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Abstract Goldman presented a method for computing a versor form of the per-
spective projection of points in the conformal model. His method starts with a view
direction and distance to the projection plane, and constructs the eye point from that
information. He then uses a rotor to rotate the eye to the origin. In this paper, an
alternate construction using transversion for perspective projection is given that al-
lows for the eye point, view direction and projection plane to be placed arbitrarily
in space.

1 Introduction

In the computer graphics rendering pipeline, a series of affine transformations are
applied to a model, followed by a perspective transformations. These 3D transfor-
mations can all be represented with 4× 4 matrices that can be multiplied together,
resulting in a single 4×4 matrix that is used to transform points. The result is that
the composition of all the transformations is obtained with a single matrix multi-
ply. After the matrix multiply, a division is required to complete the perspective
transformation.

While Doran et al. [3] have shown that projective geometry can be modeled in
the algebra Rn,n, recently a specific conformal model of geometry, which has fewer
dimensions, has gained popularity. The geometric algebra formulation of the confor-
mal model allows for the representation of translation, uniform scale, rotation, and
spherical inversion as rotors. However, operations such as shear, non-uniform scale,
and perspective projection are not easily performed in the conformal model, as they
are not angle preserving. Regardless, when using the conformal model for computer
graphics, ideally we would have a rotor formulation of perspective transformation.
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Recently, Goldman [6] has done just that: he has shown a way to map points
through a perspective transformation in the conformal model using rotors. Gold-
man’s idea is to map the point to project, p, to a plane through the origin, np. He
then applies a constructed versor to np (a type of rotation/spherical inversion), giv-
ing a sphere s whose center sc is the projection of p. Further, the weight of s can
be used for hidden surface removal. While it may seem inconsistent to represent
the non-conformal perspective transformation as a rotor in a conformal model, re-
alize that the normalization of the sphere by its weight is the non-conformal step,
and is similar to what is done in computer graphics, where a division is required to
complete the perspective transformation.

Goldman’s construction starts with a view direction and the distance between the
view point and the projection plane, and computes fixed locations for the eye point
and for the projection plane used for the perspective projection (although by using
translation and scale, he can essentially locate them anywhere).

In this paper, I give a new construction for perspective projection of points in
the conformal model. Like Goldman’s construction, I associate a plane np with the
point to project p, and I construct a versor to map np to a sphere whose center is
the projection of p. My solution differs from Goldman’s in the particular versor
used. Further, my construction starts with the eye at an arbitrary location, while
Goldman’s construction uses translation and scale to get to the more general setting.
More fundamentally, Goldman’s construction has its basis in rotations, while mine
is based on spherical inversion.

2 Background

I assume the reader is familiar with geometric algebra; for an introduction to ge-
ometric algebra, see [4, 9, 2]. This article uses the following notation. We will be
working with the conformal model [1, 10, 2] built on top of R3 with an origin no and
a point at infinity n∞. Recall that v · no = v · n∞ = 0 for any vector v ∈ R3, and that
n2

o = n2
∞ = 0 and no ·n∞ =−1. In describing Goldman’s construction, we will need

ē = no− 1
2 n∞.

A point p offset from no by a vector vp is given by

pt(vp) = p = no +vp +
1
2
||vp||2n∞.

A plane n with normal n is represented as

n = n+dn∞,

where d is the closest distance from n to no. Alternatively, if the plane is known to
pass through the point f , then its representation is

n = f · (n∧n∞).
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A sphere s is represented as

s = sc−
1
2

r2n∞,

where sc is a point and r is the radius of the sphere. Note that a sphere of radius d
with its center at dv has the form

s = no +dv,

where v is a unit vector.
A versor v is the product of 1-blades, and is used in a “sandwiching” operation

or versor product to transform elements of the geometric algebra. The application
of an even versor (the only versors used in this paper) is

x 7→ vxv−1

A normal n, when used as a versor, represents a reflection in the plane n; like-
wise, a sphere s represents a spherical inversion through s when used as a versor.
The composition of a mirror reflection through a plane n and a spherical inversion
through a sphere s, where n and s share a point, is a form of a transversion.

3 Goldman’s Construction

Goldman constructs a perspective projection in the conformal model as follows.
Given a unit view direction vd and a distance d/2 = csc(θ) ≥ 1 representing the
distance between the eye point and the perspective plane, Goldman constructs a
versor

v = cos(θ/2)vd + sin(θ/2)ē,

which can be interpreted as a sphere. He then constructs the versor

Rnv = vvd .

Goldman sets the projection plane to vd + cot(θ)n∞, and locates the eye point at

f = no +(cot(θ)− csc(θ))vd +
1
2
(cot(θ)− csc(θ))2n∞. (1)

Goldman then shows that for any point p = pt(p) that s = Rnv(p− f)R−1
nv is a sphere

whose center is the projection of p onto the projection plane, where f is the offset
of f from no. Goldman further proves that the weight of s can be used for hidden
surface removal.

Note the order of construction: you start with csc(θ) and a view direction, and
then construct the eye point from this information, which is backwards from how
things are specified in computer graphics. Further note the restriction that d/2 =
csc(θ) ≥ 1. This restriction is needed because Goldman’s construction is rotating
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the eye to the no, with the rotation being around a subspace that is a distance 1
from the no. The rotation’s appearance as a spherical inversion/mirror is more of
an interpretation of the transformation in the conformal model; the same equations
applied in the homogeneous model (where Goldman’s construction first appeared)
are a rotation in that model.

4 Eye point at no

For perspective projection, we would like to begin with an eye position, view direc-
tion, and distance to the projection plane, and then derive a projection that maps a
point p onto the projection plane as a perspective projection. In this section, I ob-
serve that a spherical inversion is a type of projection, and then give a construction
using a spherical inversion for perspective projection for the eye point restricted to
be no; in the next section, I will prove its correctness, and then in Section 6, I will
give the details showing how to apply the construction when the eye point is at an
arbitrary location in space.

vc
f

ℓ

~w

sc

C
s

Fig. 1 Spherical inversion of a line ` into the dashed sphere.

To begin, consider the 2D spherical inversion in Figure 1. Given a line ` that
passes through a point f , and given a circle C with center vc that contains f , then
the spherical inversion of ` in C results in a circle s that contains the two intersections
of ` and C as well as vc (the image of n∞ under the inversion). The center sc of s
will lie along the perpendicular bisector of f vc, a chord of s. Further, note that for
any line ` through f , f vc will be a chord of the circle resulting from the spherical
inversion of ` in C.

Thus, spherical inversion in C of a pencil of lines through the point f on C results
in a pencil of circles whose centers lie on the perpendicular bisector of the segment
from f to the center of C. The perpendicular bisector will be our projection plane,
and the centers of the sphere s will be the desired projections.

Our real interest is in direction vectors w, which are perpendicular to the lines
`, where we want to compute the intersection of w with the projection plane. We
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would like sc to be this intersection, but we see that from the figure that sc is on the
wrong side of f vc to be the desired intersection, and thus the need for the mirror
reflection. What follows are the details of scale, etc., to make this construction into
a perspective projection.

Figure 2, left, illustrates my construction in the 2D setting. Given an eye point
f = no, view direction vd (where |vd |= 1) and distance to the projection plane d/2,
we will construct a plane nv containing no as our mirror plane and a sphere v tangent
to nv at no in which to do the spherical inversion.

The mirror reflection in a plane through no perpendicular to vd is easily accom-
plished by the plane nv = vd . We construct a point vc and a sphere v centered at vc
of radius d as follows:

vc = no +dvd +
1
2 ||dvp||2n∞

= no +dvd +
1
2 d2n∞ (2)

v = vc− 1
2 d2n∞

= no +dvd . (3)

Now construct the transversion

Rnv = vnv

= (no +dvd)vd (4)
= d−vd no.

Associate the plane np = p with the point p = pt(p). To project the point p, we
apply Rnv to np, giving the sphere s:

s = Rnv np R−1
nv . (5)

Mirror

Plane Plane
Projection

vcvd

d/2

nv

d

f = no

v

sc
p

w

~vd

sc

~w

f = no

d
2(~w·~vd) ~w

d/2

~w · ~vd

Fig. 2 Left: Projection with eye at no. Right: Scaling of w under projection.
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In the next section, I will show that the center sc of sphere s is the projection of
p and that the weight s can be used for hidden surface removal.

5 Proof of Projection

The following theorem shows that the construction in the previous section acts as a
perspective projection of a point p = pt(p).

Theorem 1. Given the eye point f = no, a view direction vd , and a distance to the
projection plane d/2.

Construct the plane nv = vd , a versor v using (2) and (3) and a transversion
Rnv = vnv.

Then for any point p = pt(vp), and associated plane np = vp, the application of
Rnv to np,

s = Rnv np R−1
nv ,

is a sphere whose center sc is the projection of p onto the plane vd +
d
2 n∞ relative

to the eye point no. Further, the weight of s is proportional to vp.

Proof. Let w = p (to match the notation of the next section). We know v = dvd +no
and Rnv = vnv = d−vd no. Then R−1

nv = 1
d + vd no

d2 . Applying the transversion Rnv to
w yields

Rnv wR−1
nv = (d−vd no)w

(
1
d
+

vd no

d2

)
= w+

dw(vd no)

d2 − 1
d
(vd no)w−

(vd no)w(vd no)

d2

= w+
1
d
(wvd +vdw)no

= w+
2
d
(w ·vd)no

Normalizing with respect to no, we see that

s = RnvwR−1
nv =

d
2(w ·vd)

w+no

is a sphere whose center sc lies in the plane vd +
d
2 n∞ (the projection plane), that this

versor essentially scales w (and so sc is the projection of p; see Figure 2, right), and
further, the weight of the unnormalized sphere is proportional to the vd component
of w and thus proportional to vp. ut
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6 Arbitrary eye point

Rather than place f at no, we want to place the eye point f at an arbitrary location.
Since the rotor is constructed as a mirror reflection and a spherical inversion, the
perspective projection construction of Section 4 generalizes to f at an arbitrary point
by constructing a plane through f and a sphere with the appropriate center that
passes through f . The following gives the formulas for this more general setting.

A plane passing through f perpendicular to the view direction vd is given by

nv = f · (vd n∞).

A sphere of radius d centered a distance d from f along the view direction vd is
given by

vc = no +(f+dvd)+
1
2 ||f+dvp||2n∞

v = vc− 1
2 d2n∞

Our perspective transformation versor Rnv is again given by

Rnv = vnv.

We now need to map the vector from the eye point f to the point p to a plane
through p. We first construct the vector w = p− f, and then the plane to map is

nw = f · (wn∞).

Applying the versor Rnv to nw results in a sphere who center is the desired pro-
jection of p.

This method was implemented in GAViewer [5], which was very helpful in de-
vising this construction; a screen shot is shown in Figure 3. In this figure, the red
vectors are based at no; the blue vectors are based at f . Also shown in the figure are
the sphere v with center vc, the projection plane, and the plane nw that gets mapped
to a sphere centered at sc.

7 Summary and Future Work

In this paper, I have presented a versor for performing the perspective projection
of points in the conformal model. My result is a related to Goldman’s construction,
but unlike his, my method directly allows for an arbitrary eye point. Further, my
construction does not require a minimum distance to the projection plane.

Beyond this, there are more fundamental differences in the two constructions.
In particular, Goldman’s construction is based on rotating the eye point to no, and
thus the precise positioning of the projection plane and eye point with trigonometric
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Fig. 3 GAViewer screen shot showing the projection of w onto sc.

functions seen in Section 3. That his construction results in a spherical inversion in
the conformal model is mostly a result of interpretation, since the same equations in
the homogeneous model are a rotation [11].

In comparison, my construction is based on the idea that a spherical inversion acts
as a form of projective transformation (Figure 2). Combining a spherical inversion
with a mirror reflection allows us to obtain a perspective projection at an arbitrary
eye point, view direction, etc. Further, the two methods give different rotors when
using the same view position, etc. These different rotors transform Euclidean vec-
tors (planes through the origin) to the same spheres, but give different results when
applied to no and n∞. See the appendix for a specific example of this.

Note also that the idea of using a transversion for perspective projection can
also be used in a dual quaternion model [12] and in Gunn’s model of Euclidean
geometry [8].

A variety of questions remain:

1. The construction is for points. Can it be extended to other objects in the confor-
mal model?

2. Although perspective projection is modeled as a versor, this versor can not be
composed with other versor transformations of the conformal model, since we
have to map the points to transform into planes. Is there a construction of a ro-
tor for perspective projection that can be applied directly to points rather than
to vectors (planes)? Such a rotor would allow us to compose the modeling and
perspective transformations into one transformation.

3. Although the weight of the resulting sphere can be used for a form of hidden
surface removal, we can not effectively use the resulting spheres to do scan con-
version of polygons in screen space, as the mapping of the weight is inconsistent
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(perspectively) with perspective mapping of the points. Instead, the scan conver-
sion would have to be done before the perspective division is applied.

8 Appendix: Example of differing rotors

This section gives an example of where Goldman and my constructions give the
same result on Euclidean vectors but different results on no and n∞.

Place the eye f at f = no. Let the view direction vd be e1. Let the distance to
the view plane be d = 2 (this results in θ = π/6 for Goldman’s method). Then
the rotor constructed by my method is Rnv = 4− e1no, while the rotor constructed
by Goldman’s method (composed with a translation to move the eye to the origin)
is Rnv = 3.85− e1 ∧ no + 0.13no ∧ n∞. When either versor is applied to e1, both
methods give Rnve1R−1

nv = e1 + 0.5no. When applied to no, my method results in
RnvnoR−1

nv = no while Goldman’s gives RnvnoR−1
nv = 0.93no, and when applied to

n∞ my method results in Rnvn∞R−1
nv = 0.5e1 + 0.13no + n∞ while Goldman’s gives

Rnvn∞R−1
nv = 0.54e1 +0.13no +1.07n∞.
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