> DrawPolyline({A1,A3},°b’)

,’87);
,'87);

The resulting GABLE drawing appears in Figure 1.4. Two other examples
that appear in our tutorial are an illustration of Napoleon’s theorem and
an illustration of Morley’s triangle.

1. Making of Gable 25
1.7 Conclusions

In GABLE, our Matlab package for the geometric algebra tutorial, we have
chosen an 8 x 1 representation of multivectors, to be expanded to an 8 x 8
matrix representation when they are used as operands in the elementary
products (geometric product, inner product, outer product). In our detailed
comparison of the complexity of this representation with representations
based on the isomorphisms of Clifford algebras with matrix algebras, this
choice appeared not always the most efficient for software used in an actual
application (rather than a mere tutorial), especially if the signature of the
space required could be known beforehand, and if one would deal mostly
with pure blades. Further developments in the practical use of geometric
algebra should show whether blades are indeed sufficient for our needs. If
applications would require many inner and outer product of multivectors of
mixed grade, then our explicit representation of these products by matrices
should be considered.

GABLE is an implementation of 3-dimensional Clifford algebras with
arbitrary signature. The generalization to arbitrary dimensions is readily
obtained from Equation 1.1. However, as noted earlier in this paper, high
dimensional Clifford algebras are computationally expensive, and rather
than use our n X 1 representation, a specific complex, etc., representation
may be preferred (although you would then lose the arbitrary signature
property).

For the geometric division, we have extended Lounesto’s method to com-
puter inverses to work in 3-dimensional spaces of arbitrary signatures; but
it should be emphasized that the method does not work in spaces of higher
dimensions since it is based on properties of the Clifford conjugation that do
not generalize to such spaces. In those spaces, an inversion of the geometric
product matrix will be required.

The need to make geometrical macros for intersection and connection
of geometrical objects ‘without case statements’ necessitated a detailed
study of the join and meet operations and their relationship. We have now
embedded them properly into the geometric algebra of blades, even though
each is only determined up to a scalar factor; the key is to realize that both
are based on the same factorization of blades. The tutorial shows that
despite this unknown scalar, geometrically significant quantities based on
them are unambiguously determined. This explicit realization appears to be
new. Further, the GABLE meet and join operators only work for Euclidean
signature; further research is needed to extend these operations to arbitrary
signature. Likewise the GABLE implementation of meet and join exploit
simplifications that occur in three dimensions; the implementation of higher
dimensional meet and join operations will require more complex code.

At the start of this project, we thought it would be straight-forward to
implement this software using results in the literature. However, we found
the literature lacking in several areas, which we have partly addressed in

26 Stephen Mann, Leo Dorst, and Tim Bouma

this paper. As a result of our work, we now have GABLE, a Matlab package
and tutorial that should ease the learning of geometric algebra for people
new to the subject. Moreover, we have found the package useful for testing
out ideas and results in our own research.

1.8 Acknowledgments

We gratefully acknowledge the funding of Stephen Mann’s sabbatical by
the Dutch Organization for Scientific Research (NWO), and the funding of
Tim Bouma’s summer stay by the University of Amsterdam.

A.1 Inner product matrices

Hestenes Inner Product matrix:

[A'] =

0 oA 0242 03As —o12A12 —023A23 —013431 —0123A123]
0 0 02A12 —o03A31 —02A> —o023A123 0343 —023A23
0 —01412 0 03423 o141 —03A3 —o031A123 —013431
0 01431 —02A23 0 —0o12A123 024> —01A1 —012412
0 0 0 o3A123 0 0 0 o3A3
0 0'114123 0 0 0 0 0 0'1141
0 0 0'214123 0 0 0 0 0'2142

L 0 0 0 0 0 0 0 0 i

Modified Hestenes Inner Product matrix:

[A'] =

[Ao o014 0245 03As —012A12 —023A23 —013A431 —0123A123 W
Ao Ao 02A12 —03A31 —02A> —o023A123 0343 —023A23
Ao —o1412 Ao 03As23 o141 —o3A3 —o031A123 —013431
Ao 01431 —02423 Ay —o12A123 0242 —01A1 —012412
Ao 0 0 0’3A123 Ao 0 0 0'3143
Ao o01A123 0 0 0 Ao 0 o1A1
Ao 0 0'214123 0 0 0 Ao 0'2142

L Ao 0 0 0 0 0 0 Ap]

Contraction Inner Product Matrix:

[Ao 0141 0242 03A3 —012A12 —023A23 —031A431 —0123A123
0 Ao 0 0 —02As 0 0343 —023A23 W
0 0 Ao 0 o141 —03As3 0 —o13A31
[AC’] — 0 0 0 Ao 0 0242 —o1A: —012412
— 0 0 0 0 Ao 0 0 O'3A3
0 0 0 0 0 Ao 0 o141
0 0 0 0 0 0 Ao o242
L O 0 0 0 0 0 0 Ao J

[1]

[10]

1. Making of Gable 27

R. Ablamowicz. Clifford algebra computations with Maple. In
W.E. Baylis, editor, Clifford (Geometric) Algebras with Applications
to Physics, Mathematics and Engineering. Birkh&user, 1996.

Leo Dorst. Honing geometric algebra for its use in the computer sci-
ences. In G. Sommer, editor, Geometric Computing with Clifford Al-
gebra. Springer, expected 2000.

Leo Dorst, Stephen Mann, and Tim Bouma. GABLE:
A matlab tutorial for geometric algebra. Available at
http://www.wins.uva.nl/"leo/clifford/gable.html, 1999.

David Hestenes. New Foundations for Classical Mechanics. Reidel,
1986.

David Hestenes and Garrett Sobczyk. Clifford Algebra to Geometric
Calculus. Reidel, 1984.

Anthony Lasenby and M. Ashdown et al. GA package for Maple V.
1999.

Pertti Lounesto. Marcel riesz’s work on clifford algebras. In Clifford
numbers and spinors, pages 119-241. Kluwer Academic, 1993.

Pertti Lounesto. Clifford Algebras and Spinors. London Mathematical
Society Lecture Note Series 239. Cambridge University Press, 1997.

Pertti Lounesto, Risto Mikkola, and Vesa Vierros. Clical user manual:
Complex number, vector space and clifford algebra calculator for ms-
dos personal computers. Technical Report A248, Institute of Mathe-
matics, Helsinki University of Technology, 1987.

Stephen Mann, Leo Dorst, and Tim Bouma. The mak-
ing of a Matlab geometric algebra. Technical Report CS-
99-27, University of Waterloo, December 1999. Available at
ftp://cs-archive.uwaterloo.ca/cs-archive/CS-99-27/.

Ian R Porteous. Topological Geometry. Cambridge university Press,
Cambridge, 1981.

Lars Svenson. Personal communication at ACACSE’99, Ixtapa, Mex-
ico, 1999.

