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Abstract

In this paper, I discuss a method for increasing the continuity between two func-
tional triangular polynomial patches by adjusting their control points. The method
described in this paper leaves the control points unchanged if the patches already
meet with the desired level of continuity. As an example of using this construction,
I give a simple method to construct a C0 patch network with high order polyno-
mial precision, and then adjust its control points to increase continuity without
decreasing the order of polynomial precision.
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1 Introduction and Background

Surface modeling commonly uses piecewise polynomial surfaces. Adjacent patches
are constructed to join with some order of continuity, with the intent of hid-
ing the seams between patches. For surfaces having a rectangular topology,
we can use tensor product B-splines, giving us a patch network with patches
that automatically meet with maximal continuity. However, tensor product
surfaces are not well suited to some data sets, and often triangular schemes
are preferable.

While there is a triangular form of B-splines [1] for functional data, the eval-
uation algorithm is complex and computationally expensive. So for triangular
data, a patch network is commonly constructed by explicitly setting control
points to achieve continuity. The continuity problem along with the vertex
consistency problem are the driving forces in these constructions. The nature

1 Email: smann@cgl.uwaterloo.ca

Preprint submitted to Elsevier Preprint 1 June 2001



of the problem results in a fairly high degree patch being required to solve
the continuity/vertex consistency problem, and results in a large number of
degrees of freedom left unspecified in the patch once these twin problems are
solved. These degrees of freedom are usually set ad hoc or left as shape param-
eters without any suggestions for default settings. Unfortunately, these shape
parameters are critical to surface quality, and poor settings of them result in
surfaces with poor shape.

A few researchers have taken a different approach. In particular, Foley and
Optiz [4] construct a C1 rational patch network that interpolates triangulated
data having position and first derivatives at the data points. One of the key
ideas of their construction is to first construct a patch network that has cubic
precision and then adjust the patches control points to obtain C1 continuity
while maintaining cubic precision. Their idea of first constructing patches that
have cubic precision and then adjust the control points to obtain C1 continuity
was later used to derive a cubic precision Clough-Tocher scheme [6].

In this paper, I will review the Foley-Opitz C1 adjustment, and then show
how it can be generalized to adjust the control points of triangular patches
to achieve any level of continuity. These adjustments leave the control points
unchanged if the patches already meet with the desired level of continuity,
with the result that if the patches have a particular polynomial precision
before the adjustment, then they retain that level of polynomial precision
after the adjustment. I will then give a simple example to illustrate how to
use the continuity adjustment scheme.

1.1 Background

I will use the multi-variate Bernstein-Bézier representation for scalar valued
polynomials. The description of the Bernstein-Bézier representation that I give
here just touches on the topics that I need for this paper. For a more complete
discussion on triangular Bézier patches, see [2] or any introductory text on
CAGD.

I will index the control points using standard multiindex notation. Figure 1 is
a schematic illustrating this labeling for quintic patches. Many of the figures
in this paper will be of this schematic form; although the control points in the
diagram are in a plane, they represent points in three-space. However, labels
V0, V1, V2, and D0 will always refer to corner points of the domain triangles in
these figures. And while this paper considers functional Bézier patches, I will
use the barycentric form of the polynomials, where every point in a domain
triangle is expressed as an affine combination of the triangle corners,4V0V1V2:

t = t0V0 + t1V1 + t2V2,
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Fig. 1. Quintic Bézier polynomial with vertices labeled.

with t0 + t1 + t2 = 1. In this formulation, triangular Bézier patches have the
following form:

B(t) =
∑

~i,|~i|=n

P~iB
n
~i

(t),

where~i = (i0, i1, i2) is a multiindex, the P~i are the coefficients (control points)
for the patch, and the Bn

~i
are the degree n Bernstein polynomials:

Bn
~i

(t) =
n!

i0!i1!i2!
ti00 t

i1
1 t

i2
2 .

The derivative and continuity analysis used in this paper is simplified by using
the polar form or blossom of the polynomial [9]. For a degree n polynomial
B, the polar form of B (denoted $B) is an n-variate function satisfying the
following:

• $B is symmetric;
• $B is multi-affine in each argument;
• $B(u<n>) = B(u),

where $B(u<n>) is $B evaluated with all n of its arguments equal to u. The
polar form has a nice relation to the Bézier control points of a triangular patch.
In particular, over a domain triangle4V0V1V2, Pi,j,k = $B(V <i>

0 , V <j>
1 , V <k>

2 ).

The coefficients of a Bézier patch give us information about the derivatives of
the patch. In particular, the derivatives in the direction of the triangle edges
are proportional to simple differences of the control points:

B(V0) =Pn00,

de01B(V0) =n(Pn−1,1,0 − Pn,0,0)/|V1 − V0|,
de02B(V0) =n(Pn−1,0,1 − Pn,0,0)/|V2 − V0|.
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Here, e01 is the unit directional derivative from V0 to V1; e02 is similar. Deriva-
tives at the other corners and higher order derivatives are computed in a
similar fashion. Thus, if we are given position and derivative information at
the corners of the patch, it is easy to find settings of the control points to
interpolate this information. In the following discussion, I will merely state
that we set control points to match the derivatives and not give the formulas.

In my diagrams, when a group of control points are set using the derivative
information at one of the Vi, I will circle those points with a dashed circle, as
in Figures 4 and 13. Conversely, these dashed regions also indicate the number
of derivatives needed at the corresponding Vi (i.e., at each data point, we need
to have the position and the appropriate derivatives for setting the circled
control points). Control points covered by more than one dashed circle will be
set by averaging the values computed for each set of derivatives.

1.2 Continuity

If we want two neighboring patches to meet with Ck continuity, then there are
simple settings of the control points to achieve this. To achieve a C0 join, the
boundary control points of two patches have to be identical. To achieve C1

continuity between patches F and G over4V0V1V2 and4V2V1D0 respectively,
blossoming tells us that

$G(D0, V
<i>

1 , V <j>
2 ) =$F (D0, V

<i>
1 , V <j>

2 )

= d0$F (V0, V
<i>

1 , V <j>
2 ) + d1$F (V1, V

<i>
1 , V <j>

2 ) +

d2$F (V2, V
<i>

1 , V <j>
2 ),

where (d0, d1, d2) are the barycentric coordinates of D0 relative to 4V0V1V2

and i+j = n−1, i, j ≥ 0. Geometrically, the condition is that the four control
points in each of the the neighboring triangular panels of the two patches must
be coplanar (for example, in Figure 5 each shaded and hashed group of four
points must be coplanar).

Lai [5] gave a general geometric construction for Ck continuity to determine
if two patches that meet with Ck−1 continuity also meet with Ck continuity.
Rephrased as a blossoming condition, we have the following. For even k, the
two patches meet with Ck continuity if and only if for all i, 0 ≤ i ≤ n − k,
j = n− k − i

$G(V <i>
1 , V <j>

2 , D<k>
0 , V <k>

0 ) = $F (V <i>
1 , V <j>

2 , D<k>
0 , V <k>

0 ), (1)

and for odd k, the two patches meet with Ck continuity if and only if for all
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For m = 1 to bk/2c

For i = 0 to n− k with j = n− k − i

$G(V <i>
1 , V <j>

2 , D<k−m>
0 , V <m−1>

0 , V0) =

v0$G(V <i>
1 , V <j>

2 , D<k−m>
0 , V <m−1>

0 , D0)+

v1$G(V <i>
1 , V <j>

2 , D<k−m>
0 , V <m−1>

0 , V1)+

v2$G(V <i>
1 , V <j>

2 D<k−m>
0 , V <m−1>

0 , V2),

$F (V <i>
1 , V <j>

2 , V <k−m>
0 , D<m−1>

0 , D0) =

d0$F (V <i>
1 , V <j>

2 , V <k−m>
0 , D<m−1>

0 , V0)+

d1$F (V <i>
1 , V <j>

2 , V <k−m>
0 , D<m−1>

0 , V1)+

d2$F (V <i>
1 , V <j>

2 V <k−m>
0 , D<m−1>

0 , V2),

Fig. 2. Computation required by Lai’s Ck continuity test.

i, 0 ≤ i ≤ n− k, j = n− k − i

$G(V <i>
1 , V <j>

2 , D<k>
0 , V <k−1>

0 ) = $F (V <i>
1 , V <j>

2 , D<k>
0 , V <k−1>

0 )

= d0$F (V <i>
1 , V <j>

2 , D<k−1>
0 , V <k>

0 )+

d1$F (V <i+1>
1 , V <j>

2 , D<k−1>
0 , V <k−1>

0 )+

d2$F (V <i>
1 , V <j+1>

2 , D<k−1>
0 , V <k−1>

0 ),

(2)

Figure 2 shows how to compute these blossom values, assuming the patches
are known to meet with Ck−1 continuity, and the blossoms values on the right
hand side of the equations were computed in testing for Ck−1 continuity, where
(v0, v1, v2) are the barycentric coordinates of V0 relative to domain triangle
4D0V1V2 (note that v0 = 1/d0, v1 = −d1/d0, v2 = −d2/d0).

Lai gives the geometric interpretation for these conditions; Figures 8 (left)
and 10 show the C2 and C3 conditions respectively for triangles.

A similar construction is valid for curves, which I will look at briefly as a
means of illustrating the outer loop in the above computation. For curves,
you have the same computations as above, but without the inner loop, and
only one of V1 and V2 appears as a parameter to the blossom. Figure 3
shows the construction of the blossom values of F required by Lai’s con-
struction for a quintic curve parameterized over [0, 1]. Part (a) shows the
control points and their blossom values. Here we also see the C0 and C1

conditions: g(1<5>) = f(1<5>) for C0 continuity, and the condition that
$G(1<4>, 2<1>) lies at X to have C1 continuity. Part (b) shows the C2 and C3
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Fig. 3. Lai’s continuity conditions for curves for F parameterized over [0, 1] and G
parameterized over [1, 2].

conditions: First we construct $F (0<1>, 1<3>, 2<1>) (the gray point) which
must be equal to $G(0<1>, 1<3>, 2<1>) for C2 continuity. Then we construct
$F (0<2>, 1<2>, 2<1>) (the black point), and require that$G(0<1>, 1<2>, 2<2>)
lie at X for C3 continuity. In part (c), we see the construction for C4 continuity
(the gray points) and C5 continuity (the black points).

The construction for triangles is similar, except that there are multiple condi-
tions for each order of continuity (as in Figures 5 and 7), and thus the inner
loop in Figure 2.

The rest of this paper will proceed as follows: In the next section, I will de-
scribe an averaging technique for adjusting the control points of two neigh-
boring patches to obtain Ck continuity between these two adjacent patches.
The important feature of the averaging scheme is that if the patches already
meet with Ck continuity, then the control points remain unchanged. Then
in Section 3, as an example of how this continuity scheme is useful, I will
present a simple method for constructing a C0 interpolant that reproduces
maximal degree polynomials. By using the averaging scheme described in this
paper to increase the continuity between these patches we obtain higher order
continuity without decreasing the order of polynomial precision.
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Fig. 4. Foley-Opitz cross-boundary scheme over domains 4V0V1V2 and 4V2V1D0.

2 Increasing Continuity Between Two Patches

Given two polynomial patches over adjacent triangles of our domain (i.e.,
where the two domain triangles share exactly one edge) that meet with some
level of continuity, we would like to increase the continuity with which our
patches meet. This increased continuity will require adjusting the control
points of one or both patches. However, I will further require my adjust-
ment scheme to leave unchanged any control points that already meet the
continuity conditions. As a starting point, I use a variation of the method of
Foley-Opitz [4], who devised such a construction for cubics.

Foley and Opitz were working with triangulated data having first derivatives at
the data points. They were fitting hybrid-cubics to the data (see their paper for
details on hybrid-patches), and as part of their construction they found a cubic
precision construction for two adjacent triangles. This part of their method
(illustrated in Figure 4) constructs a cubic patch for each data triangle. The
patch for 4V0V1V2 is constructed by using the data at the Vi to set the white
control points, and the positional data at D0 is used to set the shaded control
point (i.e., the center point of the patch is set so that the patch interpolates
the z-value at D0 when evaluated at D0). The patch for 4V2V1D0 is built in
a symmetric fashion.

As illustrated schematically in Figure 5, these two patches will share boundary
control points (since both patches compute the boundary points from the data
at V1 and V2). To meet with C1 continuity, each of the three panels of four
control points must be coplanar. The gray panels will be coplanar because
both patches compute these control points consistent with the derivative in-
formation at V1 and V2. However, the four points on the hashed panel will not,
in general, be coplanar; these four points will be coplanar if and only if the
data at the Vi and at D0 come from a common cubic.

To achieve C1 continuity in the general case (i.e., non-coplanar hashed panels
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Fig. 5. Two cubics meeting along a common boundary over domains 4V0V1V2 and
4V2V1D0.

Fig. 6. Adjusting the panels to meet C1.

panels, as illustrated on the left in Figure 6), Foley and Opitz extend both
panels to the neighboring triangle as shown in the middle of Figure 6. They
then average the two points on either side, which results in coplanar panels
(the right in Figure 6). Note that if the data at V1 and V2 of Figure 4 come
from a common cubic, then panels on the left of Figure 6 will be coplanar,
and the averaging will have no effect. The result is that their construction
builds two cubic patches that meet with C1 continuity and reproduce cubic
polynomials if the data at all four vertices comes from a common cubic.

2.1 C0 Continuity

Most constructions build common boundary curves before setting the interior
control points, so the patches meet with C0 continuity as a first step. However,
if we knew our construction might build patches that did not meet with C0

continuity, we could use the average of each pair of control points along the
boundary (one from each patch) as the boundary points. The patches would
then have a common boundary, and if the initial boundary points were already
identical, this averaging would not change them.
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2.2 C2 Continuity

We can extend the Foley-Opitz averaging scheme to more interior vertices to
achieve higher order continuity. For example, if we apply it to the next layer
of control points, we can achieve C2 continuity.

To have C2 continuity, we first must have C1 continuity, which we can get
using the C1 adjustment scheme. Now, given that we have C1 continuity be-
tween patches F and G defined over 4V0V1V2 and 4V2V1D0 respectively, the
following additional condition must hold for C2 continuity:

$G(V <i>
1 , V <j>

2 , D0, V0) =$F (V <i>
1 , V <j>

2 , D0, V0),

for i + j = n − 2, i, j ≥ 0. We can construct these points from the control
points of the polynomials as

$F (V <i>
1 , V <j>

2 , D0, V0) = d0$F (V <i>
1 , V <j>

2 , V0, V0) +

d1$F (V <i>
1 , V <j>

2 , V1, V0) +

d2$F (V <i>
1 , V <j>

2 , V2, V0),

$G(V <i>
1 , V <j>

2 , V0, D0) = v0$F (V <i>
1 , V <j>

2 , D0, D0) +

v1$F (V <i>
1 , V <j>

2 , V1, D0) +

v2$F (V <i>
1 , V <j>

2 , V2, D0),

where (d0, d1, d2) are the barycentric coordinates of D0 relative to 4V0V1V2

and (v2, v1, v0) are the barycentric coordinates of V0 relative to the triangle
4D0V2V1.

Geometrically, these conditions require certain groups of nine control points
(three on the common boundary, and three on each of the two patches) to be in
a special relationship as described by Farin [2] and later by Lai [5]. The vertices
adjacent to the shaded triangles in each of the three diagrams in Figure 7
show the groups of vertices affecting C2 continuity in the quartic case. The left
diagram in Figure 8 illustrates these constraints. First, the dark shaded panels
must be coplanar (this is the C1 condition). Next, if we take the three vertices
of F connected by the light shaded panel, and extend them in the ratio given
by the two domain triangles, we get the point $F (D0, V0, V

<i>
1 , V <j>

2 ). If we
do the same extension using the six corresponding points of the neighboring
patch G, we get the point G(D0, V0, V

<i>
1 , V <j>

2 ). For the patches to meet with
C2 continuity, these two points must be the same (the black square in the left
diagram of Figure 8). Such a condition must hold at all three groups of points
illustrated in Figure 7.
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Fig. 7. Quartic control points affecting C2 continuity.

Fig. 8. The C2 constraints (left) and construction (middle and right).

In general the groups of nine control points will not have this property, and
if F and G meet with C1 continuity along their common boundary then we
have a situation more like the middle diagram of Figure 8. In this case, my
scheme is to average the two extrapolated points

$F̄ (D0, V0, V
<i>

1 , V <j>
2 ) =$Ḡ(D0, V0, V

<i>
1 , V <j>

2 ) =

=
(
F (D0, V0, V

<i>
1 , V <j>

2 ) +G(D0, V0, V
<i>

1 , V <j>
2 )

)
/2,

giving the black square in the middle figure, and then extrapolate in the other
direction to get the black points of the right diagram:

$F̄ (V0, V0, V
<i>

1 , V <j>
2 ) = v0$F̄ (D0, V0, V

<i>
1 , V <j>

2 )

v1$F (V1, V0, V
<i>

1 , V <j>
2 )

v2$F (V2, V0, V
<i>

1 , V <j>
2 )

$Ḡ(D0, D0, V
<i>

1 , V <j>
2 ) = d0$Ḡ(D0, V0, V

<i>
1 , V <j>

2 )

d1$F (V1, D0, V
<i>

1 , V <j>
2 )

d2$F (V2, D0, V
<i>

1 , V <j>
2 ).

The white points in the right diagram indicate the initial positions of the
control points.

Note that if a set of nine control points is already in an acceptable C2 config-
uration, then this averaging will leave the control points unchanged.
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2.3 Higher order continuity

The C1 and C2 conditions illustrate the two types of conditions that will occur:
one is a coplanarity requirement and the other a constructed point that must
be common to both patches. For higher order continuity, Equations 1 and 2
give the Ck condition, assuming we already have Ck−1 continuity. To get the
relevant blossom values to test for continuity, we use Lai’s construction. If
Lai’s continuity condition is not met, we can use the appropriate averaging
scheme:

• For odd k,

$Ḡ(V <i>
1 , V <j>

2 , D<k>
0 , V <k−1>

0 ) =(
$G(V <i>

1 , V <j>
2 , D<k>

0 , V <k−1>
0 )+

$F (V <i>
1 , V <j>

2 , D<k>
0 , V <k−1>

0 )
)
/2

$F̄ (V <i>
1 , V <j>

2 , D<k−1>
0 , V <k>

0 ) =(
$G(V <i>

1 , V <j>
2 , D<k−1>

0 , V <k>
0 )+

$F (V <i>
1 , V <j>

2 , D<k−1>
0 , V <k>

0 )
)
/2

(3)

• For even k,

$Ḡ( V <i>
1 , V <j>

2 , D<k>
0 , V <k>

0 ) = $F̄ (V <i>
1 , V <j>

2 , D<k>
0 , V <k>

0 )

=
(
$G(V <i>

1 , V <j>
2 , D<k>

0 , V <k>
0 ) +$F (V <i>

1 , V <j>
2 , D<k>

0 , V <k>
0 )

)
/2.

(4)

After averaging, we need to adjust the actual control points of the patches,
which for the Ck adjustment can be done by the computation given in Figure 9
(which is essentially the reverse of the computation given in Figure 2):

This leads to the following theorem:

Theorem: Given two degree n bivariate polynomials F and G in Bézier
form over domains 4V0V1V2 and 4V2V1D0 respectively, where F and G
meet with Ck−1 continuity (k < n) along V1V2. Construct F̄ and Ḡ to have
the same Bézier control points as F and G respectively, except (for i+ j =
n− k, i ≥ 0, j ≥ 0) set $F̄ (V <k>

0 , V <i>
1 , V <j>

2 ) and $Ḡ(D<k>
0 , V <i>

1 , V <j>
2 )

by computing $F̄ (V
<b(k+1)/2c>

0 , D
<bk/2c>
0 , V <i>

1 , V <j>
2 ) and

$Ḡ(V
<bk/2c>

0 , D
<b(k+1)/2c>
0 , V <i>

1 , V <j>
2 ) with Equation 3 or 4 (depending

on whether k is odd or even) followed by the computation of Figure 9.
Then F̄ and Ḡ meet with Ck continuity. Further, if F and G meet with

Ck continuity, then F̄ is identical to F and Ḡ is identical to G.
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For m = bk/2c downto 1

For i = 0 to n− k with j = n− k − i

$Ḡ(V <i>
1 , V <j>

2 , D<k−m>
0 , V <m−1>

0 , D0) =

d0$Ḡ(V <i>
1 , V <j>

2 , D<k−m>
0 , V <m−1>

0 , V0)+

d1$G(V <i>
1 , V <j>

2 , D<k−m>
0 , V <m−1>

0 , V1)+

d2$G(V <i>
1 , V <j>

2 D<k−m>
0 , V <m−1>

0 , V2),

$F̄ (V <i>
1 , V <j>

2 , V <k−m>
0 , D<m−1>

0 , V0) =

v0$F̄ (V <i>
1 , V <j>

2 , V <k−m>
0 , D<m−1>

0 , D0)+

v1$F (V <i>
1 , V <j>

2 , V <k−m>
0 , D<m−1>

0 , V1)+

v2$F (V <i>
1 , V <j>

2 V <k−m>
0 , D<m−1>

0 , V2).

Fig. 9. Computation to compute $F̄ (V <k>
0 , V <i>

1 , V <j>
2 ) and

$Ḡ(D<k>
0 , V <i>

1 , V <j>
2 ).

Proof: The averaging step (Equations 3 and 4) sets the points or panels
into alignment to satisfy Lai’s continuity condition (Equations 1 and 2). The
backward adjustments step above sets$F̄ (V <k>

0 , V <i>
1 , V <j>

2 ) and$Ḡ(D<k>
0 , V <i>

1 , V <j>
2 )

such that running the forward computation (Figure 2) for F̄ and Ḡ results
in the points we computed with Equations 3 and 4, and thus the modified
patches will meet with the desired continuity.

If F and G meet with Ck continuity, then the averaging step leaves
$F̄ (V

<b(k+1)/2c>
0 , D

<bk/2c>
0 , V <i>

1 , V <j>
2 ) and$Ḡ(V

<bk/2c>
0 , D

<b(k+1)/2c>
0 , V <i>

1 , V <j>
2 )

unchanged, and thus computation of Figure 9 sets

$F̄ (V
<b(k+1)/2c>

0 , D
<bk/2c>
0 , V <i>

1 , V <j>
2 ) = $F (V

<b(k+1)/2c>
0 , D

<bk/2c>
0 , V <i>

1 , V <j>
2 )

and

$Ḡ(V
<bk/2c>

0 , D
<b(k+1)/2c>
0 , V <i>

1 , V <j>
2 ) = $G(V

<bk/2c>
0 , D

<b(k+1)/2c>
0 , V <i>

1 , V <j>
2 )

making F and F̄ identical, and G and Ḡ identical.

Note that the Ck adjustment does not affect the control points that influence
lower order derivatives along the common boundary of F and G.

2.4 C3 example

As an example of the averaging and adjustment process, consider the C3 con-
dition, which after construction of the blossom values is
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$G(V <i>
1 , V <j>

2 , D0, D0, V0) =$F (V <i>
1 , V <j>

2 , D0, D0, V0)

= d0$F (V <i>
1 , V <j>

2 , D0, V0, V0) +

d1$F (V <i>
1 , V <j>

2 , D0, V0, V1) +

d2$F (V <i>
1 , V <j>

2 , D0, V0, V2), (5)

where i+ j = n− 3, i, j ≥ 0.

Figure 10 illustrates C3 condition. In this figure, the white points (connected
with the light gray panels) are the control points of our two patches. The
medium gray panels extend from the control points to give the gray points
(some of which were constructed as part of the C2 conditions), and the dark
gray panel illustrates the coplanarity constraint given in Equation 5.

To test if two patches meet with C3 continuity, consider each group of 16
control points along the boundary in the patch pair and first test the C3

conditions as follows: extend panel A of Figure 10 to get the third point of
panel B, and extend panel D to get the third point of panel C. For the patches
to meet with C3 continuity, the dark gray panels must be coplanar.

If the patches meet with C2 continuity but not C3 continuity, then we can
adjust to achieve C3 continuity in the following manner: Extend panels A and
D to build the third points of panels B and C. We can now use the adjustment
schemed used for C1 continuity (Figure 6, Equation 2) to make the dark gray
panels coplanar. This may cause panels A and B to no longer be coplanar;
in this case, extend the modified panel B to get a new position for the third
point of panel A. A similar adjustment is made for panels C and D.

Again we see that if the two patches originally meet with C3 continuity, then
none of the control points of the two patches will be changed by this construc-
tion.

2.5 Continuity Conditions as an Averaging of Polynomials

Mike Floater [3] has pointed out that this averaging of control points con-
struction can be viewed as averaging the two polynomials. If p1 is the initial
polynomial patch constructed for one triangle, and p2 is the initial polynomial
patch constructed for the adjacent triangle, then P = (p1 + p2)/2 is the aver-
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Fig. 11. Control points in each region are set by data at the closest Vi. Control
points between regions have averaged values.

age of these two polynomials. What the above averaging schemes do is select
layers of control points from P until the desired continuity is met. Since both
sides are selecting their control points from the same P , the two patches meet
with the desired continuity.

Note that with Floater’s view of the continuity control point adjustments, we
still need a process similar to the ones described above to construct the control
points of P , since at least one of p1 or p2 will need to be reparameterized over
the other’s domain.

3 A Simple Example

As an example of using my continuity adjustment scheme, I present a sim-
ple interpolant that first constructs a C0, degree n patch network that sets
all the control points by interpolating derivatives at the data points. This
patch network will reproduce degree n polynomials. Next, I use the continu-
ity adjustment scheme to increase the continuity without losing polynomial
precision. This interpolant requires b2n/3c complete derivatives at each data
points, although I will not use all of the higher order derivatives. The result
will be a Cb(n−1)/4c interpolant that reproduces degree n polynomials.

More precisely, for Pijk, with i > j, i > k, I use the data at V0 to set the value
of Pijk. If i < j = k, then I compute two values using the data at V1 and V2

and average them. If i = j = k, then I compute three values, using the data
at V0, V1, and V2 and average the result. The remaining cases are handled in a
similar fashion. This divides the data triangle into three regions as illustrated
in Figure 11.

With this scheme, when constructing a degree n patch, if the data at all three
corners comes from a single degree n polynomial, then this scheme reproduces
that polynomial. In cases where a control vertex is the average of two or three
values computed from the corner data, these values will be identical, since the
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corner data come from a single polynomial.

The piecewise interpolant filling a triangular network will create a C0 piece-
wise polynomial surface. The C0 continuity conditions are met because the
boundary control points between two adjacent patches are computed using
the same data. However, in general the patches will not meet with C1 con-
tinuity, since in the case when n is even, the middle boundary point is an
average of two values (Figure 12), and the panels adjoining this boundary
point will not be coplanar; when n is odd, a similar problem occurs for the
cross-boundary points.

3.1 Increasing Continuity

Two neighboring patches built with this construction will only meet with C0

continuity. However, only one or two panels along the boundary are out of C1

alignment, as illustrated in Figure 12. Thus, if we apply the C1 adjustment
to these panels (a single panel when the degree is odd, two panels when the
degree is even), then the two patches will meet with C1 continuity.

We must be careful, however, that the vertices adjusted for one boundary do
not affect the C1 connection along another boundary. In particular, degree 5
is the lowest degree for which we can use this C1 adjustment on a patch
network [10]. That we can use degree 5 patches is illustrated in Figure 13;
here, the shaded vertices are the ones we need to adjust get C1 continuity, and
each shaded vertex only affects the C1 continuity across a single boundary.

In general, while we can apply the averaging construction given in this paper
to pairs of patches, to apply it to a network of patches the degree of patch
required by my constructions is 4k + 1, where k is the level of continuity
desired. This requirement is needed so that the vertices adjusted to achieve
Ck continuity along one boundary are not involved in the Ck conditions along
another boundary. This 4k+1 condition agrees with the result of Žeńı̌sek [10].

This interpolant requires a large number of derivatives at the data points. I
have also looked at two variations on this scheme that require fewer derivatives,
and at Clough-Tocher schemes that can obtain higher continuity with lower
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Fig. 13. Derivatives needed for the quintic version of simple data fitting scheme.

degree, as described in two technical reports [7,8]. The second of these reports
also discusses testing of convergence properties and looks at the shape of the
constructed surfaces.

4 Summary

This paper has presented a method for increasing the continuity of triangular
Bézier patches. The adjustment scheme has the property that if two patches
already meet with the desired continuity, then relevant control points remain
unchanged. I then gave an example showing how to use this adjustment scheme
to build a degree n interpolant that reproduces degree n polynomials, with
the patches meeting with the highest possible continuity.

As a final note, while the averaging construction for obtaining continuity has
only been applied here for triangular Bézier patches, the idea is easily ex-
tended to curves, and in turn, to tensor product Bézier surfaces. In the latter
case, we would want (as we did for triangles) enough derivatives at the data
points to consistently set enough mixed partial derivatives for the continuity
adjustments we are applying to the patches.
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