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Abstract

This paper presents a method of determining the shape of the surface swept by a
generalized milling tool that follows a 5-axis tool path for machining curved surfaces.
The method is a generalization of an earlier technique for toroidal tools that is based
on identifying grazing points on the tool surface. We present a new proof that the
points constructed by this earlier method are in fact grazing points, and we show
that this previous method can be used to construct grazing points on (and only
on) the sphere, the cone, and the torus. We then present a more general method
that can compute grazing points on a general surface of revolution. The advantage
of both methods is that they use simple, geometric formulas to compute grazing
points.
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1 Introduction

Automation of the manufacturing process from the nominal part geometry
on a CAD system to the final machined part offers the opportunity for huge
gains in productivity and cost savings. The advent of 5-axis machining and
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methods for generating NC tool paths has already offered the opportunity to
reduce machining time by up to 85% [1]. However, this added flexibility also
brings added complexity. Research efforts have concentrated on generating
interference free NC tool paths that also produce machined parts free from
excessive gouging or under cutting. Central to these ideas is the generation of
the swept volume of the tool along its programmed NC tool path, and the ideas
of the simulation, verification and correction of NC tool path programs [2].

Envelope theory and SDE [3,4,5] provide a general framework for comput-
ing the volume swept by a tool undergoing 5-axis motion, where the surface is
found by solving a system of implicit equations. While further work has refined
this method (see [6,7,8] for example), the basic approach still requires solving
a system of implicit equations. One variation that is computationally less ex-
pensive is the SEDE [9,10], which requires fewer solutions of the systems of
implicit equations and instead finds the swept volume by using Runge-Kutta
techniques. Vector methods offer an approximation based on envelope theory,
the SDE, or on static instances of the tool at various locations [11,12,13]. While
these vector methods can approximate the tool movement by using many in-
stances of the tool at intermediately interpolated positions, the computational
cost is prohibitive.

A few other methods have been proposed for 3-axis and 4-axis generation of
swept volumes by finding explicit equations for curves on the surface (which
reduces the computation cost by avoiding the need to solve systems of implicit
equations), namely using silhouettes and generating curves [14,1]. This paper
presents a simple, geometric method for computing grazing points on any
surface of revolution, generalizing the earlier 5-axis work of Roth et al. [15],
which was restricted to toroidal tools. In Section 2, the concept of a grazing
curve (the curve that leaves its imprint behind as the tool moves from one
programmed location to the next) for 5-axis machining and the cross product
method of Roth et al. are reviewed. Further, we then show that the cross prod-
uct method can compute grazing points on spheres, cylinders, and tori, but
that it can compute grazing points on those surfaces only. Then in Section 4,
we extend the work of Roth et al. to general NC tools, using the conical tool
as our example.

Our focus has been on NC machining, and thus surfaces of revolution, and
we have not looked at more general surfaces. The advantage of our method
over other variations of envelope theory is simplicity. By exploiting the special
properties of surfaces of revolution, we derive a simple equation for directly
computing points on the swept surface without needing to solve systems of
equations or to use numerical techniques.



2 Grazing Curves and the Cross Product Imprint Method

Chung, Park, Shin and Choi [14] present silhouette curves in a method for
determining the surface swept by a generalized APT cutter for 3-axis ma-
chining. The generalization of Chung et al.’s method to 5-axis machining is
non-trivial. In 5-axis machining, a grazing curve is the set of points on the
rotating tool surface at which the direction of motion lies in the tangent plane
of the cutter [9]; these are the points on the cutter surface that remain on the
swept surface unless milled away in a different pass of the cutter. The silhou-
ette curve used in 3-axis machining is a special case of a grazing curve where
there is no rotation. (Note: in an earlier paper, we referred to these points as
imprint points [15]; as Blackmore, Leu, and Wang’s definition pre-dates ours,
we adopt their terminology. However, for continuity with our previous paper,
we will refer to our geometric construction as the imprint method.)

In SDE, the grazing points are found by solving implicit equations for the
surface and the tangent condition on the derivative. The SEDE reduces the
computational cost by using these points as the starting points for a Runge-
Kutta solver for differential equations. However, the observation made in the
Roth et al. paper is that the grazing points can be directly and quickly com-
puted for a toroidal surface, thus avoiding both solving the implicit equations
and the Runge-Kutta computation. Like many SDE methods, Roth et al. con-
nected these points to form a piecewise linear approximation to the grazing
curve, and then connected these grazing curves to form the swept surface. The
critical step in this algorithm is the computation of grazing points, which we
discuss in this section and in Section 4.

The Roth et al. method computes grazing curves on toroidal cutters [15]. The
approach in that paper (illustrated in Figure 1) is to slice the toroidal cutter
with planes through the tool axis. Each plane cuts the torus into two circles.
The grazing points on each circle are then computed by forming the vector 7
that is the cross-product of the direction of motion d of the center of the circle
with the normal 77 to the plane of the circle. The line from the center of the
circle in direction 7 is intersected with the circle; these intersection points (Fy
and Py) are the grazing points.

Although the Roth et al. paper illustrated this method and showed its validity
using experimental methods, the justification did not allow for a generalization
to arbitrary surfaces of revolution. We now present an alternative justification
for why the cross product method produces grazing points, which we will then
use to extend the method to general surfaces of revolutions.

The idea behind the cross product method is that if we know the direction of
motion of a point at the center of a circular slice of a torus, then it is easy to
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Fig. 2. In a rigid body motion, dp =d+ ép, where Ep lies in the tangent plane at
P.

compute the grazing points that lie on the circle. To understand why the cross
product method works, we first note that for any rigid body transformation T’
and for any point () in space, we can describe T" as a translation of @) followed
by a rotation around (). Now consider a point P on a sphere with center )
(Figure 2). If the instantaneous motion of ) under a rigid body transformation
is d_: then the motion dp of P differs from d only by a rotation around @), i.e.,
only by a vector ép in the tangent plane of the sphere at P:

dp = d + Rp.

Since Rp lies in the tangent plane of the sphere at P, d, p will lie in the tangent
plane at P if and only if d lies in the tangent plane at P. Therefore, the grazing
points will be those points on the sphere where d lies in the tangent plane at
the point. One final property to note is that at a grazing point R on the sphere,
R — @ is perpendicular to both the tangent plane at R and to d.

The idea behind the cross product method is that if we know the direction
of motion of a point on the center () of a circular slice C' of the torus is CZ:
then for any point P on the circle, we know P has a motion that differs from
d only by a vector lying in the tangent plane at P on a sphere centered at
(@ having radius equal to that of C. However, along C' such a sphere has the
same tangent planes as the torus. Thus, the cross product of 7 (the normal
to the plane of C) and d yields a vector 7 that is perpendicular to d and
perpendicular to the tangent plane of the torus at Fy and P;. Therefore, d lies
in the tangent plane at Fy and P, and these points are grazing points.



Fig. 3. Grazing curves on the cylinder and the torus.

It is clear that the cross product method can be used for any surface that
can be defined as the swept surface of a sphere of fixed radius. For machining
surfaces, this restricts this method to the torus, the cylinder, and the sphere.

3 Discussion and Examples of Grazing Curves

Using the cross product method, we can compute grazing curves for cylinders,
tori, and spheres. However, there is a simpler way to compute the grazing curve
for a sphere: it is a great circle lying in the plane through the sphere’s center
perpendicular to the direction of motion of the center. Examples of grazing
curves on the cylinder and the torus appear in Figure 3; note that for circular
slices on these surfaces, grazing points occur in pairs, 180 degrees apart on
the circle. Further, as discussed by Roth et al., for machining purposes, only
about half of one of the two grazing curves on the torus is in contact with
the machined surface, and the remaining portions need not be considered for
computing the surface (although they could be used for gouge detection).

The situation is more complex for general surfaces of revolution. As a repre-
sentative shape, we use the cone, although the ideas apply to general surfaces
of revolution. In Figure 4, we see some examples of the grazing curves for
different motions of a conical tool (the details of computing these motions are
discussed in the next section). Figures (a)-(d) are translational motions only,
while figures (e) and (f) are a translation and a rotation of the cone about a
line through the tool tip. In figure (a), the motion vector is perpendicular to
the tool axis, and there are two grazing points on each circular slice, which
are 180 degrees apart on the circle. However, when the motion vector is no
longer perpendicular to the tool axis (b), the grazing curves are no longer 180
degrees apart, although they are still lines on the cone. When the motion vec-
tor is parallel to a line on the cone (c), the two grazing curves meet, resulting
in a single grazing curve on the cone. When the motion vector nearly aligns
with the tool axis (in (d), whenever the motion vector lies within the small
cone that is parallel to the conical tool), the larger circle of the truncated cone
becomes the grazing curve.



D ‘I’o“.

(@ b ©
LD =

N~ T >

(d) () (f)

Fig. 4. Dotted lines show the grazing curves for different motions.

Fig. 5. Computing grazing points on a cone.

When we rotate the tool, the grazing curves will usually appear as those in
figure (e); i.e., there are two curves, but they are no longer straight lines on the
cone. However, for some motions, the grazing curve becomes a single curve on
the cone (f). In the next section, we describe how to compute grazing points
on a circular slice of a generalized milling tool.

4 Generalization of the Cross Product Imprint Method

The cross product method works because we have circular slices of a surface
where the tangent planes of the surface are identical to those of a sphere
centered at the circle center, with radius equal to that of the circle. This
restricts the cross product method to the torus, the cylinder, and the sphere.

We can generalize the cross product method to general surfaces of revolution
as follows (which we illustrate for a cone in Figure 5): for any point P on the
generating curve for the surface of revolution, find the point () on the axis of



revolution such that P — () is parallel to the normal to the generating curve
at P. Now a sphere centered at @) of radius |P — Q| will be tangent to the
surface of revolution at all points generated by rotating P around the axis
of revolution. In particular, note that as we translate/rotate the surface, the
motion of each point on this circle will differ from the motion d of Q@ only
by a rotation around (). Thus, the points on the circle for which d lies in the
tangent plane of the surface are grazing points.

Our method to compute the grazing points (illustrated in Figure 5, right) is

Take the plane through @) perpendicular to cf, and then intersect this plane
with the circle of revolution through P. This will yield zero, one, or two
points. By design, the vector from () to each of these points is perpendicular
to both the tangent plane at each point and to d. Thus, d lies in the tangent
plane at each point, and the points are grazing points.

In general, the method for computing grazing points described in the previous
paragraph will give two grazing points for each circular slice of the tool. This
is the case for a wide variety of motions (Figure 4, (a), (b), and (e)). However,
for some motions, there may be zero or one grazing point, or the entire circular
slice may be a grazing curve. These special cases occur for plunging motions,
or motions that are nearly plunging motions.

A plunging motion occurs when the direction of motion of the tool is in the
direction of the tool axis or more generally, when the only points not milled
away in a differential time step following (or proceeding) the current location
are the circular slice(s) of the tool of locally largest radius. To complicate
matters for our method, for some tool positions/motions, some circular slices
of the tool have grazing points while others do not.

Regardless, to compute the swept surface by a truncated surface of revolution,
we commonly have to add a portion of the circle in the truncated region to
the grazing curves, or in some cases, connect grazing curves on two surface.
This addition of edge effects is well known in the swept surface community; we
mention it here only to point out that our method has to handle this problem
as a special case.

For example, the cylinder is part of both a cylindrical tool and of a ball-end
mill. In general, two grazing curves run from the top circle of the cylinder,
along the sides of the cylinder, down to the bottom circle of the cylinder.
At the bottom of the cylinder, these two curve must be connected to finish
the curve that mills the surface. For the ball-end mill, we connect the two
grazing curves on the cylinder with the grazing curve computed for the sphere
(Figure 6, right). In the case of a cylindrical tool, the bottom edge of the
cylindrical tool will also machine the swept surface (Figure 6, left), and we
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Fig. 6. Grazing curve (the thick line) will contain curve on tool bottom.

Fig. 7. A tool in two positions.

need to select between the two edges of the tool bottom to connect these two
grazing curves. For the complete swept surface, the top edges of the grazing
curves should also be connected; however, this is often not required for NC-
machining, since that edge is never in contact with the work piece.

4.1 Computing the Tool Motion

To compute the grazing points, we need to know CZ: the direction of motion of
a point on the axis of the tool. This vector will depend on the mechanics of
the machine being used. If the mechanics are unknown, then we will have to
make assumptions about the tool motion. One approach is to take two tool
positions and assume a piecewise linear motion, with the rotation taking place
around the tool tip.

For a piecewise linear motion, assume we have two tool positions, with the tool
tip at po at the first tool position and at p; at the next tool position (Figure 7).
Let 7 be the vector perpendicular to the tool axis @y in the plane containing
Po, @o, and d; (if dy and @; are parallel, then choose the plane containing py,
p1, and dp). Then the linear motion M parameterized over time ¢ (over [0, 1])
and along the tool (parameterized by u, with u = 0 being the tool tip) gives



us

M(t,u) =T(t) + R(t, u),

where T'(t) = (1 —t)po + tp1 and R(t,u) = u(sin(¢)7+ cos(t)dp). Note that M
is the sum of a linear motion and a circular arc. Differentiating with respect
to t gives us

M'(t,u) = p1 — po + u(cos(t)7 — sin(t)dy),

which can be used as d in the calculation of grazing points.

However, if the mechanics of the machine are known, they should be used to
compute the motion vectors. A further discussion of tool motion may be found
in a companion paper [16].

4.2 From Grazing Points to a Surface

The idea of our method for approximating the swept surface is to slice the tool
into planar slices, and use either the cross product method or the method de-
scribed in this paper to compute grazing points on the tool. We then connect
corresponding grazing points on adjacent tool positions with line segments,
and triangulate to obtain a piecewise linear approximation to the swept sur-
face. Details of the algorithm can be found in the paper of Roth et al. [15].
This construction of a piecewise linear surface is similar to that of many
SDE/SEDE, and the SDE/SEDE papers should be consulted for further issues
that arise such as trimming.

We tested our ideas in the symbolic algebra package Maple [17], using Maple
to generate points on the swept surface using the methods described in this
paper, and then plotting the surface swept by a single movement. In Figures 8
and 9, we show the surfaces swept by a cylindrical ball-end tool and by a
conical tool. In both figures, there is a subfigure of the swept surface and a
subfigure of the swept surface together with the tool at three positions and
the surface swept by the tool axis. On the sides of the tool in dark lines are
the grazing curves on the tool in each of the three positions. In the conical
tool, we did not sweep the surface generated by the bottom edge of the tool.
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Fig. 9. Surface swept by conical tool.

5 Conclusions

In this paper, we have extended the imprint method to simulate the surfaces
cut with mills made of general surfaces of revolution. The main contribution
is a simple, geometric formula for computing the grazing points. Our focus
has been on NC machining, and thus surfaces of revolution, and we have not
looked at more general surface. However, our method should generalize to
surfaces that have simple planar slices.

Although our new method is a generalization of the cross product method,
the cross product method is simpler and it may make sense to use it in the
special cases of the cylinder and the torus. While we could also use the cross
product method to compute grazing points on the sphere, we note that the
grazing curve on a sphere will always be a great circle, and is easily calculated
and sampled without using the cross product method.
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