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Abstract We present a new method of detecting vortices in sampled vector fields
by using Geometric Algebra, and tested three swirl-plane estimation methods for
use within our algorithm. Our vortex-detection algorithm recursively looks at vector
samples and, via an application of the two-dimensional version of the Gauss-Bonnet
Theorem, extracts vortex cores.

1 Introduction

The visualisation of numerical fluid-mechanical and electro-dynamical simulations
can be characterised by visualisation of their vortices. Loosely speaking, a vortex in
a three-dimensional vector field is a curve around which the field’s vectors appear
to swirl. Learning where vortices appear in a vector field is important, and often
critical. For example, in aerodynamics, vortices located in the wake of an object
moving at a high velocity may cause structural damage to trailing objects.

Throughout the last three decades, much work has been done in vector field vi-
sualisation and vortex detection. One class of solutions involves dividing a set of
points into small polyhedra and then determining whether the vortex core passes
through a plane (roughly perpendicular to the vortex core) inside the polyhedron.
Within this class of methods, the issues are: how to find such a plane; and how to
find the vortex core in the plane.

In this paper, we review and compare three methods of finding such a plane: by
using the Jacobian of the vector field; by using the curl of the vector field; and by
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using the ‘λ2 algorithm’. We then adapt a Geometric-Algebraic method for finding
singularities in the plane to aid in finding vortices passing through the swirl plane.
We apply a recursive algorithm to localise the vortex detection and reduce running
time. This method is compared to a recursive version of a related vortex-detection
algorithm based on Sperner’s lemma. While the results of the two algorithms are
similar, our GA-based algorithm missed fewer cells containing the vortex than the
Sperner based algorithm in the examples we tested.

2 Background and Related Work

A large amount of work has been done on vortices and on detecting vortices. We
limit our discussion here to the work most closely related to ours.

The question of “what is a vortex” is not easily answered. Traditionally, physi-
cists have used the magnitude of the curl of a vector field, which is twice the quan-
tity known as the vorticity, at a sample point to perform vortex detection. However,
Portela notes [11] that naı̈vely using the curl to find a vortex core may yield false-
positive results. More generally, this means that point-wise algorithms using the curl
of a vector field exclusively do not work for vortices with cores that are surfaces,
and are not simple curves. A non-zero curl is a necessary condition for a vortex, but
it is not sufficient.

Sujudi and Haimes [15] approximated the vector field’s Jacobian at a point by
taking the linear term of the Taylor series expansion. This tensor may have a single
real eigenvalue and a pair of (non-real) complex-conjugate eigenvalues. The two
complex-conjugate eigenvalues of a linear system correspond to a plane in which
there is a swirl of some sort. Closed streamlines correspond to complex-conjugate
eigenvalues that are purely imaginary. If the real part of the complex-conjugate
eigenvalue pair is greater than zero, then the singularity is a source; otherwise, it
is a sink (see Figure 1). Any of these singularities corresponds to a vortex core by
Portela’s definition. Sujudi and Haimes applied this idea to a tetrahedralisation of
the sample space and processed each tetrahedral cell independently of the others.

Jeong and Hussain [7] gave an algorithm in which they claim that the swirling
plane for a vortex corresponds to the plane defined by the eigenvectors correspond-

Source—real parts > 0 Sink—real parts < 0 Closed—purely imaginary

Fig. 1 Three types of streamlines representing different values of the pair of complex-conjugate
Eigenvalues of the vector field’s Jacobian.
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ing to a pair of negative eigenvalues of S2 +Ω 2, where S and Ω are the symmet-
ric and anti-symmetric parts of the Jacobian, respectively. Because eigenvalues are
often listed as λ1, λ2, etc., and the two negative eigenvalues indicate a plane of
swirling, the algorithm is sometimes referred to as the λ2 algorithm. Portela pointed
out that this method fails in some conditions, and showed why it works well in other
conditions [11].

Banks and Singer [1] gave a predictor-corrector method to detect vortex cores in
a velocity field for a fluid via a vector-predictor and a pressure-corrector. By starting
at a point in the velocity field, a stream-curve is traced in space by stepping from
point to point based on the interpolated sample velocity and corrected by the fluid’s
local pressure. Many such streams are mapped in the field to find the vortices.

Roth and Peikert [13] devised a method based on higher-order partial derivatives
to do vortex detection in their standard problem, the bent helical vortex.

Jiang et al. [8] introduced a new geometric algorithm to find vortices: their al-
gorithm employs Sujudi’s and Haimes’s [15] Jacobian-based characterisation to ex-
tract the real eigenvector in a small neighbourhood around the centre of a sampled
volume, then uses ideas from Sperner’s Lemma to find vortices. The geometric al-
gorithm is inexpensive; however, it sometimes falsely detects vortices in regions
without vortices, and sometimes misses vortices in other regions. Like Sujudi’s and
Haimes’s algorithm, this algorithm is not recursive: all sampled cells are checked
for vortices.

2.1 Geometric Algebra

We shall present an algorithm based on Geometric Algebra to perform vortex detec-
tion, and present here the basics of Geometric Algebra required to understand our
results. For a more complete introduction, see [4, 5, 2].

A Geometric Algebra (G.A.) is an oriented, co-ordinate-free algebra defined over
Rn, which has 2n unit basis elements of different dimensionality. The basis elements
are oriented k-dimensional subspaces of Rn, although a particular element of the
algebra may have components of differing dimensionality.

In Geometric Algebra, the dimensionality of each subspatial element is called its
‘grade’. Thus, scalars are ‘grade-0’ elements or ‘0-blades’, vectors are ‘grade-1’
elements or ‘1-blades’, and so forth. Without loss of generality, we shall refer to the
orthonormal basis unit vectors of Rn as e1, e2, e3, etc.

The exterior product, denoted ‘∧’ is a grade-raising operation. Given two linearly-
independent vectors a and b, each of which is a grade-1 subspace of Rn, the
quantity a∧ b is a 2-blade. The exterior product is anti-symmetric: for two vec-
tors a = a1e1 + a2e2 + a3e3 and b = b1e1 + b2e2 + b3e3 in R3, a∧ b = −b∧ a =
(a2b3−a3b2)e2∧ e3 +(a3b1−a1b3)e3∧ e1 +(a1b2−a2b1)e1∧ e2. The magnitude
of this product is |a||b|sinθ , where θ is the angle between the vectors. Geometri-
cally, the magnitude is the area of the parallelogram defined by the vectors.
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One set of basis elements for a Geometric Algebra built on R3 is {1,e1,e2,e3,e2∧
e3,e3 ∧ e1,e1 ∧ e2,e1 ∧ e2 ∧ e3}. The first element is the unit scalar, the next three
elements are 1-blades, followed by three 2-blades, with the final basis element being
an oriented volumetric element (a 3-blade). The highest-grade element in a G.A.
defined on Rn is called the pseudoscalar, and is denoted In.

2.2 Singularity Detection

Mann and Rockwood presented a G.A.-based algorithm for detecting singulari-
ties [9]. Their algorithm is a discrete application of the G.A. version of the Gauss-
Bonnet theorem, the continuous version of which was presented for Geometric Al-
gebra by Hestenes and Sobczyk [6]. The algorithm works in any n-dimensional
space in which a Geometric Algebra resides but within the context of this paper,
only the two-dimensional version of this algorithm is required.

Theorem 1. Let I2 be the pseudoscalar (unit-area element), let f be a vector-valued
function defined on R2, let V be the vector field defined by f , and let C be a closed,
continuous, piecewise differentiable curve in the domain of f . If the total index of
singularities of f contained within the boundary C is m, then∮

C

V∧dV
|V|2

= 2mI2π. (1)

This integral may be approximated numerically. Given vector samples wi at points
pi lying on a closed planar curve C in R3, the wi may be projected onto the plane in
which C lies and normalised to yield unit vectors v̂i. If, for n samples, one assigns a
new sample, pn = p0 and v̂n = v̂0, then the integral may be approximated discretely
as

S =
n

∑
i=1

v̂i−1∧ v̂i. (2)

If n is large enough then |S| is approximately 2mπ . The two-dimensional version of
Theorem 1 applies not only to R2, but also to any plane in Rn.

Geometrically, the normalised vectors are mapped onto the unit circle and the
areas of half-parallelograms defined by consecutive vectors are summed. Half of the
magnitude of the wedge product for each consecutive pair of vectors corresponds to
one of the coloured triangles in Figure 2. The m corresponds to the number of times
the vectors go around the unit circle for each circuit of C, the factor 2 corresponds
to dividing each parallelogram’s area by 2 to obtain the area of a triangle, and π

corresponds to the area of the unit circle.
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Fig. 2 An example of the discrete approximation to (1), illustrating (2) for a simple vector field
containing a single singularity in the sampled region.

3 A G.A. Vortex Core Detection Algorithm

Researchers have visualized vortices in many different ways. One class of solutions
involves dividing a set of points, at which vector samples are taken, into small poly-
hedra and finding for each polyhedron a plane roughly perpendicular to the vortex
core, and then determining whether the vortex core passes through the plane inside
the polyhedron. Within this class of methods, the issues are: how to find such a
plane; and how to find the vortex core in the plane.

We compare three methods of finding such a plane. We also adapt the Mann-
Rockwood Singularity-Detection Algorithm to find a vortex in the plane using Ge-
ometric Algebra. We apply a recursive algorithm to localise the vortex detection,
thereby reducing the running time by two orders of magnitude (Table 3). This
method is compared to a recursive adaptation of Jiang’s et al.’s vortex-detection
algorithm.

Our algorithm is deterministic, based only on the data samples provided. Unlike
Sujudi’s and Haimes’s algorithm and Jiang’s et al.’s algorithm, our algorithm is re-
cursive. Unlike Banks’s and Singer’s algorithm, our algorithm does not step from
cube to cube, but rather proceeds in an exclusively top-down fashion.

Our recursive vortex-core-detection algorithm (Figure 3) begins by looking at
a cube of vector samples in space and determining whether a vortex core passes
through the cube. If a vortex core is detected then, if our algorithm has not reached
the bottom level of recursion, the cube is divided into eight octree sub-cubes and our
algorithm is executed on each of the sub-cubes. At the bottom level of recursion, if
a vortex core has been detected for this cube, then the cube is marked as having a
vortex.

The main details missing from the code in Figure 3 are how to compute the swirl
plane, and how to detect the vortex passing through this plane. We discuss these
issues in Sections 3.1 and 3.2. This basic algorithm has several problems, which we
describe in Section 4, along with modifications to improve the algorithm.
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FindVortex(Ca[],depth)
Foreach cube C in Ca

Compute swirl plane Pl
Project 3-D field onto Pl
if vortex passes through Pl in C then
if depth=max then

Mark C
return

else
Cs[] = 8to1split(C)
FindVortices(Cs[],depth+1)

Fig. 3 Pseudo-code of our recursive vortex detection algorithm.

3.1 Calculating The ‘Swirl’ Plane

We have investigated three ways to estimate a plane in an octree cube perpendicular
to and through which a vortex core may pass. The algorithms are one based on the
sole real eigenvector of the Jacobian, one based on the curl, and the λ2 algorithm. A
basic assumption for detecting a vortex core by using any of these methods is that
the partial derivatives of the vector field are constant throughout the current octree
cube.

The curl and the Jacobian of a vector field each contain first-order partial deriva-
tives of the field. The partial derivatives are estimated using finite differencing on
points at the centres of the faces of the octree cube on which the vortex core detec-
tion is performed.

Jacobian: If the Jacobian has exactly one real eigenvalue and two complex-
conjugate eigenvalues, then the plane perpendicular to the real eigenvector corre-
sponds to a plane with swirling [15]. The real eigenvector of the system is thus tan-
gent to the vortex core at the singularity. In our implementation of this algorithm, if
the complex portion of any value, including complex-conjugate eigenvalues, is less
than ε = 10−6, then the value is considered to be wholly real.

Our algorithm considers a system with a real eigenvalue λ with a multiplicity of
more than one not to have any swirling (in this case, the eigenvalue is actually a pair
of complex-conjugate eigenvalues in which the complex portion is zero).

Curl: Traditionally, physicists have used the local curl of a vector field for vortex
detection. If the curl has a high enough magnitude, then it is considered to be part
of a vortex core. Thus, for our algorithm, any octree cube with a non-zero curl at its
centre is a good candidate for either the Sperner’s-Lemma-based algorithm or the
G.A.-based algorithm.

λλλ 2: In 1995, Jeong and Hussain [7] claim that the swirling plane for a vortex
corresponds to the plane defined by the eigenvectors corresponding to a pair of neg-
ative eigenvalues of S2 +Ω 2, where S and Ω are the symmetric and anti-symmetric
parts of the Jacobian, respectively. Our implementation of the λ2 algorithm is based
on the contents of the literature review in Roth’s and Peikert’s work [12].
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3.2 Vortex Core Detection

After the swirl plane is determined, points lying in the intersection of the swirl plane
and the cube’s faces are sampled, and the vector samples are projected onto the plane
and normalised. The two-dimensional version of the Mann-Rockwood Singularity-
Detection Algorithm is then applied to the vectors at the points on the curve.

We computed the intersection of the swirl plane with the cube by using the meet
of the swirl plane with each face of the cube [14], which produces a sequence of
line segments. We sampled points on these line segments linearly, and sampled the
vector field at these points. The sampled vectors are projected onto the swirl plane,
and then (2) is applied to the projected vectors to numerically calculate the integral.

One known limitation of our algorithm (and all other such algorithms) is that
oppositely rotating vortices might not be detected unless some minimum amount
of spatial subdivision is performed in advance, and this minimum subdivision level
may only be determined by trial and error on a case-by-case basis.

The Mann-Rockwood two-dimensional G.A.-based singularity detection algo-
rithm is based on finding the area spanned by a sequence of unit vectors on a closed
curve. If this area is within ε = 10−6 of zero, then the total index of singularities
within the closed curve is zero; this means either that there are no singularities con-
tained within the curve, or that the indices of all the singularities cancel.

In our algorithm, the closed curve is the polygon defined by the intersection of
the swirl plane with the cube. Three-dimensional vectors are computed at sample
points on the polygon, and then are projected into the swirl plane and normalised,
as illustrated in Figure 2, where the vectors at consecutive points on the curve have
been mapped onto the unit circle. As in the Mann-Rockwood algorithm, the areas of
the triangles defined by consecutive vectors are summed, and the result of that sum
indicates how many singularities of what sign are within the curve.

To gauge the usefulness of our G.A.-based algorithm, we also implemented a
variant of the Sperner’s-Lemma-based algorithm described by Jiang et al. [8]. Vector
samples at the centres of the faces of the cube are projected into the swirl plane.
Their version of the algorithm steps around the polygon defined by the intersection
of the cube with the plane and examines each of the sample vectors in turn, marking
each with the quadrant in which it lies. If a complete circuit of the quadrants is
made, either clockwise or counter-clockwise, then a vortex core goes through the
sample cube.

4 Results

We compared our G.A. vortex-detection algorithm and a recursive version of the
Sperner’s-Lemma-based algorithm for both speed and accuracy. The computations
compared herein were performed on a 2.0 GHz Pentium 4 with 2GB RAM, run-
ning Debian Linux. To reduce variation in timing, each test was run ten times and
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averaged. The Geometric Algebra package used has three- and four-dimensional
algebras generated using Gaigen v0.982. Each singularity-check of the polygon re-
sulting from intersecting an octree cube with its swirl plane involved approximately
48 samples, with each adaptive step adding eight more samples on each line segment
in which refinement was needed.

We tested our algorithm with two vortices: a straight-line vortex, which has been
rotated so as not to be aligned with a co-ordinate axis, and the bent helical vortex.
All of the partial derivatives have been approximated using finite differencing.

A minimum level and a maximum level of recursion was used in each test case.
The maximum level in each case was 6. A minimum level of recursion of 3, for
example, corresponds to subdividing the samples cube three times to obtain 83 cubes
to be examined recursively (up to another three levels each).

Our initial tests with a rotated, straight-line helical vortex demonstrated that our
algorithm could find a simple vortex core. For a more rigorous test, we used the bent
helical vortex [12], which is defined as

V = (−γy
r
− ωzx

r2 ,
γx
r
− ωzy

r2 ,ω(1− R
r
)), r =

√
x2 + y2, (3)

with R = 1.0, γ = 0.88, and ω = 1.0. The grid was centred at [0.05,0.05,0.05].
From Table 1, we see that from a timing perspective, the Jacobian-based algo-

rithm has the best timing with no recursion. For a minimum level of recursion of 0,
the λ2 algorithm takes longer to find a solution than either the curl or the Jacobian.
The main reason why the λ2 algorithm takes much longer than the Jacobian algo-
rithm is that using the Jacobian causes our algorithm not to find swirl planes in the
octree cubes, thus reducing computing time by computing a worse result. One can
see by looking at Table 2 that, for a minimum level of recursion of 0, the number of
swirl planes detected in the recursion while using the Jacobian is much lower than
for the other algorithms.

Table 1 Running Times For Bent Helical Vortex, in seconds.

Singularity Minimum Recursive Depth
Detector Swirl 0 3 6
Sperner Jacobian 2.236 5.040 977.245
Sperner curl 4.521 5.995 955.056
Sperner λ2 5.134 6.423 803.483
G.A. Jacobian 3.025 5.322 962.140
G.A. curl 4.831 6.428 930.339
G.A. λ2 5.962 7.312 892.704

The larger the minimum level of recursion in our algorithm, the better the λ2 al-
gorithm performs against its competitors (see Table 2) in terms of speed. The num-
ber of times any of the singularity-detection algorithms is called was discovered to
be the source of this improvement, indicating that the λ2 algorithm for determin-
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ing the plane of swirl is a more accurate method than using either the curl or the
Jacobian of the vector field.

Table 2 Number Of Calls To Singularity-Detection Algorithms For Bent Helical Vortex.

Singularity Minimum Recursive Depth
Detector Swirl 0 3 6
Sperner Jacobian 553 1232 259738
Sperner curl 1121 1480 262144
Sperner λ2 1241 1543 215555
G.A. Jacobian 705 1232 259738
G.A. curl 1129 1504 262144
G.A. λ2 1361 1655 215555

For the bent helical vortex, the expected result is a closed circular vortex. Because
the samples used in our testing come from an analytic solution, the solution may be
plotted at the same time as the approximate solution. In Figures 4 and 5, the analytic
solution has been plotted in blue, whereas the approximate solution for each test case
is plotted in red.

Neither the Sperner’s-Lemma-based algorithm nor the G.A.-based algorithm
worked perfectly. Using the curl instead of the Jacobian yielded a circular vortex
with a larger radius, which is expected due to the results of Roth and Peikert [12].
The λ2 algorithm yields what seems to be the same curve generated by the curl-
based algorithm, yet has fewer gaps with any minimum level of recursion than the
curl-based algorithm with the same minimum level of recursion.

While both the Sperner’s Lemma algorithm and our G.A. algorithm can find a
closed or nearly closed curve, it required starting with a fine grid structure, and
made little use of the recursive subdivision to reduce the costs. A further analysis
revealed several things.

First, the singularity-detection part of our algorithm may fail for two reasons:
there may be too few samples to get a good approximation to (1); and the grid may
be aligned so as to make vortex cores pass too close to the faces of octree cubes.
To circumvent the first problem, we used extra vector samples to better approximate
the integral in Theorem 1. However, this resulted in little improvement.

Looking at the octree in regions where the vortical curve is not closed, we found
places where the detection fails when the singularity is close to a cube’s face (e.g.,
the empty octree cubes in the red curve’s gaps, Figure 6). Our algorithm was fail-
ing because the computed swirl plane is only close to perpendicular to the vortex
core. The problem occurs when the vortex core (as determined by the swirl plane
extraction algorithm) passes close to the boundary of the current octree cube, then
the discrepancy between the estimated swirl plane and an actual swirl plane was
enough that the vortex core passed through the detected swirl plane outside the oc-
tree cell (Figure 7). If this happened in both of two adjacent cells, then a gap would
appear in our vortex core.
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0
Jacobian curl λ2

3
Jacobian curl λ2

6
Jacobian curl λ2

Fig. 4 Sperner’s Lemma with minimum recur-
sion of 0,3,6

0
Jacobian curl λ2

3
Jacobian curl λ2

6
Jacobian curl λ2

Fig. 5 Geometric Algebra with minimum recur-
sion of 0,3,6

Fig. 6 The failure of the singu-
larity detection

Expanded octree cell
Octree cell

Vortex Core

Correct Swirl Plane
Detected Swirl Plane

Fig. 7 Failed detection and solution

Jacobian curl λ2

Fig. 8 Sperner’s Lemma extended octree cells;
minimum recursion of 0. Compare to Fig. 4.

Jacobian curl λ2

Fig. 9 G.A. extended octree cells; minimum re-
cursion of 0. Compare to Fig. 5.

To overcome this problem, rather than intersect the detected swirl plane with the
actual octree cell, we intersected the swirl plane with a slightly larger octree cell.
This change to the algorithm resulted in significant improvements. As shown in Fig-
ure 9, using an octree scaling factor of 1.25 and a minimum recursion level of 0, we
obtain a closed curve for the Geometric Algebra algorithm using the λ2 swirl plane
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extraction method, a nearly closed curve for the curl swirl plane extraction method,
with only slight improvements in the Jacobian swirl plane extraction method. Scal-
ing the octree cubes also results in similar improvements in the Sperner’s Lemma
algorithm (Figure 8).

By increasing the size of each octree cube by 25 percent, the time to execute the
algorithm roughly doubled. This is expected as the algorithm detects a vortex core
in more cubes. However, a small number of false positives, approximately 5 percent
of the original number of cubes, was added to the detected curve, mostly in places
where the detection of the curve was initially strong.

Table 3 Running Times For Bent Helical Vortex, in seconds, using the λ2 vortex characterisation.

Singularity Minimum Recursive Depth
Detector 0 6
Sperner 0.783 133.327
G.A. 1.074 154.012

Singularity Normalised cost (ms/cube)
Detector 0 6
Sperner 0.539 0.619
G.A. 0.692 0.714

The left half of Table 3 give absolute running timings of our algorithm using an
increased cube size, not accounting for the number of octree cubes being processed.
When the timings are normalised by the number of cubes processed, the relative
performance of the G.A. algorithm improves relative to the Sperner’s-Lemma algo-
rithm.

We provide here a brief summary of the length of the source code and in-line
comments for various steps in our algorithm. Rather than implement our own G.A.
package, we used Gaigen (the Geometric Algebra Implementation Generator de-
veloped by Fontijne et al. [3]) to generate three- and four-dimensional Geometric
Algebras for use with our implementation.

The code for calculating the swirl plane is approximately 350 lines long, ap-
proximately 230 lines of which is eigenvector-extraction code. The rest of that code
is support code for approximating partial derivatives and determining which swirl-
plane-extraction algorithm to use.

The code for calculating the intersection of the swirl plane with the edges of a
cube is approximately 65 lines long. The code for organising the lines segments of
the intersection polygon and calculating the sample points is approximately 90 lines
long.

The code for the Sperner’s-Lemma-based singularity-detection algorithm is ap-
proximately 80 lines long. In contrast, the G.A.-based algorithm is 10 lines long,
including comments and function header.
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5 Conclusions

We have presented a recursive algorithm for detecting vortices in sampled vec-
tor fields, the mathematics for which have been simplified by the use of Geo-
metric Algebra. We have shown that the two-dimensional version of the Mann-
Rockwood Singularity-Detection Algorithm, coupled with the use of the λ2-swirl-
plane-extraction algorithm, yields more detected vortex core segments than the al-
gorithm of Jiang et al. Plainly, from the images generated and the processing time,
the λ2 plane-extraction algorithm was the best of the three swirl plane extraction
methods we considered.

Using the λ2 algorithm or the curl has allowed both the G.A.-based algorithm
and the Sperner’s-Lemma-based algorithm to work quite well on a recursive basis,
rather than requiring too much time by processing data for finer spatial subdivisions.

By increasing by 25 percent the size of the octree cube from which our sam-
ples are taken, we have also been able to detect a closed curve when using the λ2
algorithm with a minimum recursion level of 0.

For additional details on this work, see [10].
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