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Abstract

Surface pasting is a composition method that ap-
plies features to base surfaces to provide details on
the base surfaces. The location and size of a feature
are determined by the transformations of the fea-
ture’s domain. By modifying the domain layout of
pasted surfaces, we can manipulate the appearance
of a feature interactively in a Domain Space User
Interface. However, this domain user interface is in-
convenient because the user cannot interact with the
three-dimensional model directly. In this paper, we
describe a World Space User Interface that maps ac-
tions on the three space surfaces to two-dimensional
domain operations.

Résumé

Le collage de surface est une méthode de composi-
tion qui ajoute des traits & une surface de base pour
augmenter le niveau de détail de cette surface. La
position et la taille d’un trait est déterminer par des
transformations du domaine de ce trait. En mod-
ifiant le positionnement du domaine d’une surface
coller on peut modifier I’apparence d’un trait inter
activement par une Interface Usager de ’Espace Do-
maine. Par contre, cette interface est inconvenante
a utiliser parceque l'usager ne peut pas controler
le modéle tri-dimensionnel directement. Dans cet
article, nous présentons une Interface Usager de
I’Espace Monde qui converti des action sur use sur-
face tri-dimensionnel 4 des actions sur le domaine
bi-dimensionnel.
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1 Introduction

Tensor product B-splines are a polynomial surface
representation commonly used in industry. A surface

in tensor product B-spline form is defined as
B(u,v) = > > PN/ (u)NJ"(v),
g

where the P; ; are a set of control points that define
the surface, and the N*(u) are the B-spline basis
functions [3].

To enhance the detail on a region of a B-spline ten-
sor product surface, we can increase the number of
control vertices by splitting patches (Boehm’s algo-
rithm [5] and the Oslo algorithm [3]). However, only
an entire row or an entire column of patches can be
split, thus adding details (patches) to a particular re-
gion requires the addition of patches across the entire
surface. This results in the addition of unnecessary
control vertices and computation needed to evaluate
the surface. An alternative way to add detail to the
surface, almed at maintaining a low number of con-
trol vertices, was proposed by Forsey and Bartels [8].
In their approach, detail surfaces, called overlays or
features, are applied to a base surface in a hierarchi-
cal fashion to create a composite surface of increased
complexity. Each overlay is a normal displacement
from a conveniently chosen reference point.

Barghiel [1] generalised Forsey’s method, elabo-
rated on a displacement method proposed by Bar-
tels [4], and applied it to interactive, real-time mod-
eling. To avoid computing the displacement of ev-
ery point along the feature surface, he defined an
approximate displacement mechanism that involved
only the control vertices. This approximation tech-
nique is called surface pasting. By using surface past-
ing, detailed features are added to composite spline
surfaces in a multi-layered fashion by means of an ef-
ficient displacement scheme. The feature orientation
is arbitrary, and the underlying domains may be par-
tially overlapping and non-linearly transformed. As



Figure 1: Domain Space User Interface

a result, this technique allows us to model surfaces
by interactively changing displacements, control ver-
tices, or the domain layout.

Moreover, Barghiel implemented a pasting editor
called PasteMaker to paste features on base surfaces
hierarchically. A user of PasteMaker can control the
location as well as the size of a feature by manipu-
lating the domain relationship between the base and
feature surfaces (Domain Space User Interface). Fig-
ure 1 shows a domain space user interface. In the top
window, there is a view of the world space pasted
objects, and in the bottom window is a view of the
domains of these pasted objects. A pasting session
involves making an initial embedding of the feature
domain in the base domain, and then translating,
rotating, and scaling the feature domain (in the bot-
tom window) until the corresponding 3-space feature
is correctly positioned on the 3-space base surface (in
the top window).

This domain space user interface is inconvenient
because the user cannot interact with the three-
dimensional model directly. Positioning of a feature

on the base surface is a trial-and-error process be-
cause we do not know which 3D point on the base
surface corresponds to a 2D point in the base domain
until we have moved a feature domain onto that do-
main point and see the result.

In this paper, we describe Pastelnterface, a World
Space User Interface [6] that maps three-space user
actions to two-space domain operations so that the
user can manipulate the three-dimensional compos-
ite surfaces directly. This software was implemented
on top of the Spline Library of the University of Wa-
terloo [12] and Openlnventor [14]. The goal of this
research was to find operations in the world 3-space
that naturally map to the two-dimensional domain
functions used in surface pasting. Thus, the focus of
this paper is on the mathematics behind these user
interface operations. The mathematical details of
the pasting process itself can be found in Barghiel’s
thesis [1] and a related paper [2].

Other researchers have devised schemes for locally
adding surface detail (see, for example, [8, 9, 10, 11,
13]). However, while these methods allow you to
add local detail, they are not particularly amenable
to editing and repositioning this detail. Coquillart
devised a scheme that allows you to add and edit lo-
cal detail by using free-form deformation to locally
deform space in the area you wish to change [7].
However, this technique requires functionally com-
posing the base surface with the feature deforma-
tion, which creates a surface that is not in standard
B-spline form. The technique described in this paper
can represent the final surface as a standard sequence
of trimmed tensor product patches.

2 World Space User Interface
The goal in surface pasting is to position a feature
on the base surface. In the Domain Space Interface
of Barghiel, this positioning was done by manipulat-
ing the feature domain as a sub-domain of the base
domain. The user of this system would position the
feature domain in the base domain, and then look
at the resulting surfaces in the world space. Unfor-
tunately, depending on the orientation of the view-
point in the three space, a translation of the feature
domain to the right on the screen might result in a
translation of the feature to the left in world space.
The purpose of the world space user interface is
to hide the domains from the user so that he can
directly manipulate the three-dimensional objects.
However, no matter what is displayed to the user
or how the user manipulates the objects, operations
such as feature translation and rotation have to be
performed in the domain space. Therefore, the world
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Figure 2: Transformation Box 3D Manipulator

space user interface maps all user actions into domain
operations.

Surface pasting is well suited to mouse-style in-
teractions, since mathematically, the operations on
the surfaces occur in their two dimensional domains.
The difficulty is in finding natural three space oper-
ations, and in mapping them to appropriate domain
operations.

The following sections discuss the techniques em-
ployed to allow a user to perform operations in world
space, and the conversion of these 3-space operations
into corresponding domain space operations.

3 Pasting

To paste a feature on a base surface, we need to map
the feature domain into the base domain. This trans-
formation determines the location as well as the size
of the pasted feature on the base surface. In Pasteln-
terface, for the user to specify the initial pasting lo-
cation, he must move and scale the feature close to
the target location on the base surface. Once the
user is satisfied with the position, we calculate the
embedding of the feature domain in the base domain,
and the feature is pasted onto the base surface. The
following sections talk about the pasting process in
more detail.

3.1 Moving the Unpasted Feature

The user manipulates the unpasted feature via an
Openlnventor 3D manipulator called a transforma-
tion box [14]. This transformation box consists of
handles, called draggers, as shown in Figure 2. There
are three sets of draggers: one for translation, one
for scaling and the remaining one for rotation. Their

functions are shown in Table 1. Notice that manipu-
lations of the unpasted feature are carried out solely
to find an embedding of the feature domains in the
base domain, as discussed in the next section. Once
this embedding is performed, the three-dimensional
transformation of the feature is discarded.

3.2 Projecting the Feature

After moving the feature, the user may want to pre-
view the pasting location of the feature. This is done
by projecting the four corner points of the feature
onto the base surface. The projection of each corner
is in the direction of the normal to the plane that
best fits the four corner points of the feature. The
intersection points will be the corners of the pasting
position, as illustrated in Figure 3a (Figure 3b shows
the feature after pasting). Note that this projecting
process is similar to a process used by Alias Studio.!
However, Alias Studio projects a dense sampling of
the entire boundary of the feature, and uses root
finding to find the domain pre-image of these pasted
boundaries.

If the user decides to paste the feature to the pre-
view location, we have to transform the feature do-
main so that the feature can paste onto the preview
First, we find the corresponding domain
points of the four preview points on the base sur-
face, as shown in Figure 4. Then we need to trans-
form the original domain polygon D = F1F>F3F,
to the projected polygon D = F; Fy F3 Fy. Since
the target polygon is not necessarily a rectangle, a

location.

linear transformation will not work, but a bi-linear
transformation will be sufficient. Moreover, if both
polygons are convex, the bi-linear transformation has
an unique inverse from D back to D (a requirement
for surface pasting [1]).

By using a bi-linear transformation, all points in-
side F1 F>F3F4 can be represented as:

= h(u)-v+l(u)-(1-v) (1)
Fi-u+Fy-(1—u)

= Frrut+F3-(1—u)
0<v<1

Similarly, all points inside Fy Fy F3 Fy can be repre-
sented as:

plur) = Tifw) o+ T (1-v) (2)
where E(u) = E-u—i—ﬁ-(l—u)
E(u) = F-ut+F-(1—u)
0<u<1, 0<v<1

L Alias Studio is a trademark of Alias|Wavefront



Draggers Functions

6 faces of the box

move the object along the corresponding plane

8 small cubes at corners

scale the object uniformly

12 edges of the box

rotate the object around the axis at the center and parallel
to the corresponding edge

Table 1: Transformation Box 3D Manipulator’s Functions

a)

b)

Figure 3: Projecting Feature on Base Surface and
Pasting
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Figure 4: Pasting - Domain View

To transform any point from one polygon to the
other polygon domain, we only need find the w and v
values of the point inside a polygon and then evalu-
ate the above equations to find the transformed point
inside the other polygon. For example, in Figure 4a,
given a point p(u, v) inside Fy F» F3Fy, and the obser-
vation that p(u,v)li(u) is parallel to lz(w)l1(u), we
have:

(p(u, v) —l1(u)) x (2 (u) = li(w)) =0 (3)

Solving Equation 1 and 3 gives u and v, and hence
we can get p(u,v) from Equation 2.

Finding the inverse point is the same pro-
cess, except that we solve for (u,v) from polygon
F; F, F3 Fy and evaluate p(u,v) from Equation 1.

4 Translating a Pasted Feature
After pasting, the user may want to adjust the posi-
tion of the feature surface on the base surface. One
type of adjustment is provided by translating the fea-
ture across the base surface.

The challenge of providing translation is finding
a way to move the pasted feature surface with the
mouse cursor so that the user has a direct manipula-
tion of the feature. Surprisingly, it is hard to achieve
this. The following is a loose description of what is
wanted: The user should manipulate the feature as if



Figure 5: Moving a Feature with the Mouse

there is a real, three dimensional model of a feature
on a base surface sitting in front of her so that she
can use her hand to slide the feature back and front,
left and right, or set the feature at an arbitrary po-
sition. It would be ideal if the user has that kind of
feeling when she is using the mouse to translate the
feature. Unfortunately, the sliding paradigm is im-
possible to implement with the mouse, since strong
feedback is required to restrict the feature to the base
surface, while the mouse is free to move anywhere on
the screen.

An alternative solution is to have the feature fol-
low the mouse as best it can. While this works well
for setting the feature at an arbitrary position on
the base surface, this cursor tracking does not work
well when sliding the feature across the base sur-
face. Consider the situation illustrated in Figure 5.
In this figure, a user tries to move the shaded fea-
ture (the one closer to us) on the top of the bump
(base surface) with the mouse cursor moving from
right to left as shown. Since the feature stays un-
der the mouse cursor as the user moves the mouse,
the feature moves across the top of the bump and
then suddenly jumps to the edge of the base surface
(the left shaded feature). Although this movement is
desired if the user wants to move the feature to the
edge, 1t does not provide the sliding paradigm where
the user wants to slide the feature to the back of the
bump.

We provided two approaches for simulating the di-

Center of
Proj ection

Mouse
Moverent
Vect or

Tangent Pl ane
at Point P

Vi ew Pl ane

Vp projected
on 0P

Vp projected
on P

ou
v

Figure 6: Projecting Mouse Movement Vector on the
Tangent Plane

rect manipulation: projection and picking. In the
latter method, the feature directly follows the mouse
cursor, while in the former, the feature slides along
the base surface, avoiding the problem discussed in
the previous paragraph.

4.1 Projective-Translation

The main purpose of the projective-translation is to
give the user the feeling of sliding a feature. When
the user moves the mouse, the feature should slide
on the base surface by following the direction of the
mouse movement. Thus, we have to transform the
mouse movement (Az, Ay) on the screen to a trans-
lation (Aw, Av) in the base domain. This (Az, Ay)
translation is then used to translate the feature do-
main within the base domain.

We chose the following approach: given a mouse
movement vector produced over a short time span,
we first find the center point P of the feature to rep-
resent the location of the feature surface. Second, we
find the tangent plane at that point, which is defined
by the two partial derivative vectors % and %, as
in Figure 6. Then by projecting the mouse movement
vector from the view plane to the tangent plane, we
get the vector vp. Finally, we get the domain dis-
placements Au and Aw, which are the magnitudes of
vectors obtained by projecting vp onto % and %
respectively.
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Figure 7: Sliding a Feature with a Mouse

There is a subtlety involved with this process.
Consider Figure 7, which shows the desired move-
ment of the feature resulting from the mouse move-
ment. When the mouse moves upward, we would
like the feature go up at the beginning, and then
pass over the top and continue to go “forward”. Ini-
tially, the feature will move upward because the tan-
gent plane is facing the view plane. Once the feature
moves across the top and to the back of the base
surface, we would like the feature to move down as
we continue our mouse motion. However, note that
now the tangent plane has flipped so that its back
faces the view plane. If the tangent plane is updated
in real time (eg., if at each time interval we pick a
new point P and tangent plane to the surface at P),
the mouse movement vector will project to the back
of the tangent plane, and moving the mouse further
upward will actually move the feature backward.

To avoid this problem, we select the point P when
the mouse button is pressed, and use the tangent
plane at this point for all translation movement un-
t1l the mouse button is released. Thus, we do not
update the tangent plane in real time with the move-
ment of feature and avoid the problem of having the
feature go backward while the mouse is moved along
one direction within a click-drag-release cycle.

4.2 Picking-Translation

An alternative translation method is picking. Pick-
ing lets the user pick and drop a feature to anywhere
the user can see on the screen. By attaching a 3D
manipulator to the feature surface, a user can drag
the manipulator to pick a point on the base surface,
as shown in Figure 8. Then we can find the coordi-

nates of the point in the base domain, and translate
the feature so that a designated point in the feature’s
domain lies on that base domain point. Currently,
we allow the user to translate the domain based on
either the feature’s center or any of its four corners.
A picking dragger for translation, which is a part of
the manipulator, is shown in Figure 9.

5 Rotation and Scaling

Rotation and scaling of a pasted surface is done with
a 3D manipulator. Figure 9 shows two draggers for
scaling and one for rotation. The rotation dragger
has one degree of freedom (the angle of rotation)
and the horizontal scaling dragger has two degrees
of freedom (the scaling ratios of two perpendicular
directions). The values of these draggers are directly
mapped to the underlying domain polygon. For ex-
ample, if the rotation manipulator rotates 90 degrees,
the feature domain will also make a right angle rota-
tion. The remaining height dragger has one degree
of freedom; however, unlike the above two manipu-
lators, its scaling ratio maps to the z-component of
all the feature’s control vertices in the feature’s local
coordinate frame.

6 Fine Tuning

In order to fine tune the feature’s location and ap-
pearance, an additional function is loaded into the
four corner draggers (Figure 9). A user can translate
a individual single corner without moving the whole
feature by shift-clicking® a corner dragger. However,
the corner is not allowed to move out of the valid
region as shown in the domain view of Figure 10, be-
cause the convexity of the feature domain has to be
maintained. To help the user identifying the valid re-
gion, the region’s boundary is drawn on the surfaces
whenever the corner dragger is activated, as shown
in the model view of the same figure.

The mechanism of these draggers is the same as
the picking manipulator shown in Figure 8, except
they move individual corners instead of the whole
feature.

7 Outline Mode

Performance issues arise when updating a grouped
feature or a feature that has many dependent sur-
faces. For example, if a user picks a feature that has
a number of dependent surfaces, the system has to
update all of these surfaces while the user is translat-
ing /rotating/scaling the feature. This updating can
be very slow. In order to get interactive speeds, an

2Clicking the dragger while pressing the shift key
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outline mode is provided. Under this mode, only the
outline (four corners) of the selected feature is up-
dated within a click-drag-release-cycle of projective-
translation, rotation and scaling. The feature and
related surfaces are updated only at the end after
the user releases the button.

The performance problem 1is even worst for
picking-translation (Section 4.2). In Openlnventor,
ray-picking is a slow process. Translation would be
too slow if we ray-pick during a drag-release-cycle to
update the new position of the feature and show the
outline to the user, and even slower if we update the
feature and its dependent surfaces. Therefore, ray-
picking and surface updating has to be performed at
the end of the drag-release-cycle. Fortunately, the
visual feedback in picking-translation is not impor-
tant for this method of translation, as the paradigm
is that of selecting a new location for the feature
rather than dragging the feature across the base sur-
face. Indeed, were the feature’s position updated in
real-time, the feature would potentially jump back
and forth across the base surface, as discussed ear-
lier.

8 Discussion and Conclusion

In general, the three space surface operations worked
well for surface pasting. Translation proved the most
problematic, primarily because there was no natural
way to specify a translation of the pasted surface

in three space. While neither of the two methods of
translation we provided are ideal, together they seem
to perform adequately. The picking-translation tech-
nique allows the user to coarsely specify the feature
position, while the projective-translation method al-
lows for more fine grain control.

The primary new functionality provided by the
World Space User Interface is corner dragging, which
enables the user to place individual corners at pre-
cise locations on the base surface, allowing the user
to make changes to the feature that cannot be accom-
plished with only translation, rotation, and scaling.
Corner dragging appears to give the user significantly
more control over the shape and location of the fea-
tures.

Both the World Space User Interface and the Do-
main Space User Interface suffer some performance
problems. In particular, when multiple surfaces are
pasted together, the time required to compute a new
surface after translating, scaling, or rotating a pasted
feature becomes too large for real-time interaction.
As a compromise between speed and feedback, we
chose to only display the corner points of the pasted
feature when transforming it.

The performance of the World Space User Inter-
face 1s superior to the Domain Space User Interface
in the selecting the initial embedding of the feature
domain in the base domain. In the Domain Space
User Interface, the initial embedding was selecting
by placing the feature domain in the base domain
and seeing where the feature appeared on the base
in the world space. Since this initial placement is
just a guess, the user will usually have to transform
the pasted feature to get it to the correct position
and orientation. These adjustment transformations
suffer from the performance problems discussed in
the previous paragraph.

With the world space interface, the user can po-
sition the feature to roughly the correct position on
the base surface in the world space. This positioning
does not suffer from the performance problems faced
by adjusting a pasted feature, as we do not need to
compute a new composite surface at each time step.
Once the user is satisfied with the approximate lo-
cation of the feature, the software then determines
the embedding of the domain. Thus, with the World
Space User Interface, the user is able to quickly de-
termine the initial embedding, requiring fewer trans-
formations of the pasted feature. This is a big ad-
vantage of the World Space User Interface, given the
high cost of transforming the pasted feature in both
user interfaces.



As examples of more complex surfaces created us-
ing pasting, see Figures 11 and 12. Figure 11 shows a
dog’s face composed of 7 surfaces in a 2 level pasting
hierarchy created with a domain space user interface.
Figure 12 shows a dog that is composed of 10 sur-
faces in a pasting hierarchy that is 5 levels deep that
was created with a world space user interface. While
complex surfaces can be created with either inter-
face, the world space interface is more natural to use
and has better performance when creating deeper hi-
erarchies as seen in this latter figure.

9 Future Work

Our research focused on the mathematical aspect
of mapping three-dimensional operations into two-
dimensional domain functions. No user interface ex-
periments have been conducted; the look and feel of
current user interface is only based on the advise of
a few users. Further research should focus on human
computer interactions.

Another direction of future work is in improving
the surface quality. Surface pasting is only an ap-
proximation technique. It optimizes performance by
trading off surface quality. Irregularities in the ap-
proximation may arise from the different tensor prod-
uct alignment of the overlapping surfaces. A post-
processor could take the information of pasted sur-
faces created from an efficient approximated modeler
like Pastelnterface and create high quality composite
surfaces. This post-processor can optimize the sur-
face quality rather than the performance because it
does not need to be interactive.
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Figure 11: A pasted dog. By Clara Tsang.

Figure 12: A pasted dog. By Leith Chan.



