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Abstract

In this tutorial we give an introduction to geometric algebra, using our Matlab pack-
age GABLE (Geometric AlgeBra Learning Environment). In the geometric algebra for 3-
dimensional Euclidean space, we graphically demonstrate the ideas of the geometric product,
the outer product, and the inner product, and the geometric operators that may be formed from
them. We give several demonstrations of computations you can do using the geometric algebra,
including projection and rejection, orthogonalization, interpolation of rotations, and intersec-
tion of linear offset spaces such as lines and planes. We emphasize the importance of blades as
representations of subspaces, and the use of meet and join to manipulate them. We end with
Euclidean geometry of 2-dimensional space as represented in the 3-dimensional homogeneous
model.
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1 Introduction

This is an introduction to geometric algebra, which is a structural way to think about and
calculate with geometry. It differs in its nature from linear algebra, constructive Euclidean
geometry, differential geometry, vector calculus and other ways you may have learned before; yet
it encompasses them all in a natural manner, including some extra things like complex numbers
and quaternions. To help understand and visualize the geometry, we have implemented GABLE
(Geometric AlgeBra Learning Environment) in Matlab, which we use in this tutorial to illustrate
our examples.

We believe geometric algebra is going to be useful to all of us applying geometry in our
problems in robotics, vision, computer graphics, etcetera. This tutorial is meant to be an easily
accessible introduction that gives you an overview of the subject, in a way that helps you assess
its power, and helps you decide whether to study it seriously.

There are several reasons why geometric algebra is so convenient to work with in geometry,
and they all involve the capability to talk constructively about important geometrical concepts
(we name them below), which are all embedded as elementary objects in the algebra. Having
those available will change your thinking in a strangely powerful way, and geometric algebra
then provides the computational tools to implement that new thinking. Obviously, you can’t
change your thinking overnight, and so we will demonstrate some of it in the tutorial to give
you a flavor.

Here are some teasers to get you interested:

• subspaces and dependence (Section 2.2.6)
Subspaces become elementary objects; a∧b, for instance, is an object that represents the
plane spanned by vectors a and b, and a ∧ b ∧ c the volume spanned by vectors a, b, c.
Linear dependence is then easily expressible: a∧b = 0 implies that a and b are dependent
since they do not span a plane.

• division by subspaces (Section 2.4.2)
In geometric algebra, you can divide by vectors, planes, etcetera. This makes solving equa-
tions between geometric objects easier; and it allows interesting coordinate-free construc-
tion of geometric relationships. For instance, the component of a vector x perpendicular
to a plane a ∧ b is the volume spanned by x, a and b, divided by the plane. In formula:
(x ∧ a ∧ b)(a ∧ b)−1.

• parameterization and duality (Section 2.4.3)
It is often convenient to represent objects dually: planes by normal vectors, lines by
their slope and intercept, etcetera. Mathematicians have told us that these dual objects
live in dual spaces (the dual representation of a plane is not a vector but a 1-form, and
transforms as such), and this makes their representation a mapping between spaces. In
geometric algebra, objects and their duals live in the same algebra, and are algebraically
related: ‘dualization’ of an object is simply ‘dividing by the volume element’ of the space
it lives in. This has enormous advantages, since this transition to a dual description does
not involve a change of space and data structures.

• operations are products of vectors (Section 3.4)
In geometric algebra, the ratio b/a of two vectors defines the rotation/scaling between
them, in all its aspects: both the plane it happens in, and the angle between them, and
the dilation (scale) factor. Such characterizations of operations are easy to compose,
and can be applied not only to rotate vectors, but (using the same formula) also planes,
volumes, etcetera, in n-dimensional space.

• complex numbers and quaternions (Section 3.6)
Have you ever wondered why quaternions work and what they are? In geometric algebra,
we will derive them naturally, and they will not be anything worth a special term. And it
will be clear how they generalize to describe rotations in n dimensions. They are just an
example of the many efficient structures present in geometric algebra that pop up as you
use them. Complex numbers, which describe rotations in a plane, are another example.
We will find that every plane a ∧ b in Euclidean space has a ‘complex number system’
associated with it, and that this is basically the b/a we mentioned above as the rotation
operator for that plane. All these things are connected in a highly satisfying manner (as
we hope you will agree when you’re done).

• Euclidean geometry (Section 5.2)
Euclidean geometry, with its offset lines and triangles, their lengths, intersections, perpen-
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diculars etc., is naturally treated in geometric algebra; the trick is to find an embedding
of this geometry into the geometric algebra of a nice space. Geometric algebra can do
this by generalizing ‘homogeneous coordinates’. Vectors represent offset points, planes
represent offset lines etcetera; and in geometric algebra these are all elementary objects of
computation. (In chapter 5, we will illustrate this for 2-dimensional space.)

• meet (Section 5.4)
There is a powerful operation called the meet, which is the general incidence relationship
between geometric entities. The meet of two lines in 3D, for instance, will return the
intersection point and intersection strength (sine of angle between the lines) if the lines
intersect; but it will return a line if they coincide, and it will return the Euclidean distance
between them if they do not have a point in common. Using geometric algebra, we are
capable of defining such operators without forcing the user to split them into cases.

• geometric differentiation
Something we will not be able to cover in this tutorial, but which is important to applica-
tions in continuous geometry, is the capability to differentiate and integrate with respect
to geometric objects. It becomes possible to find the optimal orientation explaining a set
of measurement data by a standard optimization procedure: define the criterion that you
want to optimize, differentiate with respect to rotation and set this equal to zero to find
the extremum. Many techniques now become transportable from ordinary optimization
theory of functions to the optimization of geometrical objects.

You may find in this tutorial lots of things that are familiar, because a lot of this work has been
invented before in other contexts than geometric algebra. It is only recently that we understand
how it all fits together into one framework, and how important that is for the computer sciences.
It now becomes possible to write one book, and one computer program, which contains all the
geometry we might ever need. Gone would be the transitions between parts of the real-world
problem that are solved by linear algebra, vector calculus, or differential geometry, with the
accompanying inefficiency and sensitivity to bugs. All would just be done within the framework
of geometric algebra.

In this tutorial, we introduce terms gradually, and give you a geometric intuition of their
meaning as we go along. We limit almost all of our explanations to the geometric algebra of
Euclidean 3-dimensional space, which is denoted C̀ 3,0. Other geometric algebras are important
to computer science as well, but in them intuition is somewhat harder to obtain, and that is the
reason we decided not to use them in this introductory tutorial.

1.1 Getting started

To get the most out of reading this tutorial, you should read it while running Matlab on a color
display, and try the sample code and exercises. The tutorial was developed on Matlab 5.3; it
also runs on Matlab 5.2, but it will not run on Matlab 5.1. It has been tested on both Sun
workstations and on IBM PCs.

This tutorial is not a tutorial on Matlab, and to work more easily with it you should probably
read some introduction into Matlab before using our GABLE package. Yet you should be able
to run most of the demos described in this tutorial with no supporting documentation; on the
other hand, you will need to know more about Matlab to perform the exercises.

You can download the software from one of the two following web pages:

http://www.wins.uva.nl/~leo/GABLE/

http://www.cgl.uwaterloo.ca/~smann/GABLE/

The instructions there will tell you how to set up the software. You will have to install Matlab
separately.

Assuming you install GABLE in a directory called gable, then to use it, add to your Matlab
path with the addpath(’.../gable’) command, where ... is the directory path to the gable

directory. You may also wish to put this command in your initialization file. See the Matlab
documentation for details on both subjects.

You can get a quick introduction to the basics of geometric algebra by running the Mat-
lab/GABLE command GAdemo. This demonstration routine will show you vectors, bivectors,
and trivectors, as well as introduce the three products of geometric algebra. However, GAdemo
is not a substitute for reading this tutorial, as the interpretations and description of how to use
the geometric algebra is too involved for the demo script. Thus, after running GAdemo you will
need to read the remainder of this tutorial.
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1.2 Notation

In this tutorial, we will use standard, italic math fonts for our equations. When giving Mat-
lab/GABLE code, or specifying Matlab variables in our text, we will use typewriter font. We
will elaborate on some further parts of our notation as we introduce it. Further, in our Mat-
lab/GABLE code samples, unless otherwise specified, we will assume that you clear the graphics
window (using clf) before running each code fragment. If we have a running example (i.e., where
the sample code is separated with explanatory text), the later code fragments will begin with

>> %...

to indicate that this is a continuation of the previous code fragment (you should not type the
‘...’ in Matlab!). We may denote the variables you need to continue from the previous segment.
E.g.,

>> %... needs X

means that the example is continued from the previous fragment, but that you only need the
variable X from that fragment. Occasionally, we will put comments in our code fragments to
indicate what the code is doing; such comments look like

>> % === words

You do not need to type such comments into Matlab, and in general you do not need to type
anything following a percent sign on a line.

Sometimes an illustration involves a lot of typing. To save you typing, we have put this code
in a routine called GAblock. Any code sequence that appears in a GAblock will be prefaced by

>> %GAblock(N)

where N denotes the appropriate section within GAblock. To run this sequence, type everything
after the ’%’ sign on that line. The running of such a code sequence will stop on any line with
a ’%%’. At such times, we want you to see something, and give you a special prompt:

GAblock >>

At this prompt, you may type Matlab/GABLE commands; when done, just press return and
the block of code will resume running. For a continued code fragment (i.e., one that starts with
%...’), you will be prompted to read the tutorial before continuing. To quit a GAblock sequence
early, use GAend.

Note that we insert the GAblock prompts for a reason: either you should be understanding
something in the picture, or you need to understand a result on the screen. At these prompts,
you can and should type Matlab/GABLE code to test things, to rotate the view on the screen,
etc., until you understand what is being illustrated.

By the way, another way to save typing in some of the more repetitive exercises is the
standard Matlab feature to use the up-arrow to step through your command history, permitting
you to change earlier commands by ‘inline editing’: overtyping, deletion and insertion.

2 The products of geometric algebra

This section introduces the basics of the geometric algebra, and gives the GABLE commands
for performing the operations. Many of the objects have a graphical representation, and can be
displayed on the screen using the draw command. Table 1 summarizes the GABLE commands
described in this section and in the rest of this tutorial. We will introduce these routines
gradually, as we need them; the table is here just for reference. Some additional commands and
details on some of the commands in this table can be found in the appendices. You can also get
a summary of commands using the Matlab ‘help gable’ command (assuming you have set up
the Matlab path correctly).

2.1 Scalar product

The defining elements of geometric algebra are the vectors of a linear space of vectors over
scalars. In our package, we use an orthonormal basis to represent this linear space, with vectors
e1, e2, and e3, and we will always use integer or real numbers as our scalars.1 You can scale

1Frames are a necessary crutch for input and output; most of our computations will be independent of the frame of
representation, in the sense that our equations can be expressed in a coordinate-free manner. For a further discussion
of frames, see Appendix B.
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Command Arguments Result
e1,e2,e3 Basis vectors for generating the geometric algebra
I3 The unit pseudoscalar
+,--,*,/,^ multivectors The operations of our geometric algebra
dual (multivector) Compute the dual of a multivector
gexp (multivector) The geometric product exponential, emv

grade (blade) Return the grade of a blade (−1 if a multivector)
(multivector,n) Return the portion of the multivector that is of grade n

inner (mv,mv) Take the inner product of two multivectors
inverse (multivector) Compute the inverse (if it exists) of the multivector
isGrade (multivector,g) Test if multivector is blade of grade g
join (multivector) Join two blades
meet (multivector) Meet two blades
norm (multivector) Returns the norm of a multivector.
sLog (spinor) The geometric logarithm of a spinor
unit (blade) Returns the parallel blade of unit length and same sign.
*draw (A) draw object A
clf clears the screen
GAview ([az el]) Set the view; similar to Matlab ‘view’
GAorbiter Rotates the view; optional arguments give angle and time
GAbvShape (TYPE) With no arguments, return the shape of bivector

With one argument (TYPE=’default’, ’Dutch’, ’Canadian’, or
’American’) set the bivector shape to this type

*DrawBivector (v1,v2) Draw bivector spanned by v1,v2 as parallelogram
DrawTrivector (v1,v2,v3) Draw trivector spanned by v1,v2,v3 as parallelepiped
DrawOuter (A,B) Draw the outer product between A and B
DrawInner (A,B) Draw the inner product between A and B
DrawGP (A,B) Draw the geometric product between A and B
*DrawPoint (P) Draw a point on the tips of a cell array of GA vectors
DrawPolyline (P) Draw a polyline on the tips of a cell array of GA vectors
*DrawPolygon (P) Draw a polygon on the tips of a cell array of GA vectors
*DrawSimplex (S) Draw a simplex given as a cell array of GA vectors
*DrawHomogeneous (S) Draw a simplex given in homogeneous representation

Table 1: Table summarizing geometric algebra Matlab commands of GABLE. ‘*’-commands take
optional color arguments.
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Figure 1: draw(3*e1+2*e3); draw(e2)

and add these vectors in the usual manner. For example, to create the vector a = 3e1 + 2e2,
you would type

>> a = 3*e1+2*e3

ans =

3*e1 + 2*e3

Do not use spaces in the definition; the particular way we have overloaded the Matlab products
may produce the rather cryptic error “Too many input arguments”. Also, do not forget the ‘*’
for the product with a scalar, or Matlab will interpret ‘3e1’ as 3× 101 = 30.

The norm of a vector is its length (in the standard metric in Euclidean space):

>> ... needs a

>> norm(a)

ans =

3.6056

You can draw a vector (and many of the geometric objects) using the command draw. To
draw the above vector, type

>> draw(a)

In the graphics window, you will see a line with an arrow head. If we draw a second vector,

>> draw(e2)

we see the space get rescaled so that both vectors appear in the same plot. Your screen should
now look something like Figure 1. Note that both vectors start at the origin and have their
arrow head at the end of the line segment away from the origin. If you would like to understand
the spatial relationship better, type:

>> GAorbiter

and the plot will turn 360 degrees over 10 seconds. You can get smaller rotations by giving it
an argument; try GAorbiter(180). If you give a second argument, you can change the time
over which it rotates; try GAorbiter(180,5). In later versions of Matlab (beyond 5.3) the figure
window contains a button to help you rotate a figure interactively.

You can also draw a scalar, though that is not very exciting:

>> draw(2)

This prints the scalar above any plot you might have made.

2.2 The outer product

2.2.1 Definition

Geometric algebra has an outer product, often called a wedge product. The outer product has
the properties of anti-symmetry, linearity and associativity. For vectors u, v, w we have:

• v ∧w = −w ∧ v, so that v ∧ v = 0

• u ∧ (v + w) = u ∧ v + u ∧w



GABLE Version 1.3 (revised tutorial) 9

• u ∧ (v ∧w) = (u ∧ v) ∧w

The outer product of a vector v with a scalar α, or of two scalars α and β, we define to be equal
to the scalar product

α ∧ β = αβ and α ∧ v = αv,

and then use associativity to extend that to the evaluation of more involved terms.
(The properties of the outer product of two vectors are similar to the properties of the cross

product for two vectors in 3D. Yet it results in a different geometrical object, as we will soon
see. We will discuss the correspondence between the two in Section 2.4.3).

2.2.2 Bivectors

In GABLE, the circumflex symbol (ˆ) is used to take the outer product of objects. E.g., the
outer product of e1 and e2 is formed by e1^e2. Here are some to try, and you may want to
verify the results on paper using the definition:

>> 2^e2

>> e1^e2

>> e2^e1

>> e1^(e1+e2)

>> (e1+e2)^(e1-e2)

The outcome of the wedge product of two vectors thus contains terms like α(e1 ∧ e2), etc.,
which can not be simplified further to vectors or scalars. This outcome is therefore a new kind
of object in our geometric algebra, called a bivector.

As you try more combinations, you find that any bivector can be expressed as a scalar-
weighted linear combination of the standard bivectors e1 ∧ e2, e2 ∧ e3, e3 ∧ e1, formed by outer
product between the vectors in the vector basis. This follows easily from the linearity and anti-
symmetry properties in the definition of the outer product. These bivectors thus form a bivector
basis (but as in the case of a basis for vectors, other bases may serve just as well). Algebraically,
the set of bivectors in 3-dimensional space is therefore in itself a 3-dimensional linear space.

You can view a bivector as a directed area element, directed both in the sense of specifying
a plane and an orientation in that plane. In general, with φ denoting the angle from u to v and
with i the unit directed area of the (u,v)-plane, we can write:

u ∧ v = |u| |v| sin(φ)i.

You recognize that |u| |v| sin(φ) is the directed area spanned by u and v; and as u and v get
more parallel, this quantity becomes smaller. As you make the angle negative, the bivector
becomes negative (in agreement with the anti-symmetry of the outer product since now u and v
have switched roles); this is what we mean by a directed area element. The i indicates the plane
in which this takes place; it is therefore a geometric ‘unit direction of dimension 2’ of what is
measured.

Graphically we represent the bivector in our package as a directed circle in the bivector
plane, with arrows along its border to indicate the orientation. The area of the circle is the
magnitude of the bivector. For example, let us draw some vectors, and then draw a bivector:

>> clf; draw(2*e1+e3); draw(e2);

>> draw(e1^e2)

You should see in the graphics window something like Figure 2. Perform GAorbiter to appreciate
the spatial relationships better: note that the circle lies in the plane containing both e1 and e2.

Another way of appreciating what goes on is to draw the inputs and output of the outer
product separately, which can be done by the command DrawOuter():

>> clf;

>> B = DrawOuter(e1,e2)

ans =

e1^e2

>> GAorbiter

This gives two spaces, with in blue and green the two arguments of the product (in that order),
and in red the result. You can place the result in the first space for comparison, by:

>> %...

>> subplot(1,2,1);

>> draw(B,’r’);
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Figure 2: draw(2*e1+e3); draw(e2); draw(e1^e2)

Try the outer product on e1^e1, e1^e2, e2^e1, and e1^(e1+e2+e3), using draw() (use the
optional color argument to tell the results apart) or DrawOuter() to draw any non-scalar results.
You may want to use clf to clear the screen between evaluations.

The norm of a bivector is the absolute value of the area it represents:

>> norm((e1+e2)^e3)

ans =

1.4142

Warning: In one case, our implementation of the outer product gives the wrong answer,
namely if you perform the outer product of two scalars: 2^3 gives 8 (wrong!) rather than 6

(correct!), since we were not able to overload the exponentiation operator in Matlab for scalars.
So when you want to multiply scalars, you will have to use *, as in 2*3. See Appendix A.3 for
a further discussion of this problem.

2.2.3 Trivectors

Taking the outer product of three vectors yields yet another object, which is naturally called
a trivector. It is a directed volume element. In 3-dimensional space, all such elements must
be multiples of the unit directed volume element, which we denote by I3. (In other words,
algebraically the trivectors of a 3-dimensional vector space form a 1-dimensional linear space
with basis I3.) In an orthonormal basis e1, e2, e3 for our Euclidean 3-space, we equate it with
the volume spanned by the ‘right-handed’ frame: I3 ≡ e1 ∧ e2 ∧ e3. The unit directed volume
I3 is often called the (unit) pseudoscalar of 3-dimensional Euclidean space.

We have implemented I3 as I3. Verify the outcome of the following expressions by hand, to
get some dexterity in manipulations with the wedge product on the basis of its definition:

>> e1^(e2^e3)

>> (e1^e2)^e3

>> e1^e2^e3

>> e3^e2^e1

>> e1^(e1+2*e2)^e3

>> e1^(e1+2*e2)^e1

>> norm(e1^e2^e3)

Notice that the trivector e3∧e2∧e1 equals −I3: these vectors in this order form a ‘left-handed’
frame. The terms denoting ‘handedness’ are therefore not explicit conventions anymore, they
have become part of the computational framework of geometric algebra as the signs of trivectors.
The norm of a trivector is absolute value of the volume; if you need a signed scalar denoting the
volume of a trivector T, use T/I3.

Conceptually, a trivector represents an oriented volume. Graphically, we represent it by a
sphere, which we render as a line drawing. The magnitude of the trivector is represented by the
volume of the sphere. To indicate the orientation, we draw line segments emanating from the
points on the sphere; the orientation is indicated by whether these line segments go into or out
of the sphere. Try
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>> draw(I3,’g’)

>> draw(-0.5*I3,’r’)

Note that it is unfortunately difficult to visualize more than one pseudoscalar using this rep-
resentation as it makes the drawing too cluttered. Also note that although we represent pseu-
doscalars with a line drawing of the surface of the sphere, the pseudoscalar is actually a solid
volume element.

2.2.4 Quadvectors?

If you try taking some outer products of four or more vectors, you will find that these are
all zero. You may understand why this should be: since only three vectors in 3-space can be
independent, any fourth must be writable as a weighted sum of the other three; and then the
anti-symmetry of the outer product kills any term in the expansion. For instance:

e1 ∧ e2 ∧ e3 ∧ (e1 + e2)

= e1 ∧ e2 ∧ e3 ∧ e1 + e1 ∧ e2 ∧ e3 ∧ e2

= (e1 ∧ e1) ∧ e2 ∧ e2 − e1 ∧ (e2 ∧ e2) ∧ e3 = 0.

So the highest order object that can exist in a 3-dimensional space is a trivector. But you can
also see that this is not a limitation of geometric algebra in general: if the space had more
dimensions, the outer product would create the appropriate hyper-volumes.

If all we are interested in is planar geometry, then all vectors can be written as the linear
combination of two basis vectors, such as e1 and e2; in that case, the highest order object would
be a bivector. We would then call I2 ≡ e1 ∧ e2 a pseudoscalar of that 2-dimensional space. In
n-dimensional space, the pseudoscalar is the highest dimensional object in the space. It received
this rather strange name because it is ‘dual’ to a scalar, as we will see in Section 2.4.3.

2.2.5 0-vectors

In the same vein of the interpretation of k-vectors as geometrical k-dimensional subspaces based
in the origin, we can reinterpret the scalars geometrically. Since these are 0-vectors, they should
represent a 0-dimensional subspace at the origin, i.e. geometrically, a scalar is a weighted
point at the origin. This is a fully admissible geometric object, and therefore it should not be
surprising that it is a member of the basis {1, e1, e2, e3, e1 ∧ e2, e2 ∧ e3, e3 ∧ e1, e1 ∧ e2 ∧ e3} of
the geometric algebra of 3-dimensional space.

2.2.6 Use: parallelness and spanning subspaces

The outer product of two vectors u and v forms a bivector. When you keep u constant but
make v increasingly more parallel to it (by turning it in the (u,v)-plane), you find that the
bivector remains in the same plane, but becomes smaller, for the area spanned by the vectors
decreases. When the vectors are parallel, the bivector is zero; when they move beyond parallel
(v turning to the ‘other side’ of u) the bivector reappears with opposite magnitude. Try this:

>> e1^e2

>> e1^unit(e1+e2)

>> e1^unit(10*e1+e2)

>> e1^unit(1000*e1+e2)

>> e1^e1

>> e1^unit(1000*e1-e2)

>> e1^unit(10*e1-e2)

(unit returns a vector parallel and of the same orientation as its argument, but of unit length.)
A bivector may therefore be used as a measure of parallelness: in Euclidean space u ∧ v

equals zero if and only if u and v are parallel, i.e., lie on the same 1-dimensional subspace. Note
that this even holds for 1-dimensional space.

Similarly, a trivector is zero if and only if the three vectors that compose it lie in the same
plane (2-dimensional subspace). We then do not call them ‘parallel’; the customary expression
is ‘linearly dependent’, but the geometric intuition is the same. If the vectors are ‘almost’ in the
same plane, they span a ‘small’ trivector (relative to their norms times the unit pseudoscalar).

In fact, we can use a bivector B to represent a plane through the origin:

vector x in plane of B ⇐⇒ x ∧B = 0.
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And this B even represents a directed plane, for we can say that a point y is at the ‘positive
side’ of the plane if y ∧B is a positive volume, i.e., a positive multiple of the unit pseudoscalar
I3. We will come back to this powerful way of representing planes later (Section 3.7); but for
now you understand why we like to think of a bivector as a directed plane element.

2.2.7 Blades and grades

We now have all the basic elements for our geometric algebra of 3-space: scalars, vectors,
bivectors, and trivectors (pseudoscalars). We have constructed each of these from vectors and
scalars using the outer product. There are some useful terms to describe this construction.

A blade is an object that can be written as the outer product of vectors. For instance, e1,
or e1 ∧ (e1 + 2e2), or I3 ≡ e1 ∧ e2 ∧ e3.

The grade of a blade is the dimension of the subspace that the blade represents. So for
instance grade(e1 ∧ (e1 + e2 + e3)) = 2, and grade(I3) = 3. As you see, the outer product of a
object with a vector raises the grade of the object by one (or gives 0).

We can make general objects in our algebra by taking scalar-weighted sums of blades such
as 1 + e1 + e2 ∧ e3. Such objects are called multi-vectors. In this construction, a blade is called
an m-vector, with m the grade of the blade. In that sense, a scalar is a 0-vector. Often such a
multivector is of mixed grade (do not worry about its geometrical interpretation yet).

In GABLE, we have a routine grade that when given an object, returns the grade of that
object. If the object is of mixed grade, grade returns -1. When invoked with a geometric object
and an integer, grade returns the portion of the geometric object of that grade. For example,

>> grade(e1+I3,1)

ans =

e1

>> grade(e1+I3,3)

ans =

I3

To test if an object is of a particular grade, use the isGrade command:

>> isGrade(e1^e2,1)

ans =

0

>> isGrade(e1^e2,2)

ans =

1

In this context of blades and grades, there is a peculiarity of 3-dimensional space that does
not carry over to higher dimensions: in 3-space (or 2-space, or 1-space), any multivector that is
not of mixed grade can be factored into a blade. For example, we can rewrite e1 ∧ e2 + e2 ∧ e3

as (e1−e3)∧e2. The former is the sum of two bivectors (and thus not in blade form), while the
latter is the outer product of two vectors (and is therefore obviously a blade). In 4-dimensional
space, this fails: e1 ∧ e2 + e3 ∧ e4 cannot be rewritten as the outer product of two vectors.

2.2.8 Other ways of visualizing the outer product

The interpretation of the bivector as a directed circle, which we have used so far, is not what
everyone uses to visualize them. The standard interpretation works directly with the outer
product. If you have e1 ∧ (e1 + e2), then for the standard interpretation, we construct the
parallelogram having e1 and e1 + e2 as two of its sides. Graphically, we would draw the vector
(e1 +e2) starting from the head of e1. The area of this parallelogram is the area of the bivector,
and the two vectors give the orientation.

You can see this interpretation of the bivector in GABLE using by typing

>> DrawBivector(e1,e1+e2);

The first vector is drawn in blue, the second in green, and the area is shaded in yellow. Note,
however, that the particular vectors used to construct the bivector are not unique. Any two
vectors in this plane that form a parallelogram of the same directed area give the same bivector.
For example,

>> %...

>> DrawBivector(e1,e2);
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will draw a second parallelogram (a square) that overlaps the first parallelogram. Although these
are two different parallelograms, they are coplanar and have the same directed area, therefore
they represent the same bivector. (If you are having trouble seeing e1^e2, you may wish to run
clf and rerun the second DrawBivector command.)

Using GABLE, you can test that these represent the same bivector by using the equality
operator:

>> e1^(e1+e2) == e1^e2

ans =

1

In Matlab, a result of ‘1’ for a Boolean test means “true” and a result of ‘0’ means “false.” In our
example, this means the geometric objects are the same, which we can also prove algebraically:

e1 ∧ (e1 + e2) = e1 ∧ e1 + e1 ∧ e2 = e1 ∧ e2

Note that the area is oriented. In particular, if we reverse the order of the vectors in the
outer product, we get a different result:

>> e1^e2 == e2^e1

ans =

0

However, they only differ by a sign:

>> e1^e2 == -1*e2^e1

ans =

1

This is a result of the bivector representing a directed area: if we reverse the order of the
arguments, then we get the opposite direction.

More generally, we can think of the bivector as representing any directed area within some
simple, closed, directed curve. (To prove this we would need to develop a calculus; we will
not do so in this introduction, so please just accept this statement.) We used a circle for our
representation since we often will not have the creating vectors for a bivector. Indeed, depending
on how we constructed the bivector such vectors may not exist, for example when we take the
dual (Section 2.4.3) of a vector. While we may use any closed curve of the appropriate area,
the circle is the closed curve with perfect symmetry. In our rendering of the bivector, the area
of the circle indicates the area of the bivector; to indicate the orientation of the area, we draw
arrows along its rim.

In a similar manner, we can view a trivector as a parallelepiped. Clear the screen, then run

>> DrawTrivector(e1,e1+e2,e3);

>> GAorbiter

to see the parallelepiped constructed for a trivector. You may find it easier to visualize if you
also run axis off before the GAorbiter command.

2.2.9 Summary

In this section we have seen the outer product, which combines elements of geometric algebra to
form higher dimensional elements. In particular, the outer product of two vectors is a directed
area element that spans the space containing those two vectors. When applied to other blades
of our space, we get higher dimensional directed volume elements.

If the vectors we combine with the outer product are linearly dependent, then the result of
the outer product will be zero; if they are ‘almost linearly dependent’ in the sense of almost
aligned, the outer product will be small. Therefore the outer product provides a quantitative
and computational way to treat linear dependence.

Exercises

1. Draw (using draw) in different colors the bivectors e1 ∧ e2, e2 ∧ e3, and e3 ∧ e1.

2. Redraw the bivectors of the previous exercise using DrawBivector. Based on this and the
previous exercise, do you have a feeling that these bivectors are orthogonal?

3. Draw using DrawBivector the bivectors e1 ∧ e2 and e1 ∧ (e2 + 3e1). From this picture,
do you get a feeling whether or not these two bivectors are equal? Test their equality by
comparing them with the == operator.
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4. Draw (using draw) the bivectors e1 ∧ e2 and e2 ∧ e1. Are these two bivectors the same?
Hint: Notice how the arrows point in opposite directions. Repeat this exercise using
DrawBivector and comment on the results.

5. Draw using both draw and DrawTrivector the trivector e1 ∧ e2 ∧ e3. Now clear the
screen and draw the trivector e1 ∧ e3 ∧ e2 with both drawing routines. Which graphical
representation gives you a better feel for orientation?

6. Draw the vectors e1, e2, and e3. Next draw (using draw) the bivector e1∧e2 and the trivec-
tor e1∧e2∧e3. From this picture, is it easy to tell that the drawn vectors were used to create
the bivector and trivector? Redo this exercise using DrawBivector and DrawTrivector.
Which graphical representation gives you a better feel for the bivector/trivector that gets
created from particular vectors?

7. As we mentioned, a bivector does not really have a fixed shape. To drive this home, we have
provided three alternative shapes: American, Canadian, and Dutch. To use one of these
shapes, type GAbvShape(’Dutch’) for example. Then any future drawings of bivectors
(using the draw command) will appear with the Dutch shape. You may also define your
own shape using the command GAbvShape(’UserDefined’,X,Y), where X and Y are the
coordinates of the vertices of the polygonal shape you wish to use. (For these shapes, it
was hard to denote the direction of the bivector by arrows along the border, so we have
used a perpendicular vector related to the direction by the right-hand rule.) Play around
with them to wean yourself from the habit of mentally associating a bivector with a fixed
shape.

2.3 The inner product

2.3.1 Definition

In a Euclidean vector space, you may have used an inner product, often called the dot product,
to quantify lengths and angles. Geometric algebra also has an inner product, and in our specific
geometric algebra, C̀ 3,0, the inner product on two vectors is the same as the Euclidean inner
product of two vectors.

On vectors, the inner product of our geometric algebra has the standard properties of sym-
metry and linearity:

• u · v = v · u
• (αu + βv) ·w = α(u ·w) + β(v ·w), for α, β scalars

• In Euclidean spaces: u · u > 0 if u is not zero, and u · u = 0 if and only if u is zero

In geometric algebra, the inner product can be applied to any elements of the geometry. Its
definition for such arbitrary elements is rather complicated (for instance, it is neither associative
nor symmetric, though it is linear), and we defer its definition to Section 2.5, although we will
use it before then in some examples to develop a feeling for its meaning.

In our mathematical formulas, we will use ‘·’ to represent the inner product. In GABLE, it
is the function inner(), which takes two arguments:

>> inner(2*e1+3*e3, e1)

ans =

2

It is also defined between a scalar α and a vector u, in which case it is defined to by their
product: α ·u = αu; however, the converse is zero: u ·α = 0.2 You can also use it on bivectors
and trivectors. Try some:

>> inner(2,e1)

>> inner(e1,2)

>> inner(e1,e1^e2)

>> inner(e1^e2,e1^e2)

>> inner(e1^e2,-I3)

We need to interpret these intriguing results geometrically, and see how we can put this extended
inner product to practical use.

2The reader who knows geometric algebra can see that we deviate from the commonly used inner product of
Hestenes here. We will get back to that.
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2.3.2 Interpretation: perpendicularity

For two vectors u and v, the inner product u · v is a scalar. From linear algebra, we know how
to interpret this scalar: if two vectors are of unit length, then the inner product is the length of
the perpendicular projection of each vector on to the other, which is equal to the cosine of the
angle between the two vectors. If either vector is not of unit length, then the cosine is scaled
by the lengths of the vectors. So if the angle between vectors u and v is φ, then

u · v = |u| |v| cos(φ).

Thus the inner product is a measure of perpendicularity: if we keep u constant and turn v to
become more and more perpendicular to u, the inner product gets smaller, becomes zero when
they are precisely perpendicular, and changes sign as v moves ‘beyond’ perpendicular.

The inner product keeps this interpretation of perpendicularity when applied to bivectors,
but becomes much more specific geometrically: for instance

x ·B is a vector in the B-plane perpendicular to x.

Let us visualize this:

>> B = e1^e2;

>> x = e1+e3;

>> xiB = inner(x,B)

>> clf; draw(x,’b’); draw(B,’g’); draw(xiB,’r’)

>> GAview([0 90])

or you can use DrawInner() for visualization:

>> clf; DrawInner(x,B);

with again the arguments in blue and green on the left, and the result in red on the right.
Note that the result is also perpendicular to x and in the B-plane if the vector x was in the

B-plane to begin with.

>> B = e1^e2;

>> b = e1;

>> biB = inner(b,B)

>> clf; draw(b,’b’); draw(B,’g’); draw(biB,’r’)

>> GAview([0 90])

So in a sense, the operation ‘·B’, applied to a vector b in the B-plane (so that b ∧ B = 0),
produces the perpendicular to b in that plane, the complement to b in the B-plane. This
generalizes, as we will see later (Section 4.2).

Even with a trivector, the interpretation of the inner product as producing a perpendicular
result remains:

>> x = e1+e3;

>> clf; draw(x,’b’); draw(inner(x,I3),’r’)

>> GAorbiter

The inner product x · I3 is now the bivector representing the plane perpendicular to x. Con-
versely, the inner product of a bivector with a trivector produces a vector perpendicular to the
plane of the bivector:

>> B = (e1+e2)^e3;

>> clf; draw(B,’b’); draw(inner(B,I3),’r’)

>> GAorbiter

You begin to see how conveniently the inner and outer product work together to produce simple
expressions for such constructions.

In general, for blades of different grades, if the grade of the first argument is less than the
grade of the second argument, then their inner product is a blade whose grade is the difference in
grades of the two objects, lies in the subspace of the object of higher grade, and is perpendicular
to the object of lower grade. The inner product is thus grade decreasing. However, if the first
argument has a larger grade than the second, our inner product is zero (because of this grade-
reducing property it is also known as a contraction, and you cannot contract something bigger
onto something smaller).3

3You should be aware that the more commonly used ‘Hestenes inner product’ is not a contraction. More about
this later.
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But what happens if we take the inner product of two blades of the same grade? We already
know that the inner product of two vectors yields a scalar. Try taking the inner product of two
bivectors:

>> inner(e1^e2,e2^e3)

>> inner(e1^e2,e1^e2)

In both cases, the result is a scalar; in the first example, the result is 0, while in the second
example, it is −1. Likewise, if we take the inner product of the pseudoscalar with itself the
result is a scalar. In general, the inner product of two blades of the same grade results in a
scalar.

2.3.3 Summary

The inner product is a generalization of the dot product, and may be applied to any two elements
of our space. When applied to vectors, it is the familiar dot product. More generally, the inner
product is associated with perpendicularity.

2.4 The geometric product

2.4.1 Definition

We have seen how the inner and outer product of two vectors specify aspects of their perpen-
dicularity and parallelness, but neither gives the complete relationship between the two vectors.
So it makes sense to combine the two products in a new product. This is the geometric product,
and it is amazingly powerful.

We denote the geometric product of objects by writing them next to each other leaving the
multiplication symbol understood. For vectors u and v, we define:

u v = u ∧ v + u · v. (1)

This is therefore an object of mixed grade: it has a scalar part u · v and a bivector part u ∧ v.
This mixed grade is not a problem, as geometric algebra spans a linear space in which such
scalar-weighted combinations of blades are perfectly permissible.

Changing the order of u and v gives:

v u = v ∧ u + u · v = −u ∧ v + u · v,

so the geometric product is neither fully symmetric, nor fully anti-symmetric.
With the geometric product defined, we can use it as the basis of geometric algebra, and

view the inner and outer products as secondary, derived constructions. For instance, for vectors
we we can retrieve the inner and outer products as its symmetric and anti-symmetric parts,
respectively:

u · v = 1
2
(uv + vu) (2)

u ∧ v = 1
2
(uv − vu) (3)

and these formulas can be extended to arbitrary multivectors (see Section 2.5). Although the
products algebraically have this relationship to each other (with the geometric product being
the more fundamental one), yet we will show that geometrically it is convenient to think of them
as three basic products, each with their own geometric annotations and usage. Inner product
and outer product are indeed highly meaningful ‘macros’ for geometric algebra.

Unfortunately, in Matlab we cannot just omit the multiplication sign, and we have chosen
to use ‘*’ for the geometric product. Play around with it – but check the outcomes by hand to
familiarize yourself with the computations.

>> e1*(e1+e2)

>> (e1+e2)*(e1+e3)

>> (e1+e2)*(e1+e2)

>> e1*e2

>> e1*e1

The geometric product is extended by linearity and associativity to general multivectors (Sec-
tion 2.5), which is how we have implemented it. A geometric product of general multivectors
may produce multivector with many different grades:
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>> (1+e1)*(e1*e2 + e1^e2^e3 + inner(e1,e2^e3))

ans =

e2 + e1^e2 + e2^e3 + I3

The geometric interpretation of the geometric product is more difficult than the geometric
interpretations of vectors, bivectors, and trivectors. By Equation 1,

>> DrawGP(e1,e1+2*e2)

results in the scalar e1 · (e1 + 2e2) = e1 · e1 = 1 (indicated in the plot label) and a bivector
e1 ∧ (e1 + 2e2) = e1 ∧ e2 (drawn in the figure), and it is hard to understand what that means.
We will soon recognize that the geometric product produces a geometric operator rather than
a geometric object, and that therefore we had better visualize it through its effect on objects,
rather than by itself.

2.4.2 Invertibility of the geometric product

The inner product and outer product each specify the relationships between vectors incompletely,
so they can not be inverted (e.g., knowing the value of the inner product of an unknown vector x
with a known vector u does not tell you what x is). However, the geometric product is invertible.
This is extremely powerful in computations.

Still, not all multivectors have inverses in general geometric algebras. Fortunately, in the
geometric algebra of Euclidean space, subspaces (represented as blades, i.e., multivectors of a
single grade) do. Thus, for each blade A 6= 0 in Euclidean space, we can find A−1 such that
AA−1 = 1.

Let us first take a linear subspace, characterized by a vector v. (Why does a vector charac-
terize a linear subspace? Because x ∧ v = 0 characterizes all vectors x in this subspace.) What
is its inverse? Think about this, then ask GABLE:

>> v = 2*e1;

>> iv = inverse(v)

>> v*iv

>> iv*v

So, as you thought, the inverse of a vector is parallel to the vector, but differs by a scalar factor:

v−1 =
v

v · v .

This is easily verified:

v(v/(v · v)) = (vv)/(v · v) = (v · v + v ∧ v)/(v · v) = (v · v + 0)/(v · v) = 1.

Now consider a two-dimensional subspace, characterized by a bivector B. For instance, what
is the inverse of 2e1 ∧ e2, where the basis {e1, e2, e3} is orthonormal? In such a basis we have:

e1 e1 = e1 · e1 = 1, etc. and e1 e2 = e1 ∧ e2, etc. (4)

With this, we observe that

(e1 ∧ e2) (e1 ∧ e2) = (e1e2)(e1e2) = e1(e2e1)e2 = −(e1e1)(e2e2) = −1, (5)

so, in the sense of the geometric product: the square of a bivector is negative. Then the inverse
is simple to determine: (2e1 ∧ e2)−1 = − 1

2
(e1 ∧ e2) = 1

2
e2 ∧ e1. In general, in C̀ 3,0

B−1 =
B

B ·B .

The inverse of a pseudoscalar αI3 is also easy. Observe that

I3I3 = (e1 ∧ e2 ∧ e3)(e1 ∧ e2 ∧ e3)

= e1e2e3e1e2e3 = −e2e1e3e1e2e3

= e2e3e1e1e2e3 = e2e3e2e3

= −e3e2e2e3 = −e3e3 = −1

Thus, in our algebra the inverse of αI3 is:

(αI3)−1 = −I3/α.

In GABLE, use inverse() to compute the inverse of a geometric object. As a short-hand
for B*inverse(A), you may write B/A. Note that the geometric product is not in general com-
mutative, so we would write inverse(A)*B as (1/A)*B, which is rarely equal to B/A.
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2.4.3 Duality

The dual of an element A of our geometric algebra is defined to be

dualA ≡ A/I3 = −AI3, (6)

and in GABLE the command dual returns the dual of an object. The dual of a blade representing
a subspace is a blade representing the orthogonal complement of that subspace, i.e., the space
of all vectors perpendicular to it. This is a common construction, and it is great to have it in
such a simple form: just divide by I3.

For example, type the following:

>> clf

>> draw(e1)

>> draw(dual(e1))

The blue arrow represents e1; the green circle represents the dual of e1, which is -e2^e3 as
shown by the following derivation:

dual(e1) = e1I
−1
3 = e1(e1 ∧ e2 ∧ e3)−1

= e1(e1e2e3)−1 = −e1e1e2e3

= −e2e3 = −e2 ∧ e3

The construction is more striking for more arbitrary vectors, of course (see exercises).
Note that for a blade U we have grade (dual(U)) = 3 − grade (U), so that the dual of a

scalar is a pseudoscalar and vice versa: dual(1) = −I3 and dual(I3) = 1 (this is true in any
space and partly explains the name ‘pseudoscalar’ for the n-dimensional volume element).

As a consequence of this rule on grades, the dual relationship between vectors and bivectors
is only valid in 3-dimensional space. In 3-space, we may characterize a plane (which is really
a bivector) dually by a vector; that vector is commonly called the normal vector of the plane.
We now see that it is the dual of the bivector. Indeed, both of the following two equations
characterize the same plane B:

x ∧B = 0 and x · dual(B) = 0.

We recognize the latter as the ‘normal equation’ of the plane B, the inner product of a vector
x with the normal vector n ≡ dual(B) = B/I3.

This is an example of a duality relationship between the outer product and inner product.
Since the outer product produces an element of geometric algebra, we can take its dual. One
can then prove (nice exercise, try it for vectors)

dual(u ∧ v) = u · dual(v) and dual(u · v) = u ∧ dual(v) (7)

for any multivectors u and v from the geometric algebra of the space with the pseudoscalar I3

used to define the dual.
This is a good moment to explain how the 3-dimensional cross product of vectors fits into

geometric algebra. The cross product obeys

u× v = dual(u ∧ v).

You can see this with the following GABLE commands:

>> a = e1+0.5*e2;

>> b = e1+e2+e3;

>> B = a^b;

>> draw(a);draw(b);

>> draw(B,’g’);

>> draw(dual(B),’r’);

>> GAorbiter

Here we see that the red vector is perpendicular to both of the blue vectors. To check that the
dual matches the cross-product, print the dual of B and then use the Matlab cross command
to compute the cross-product of the two vectors.

So we could define the cross product using the above equation. However, we will not do so,
for two reasons. Firstly, the cross product is too particular for 3-dimensional space; in no other
space is the dual of a ‘span of vectors’ a vector of that space. And secondly, its only use is
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to characterize planes and rotations. Geometric algebra offers a much more convenient way to
characterize those, directly through bivectors. We have seen this for planes and we will see it
for rotations soon. Since these bivector characterizations are valid in arbitrary dimensions, we
prefer them to any specific, 3D-only construction. So: we will not need the cross product.

Exercises

1. Determine the subspace perpendicular to the vector e1 + 0.2 e3.

2. Determine the subspace perpendicular to the plane spanned by the vectors e1 + 0.3 e3 and
e2 + 0.5 e3, in one line of GABLE.

3. Prove Equation 7.

4. We used the geometric product to define the dual. We can also make the dual using the in-
ner product (thus directly conveying the intuition of ‘orthogonal complement’). Give such
a formulation of the dual in a way that is equivalent to the geometric product formulation
of the dual and show this equivalence.

2.4.4 Summary

The geometric product is a third product of our geometric algebra. Unlike the inner and outer
products, the geometric product is invertible, which is useful when doing algebraic manipula-
tions. In Section 3, we will see geometric interpretations of the geometric product.

2.5 Extension of the products to general multivectors

We have stated that the inner, outer, and geometric products can be generalized to arbitrary
multivectors. In this section, we will first show how to extend the definition of the geometric
product to general multivectors. Once we have that, it is easy to extend the inner and outer
products.

For general objects of geometric algebra, the geometric product can be defined as follows
(this is not the only way, but it is the most easy to understand). In the n-dimensional vector
space considered, introduce an orthogonal basis {e1, e2, · · · , en}. Use the outer product to
extend this to a basis for the whole geometric algebra (the one containing e1 ∧ e2, etcetera).
Any multivector can be written as a weighted sum of basis elements on this extended basis.
The geometric product is defined to be linear and associative in its arguments, and distributive
over +, so it is sufficient to defined what the result is of combining two arbitrary elements of
the extended basis. We first observe that the desired compatibility with Equation 1 combined
with the orthogonality of the basis vectors leads to

eiej = −ejei if i 6= j (8)

because on the orthogonal basis, effectively eiej equals ei ∧ ej if i 6= j. If i = j, Equation 1
gives the scalar result ei · ei, which in our Euclidean space equals 1.4 So we have

eiei = 1. (9)

This is now enough to define the geometric product of any elements in the geometric algebra.
For instance (2+e1∧e2)(e1 +e2∧e3) is expanded by distributivity over + to 2e1 +(e1∧e2)e1 +
2(e2∧e3)+(e1∧e2)(e2∧e3). The term (e1∧e2)e1 in this equals (e1e2)e1, and by associativity
this equals e1e2e1. We apply Equation 8 to get −e1e1e2, and then Equation 9 to get −e2.
The other terms are computed in a similar way. Note that this definition is heavily based on
the introduction of an orthogonal basis (which is somewhat inelegant); other definitions manage
to avoid that. You may also think that all these expansions make the geometric product an
expensive operation. But the above was just to show how those minimal definitions actually
define the outcome mathematically; a more practical computation scheme using matrices on the
extended basis is what we used to make GABLE (such details may be found in [12, 13]).

Now that we have defined the general geometric product, it is easy to generalize both the
inner and outer products. Both products are linear in their arguments, and so are sufficiently
specified when we say what they do on blades. For instance, if we would want to know the

4 To get a general geometric algebra, of a space with a quadratic form (‘metric’) Q, this is set to some specified
scalar Q(ei), usually taken to be +1 or −1. The sign of Q(ei) is called the signature of ei.
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outcome of (A1 + A2) · (B1 + B2) (where the index denotes the grade of the blades involved),
then this can be written out as A1 ·B1 + A1 ·B2 + A2 ·B1 + A2 ·B2.

For a blade U of grade r, and a blade V of grade s, the definitions for inner and outer
products are:

U ·V = grade(UV, s− r)
U ∧V = grade(UV, s+ r).

Since no element of geometric algebra has a negative grade, the inner product is only non-zero
if s ≥ r.5 Note that the inner product lowers the grade, and the outer product increases the
grade.

For a vector u and an s-blade V, these formulas can be shown to produce:

u ∧V = 1
2
(uV + V̂u) (10)

u ·V = 1
2
(uV − V̂u). (11)

where we used V̂ as a shorthand for (−1)sV (it is sometimes called the grade involution).
Compare this to equations (3) and (2).

Beware: it is not generally true that UV = U ·V + U ∧V; that is only so if U is a vector.
For instance, compute the geometric product of two specific bivectors:

>> (e1^e2)*((e1+e2)^e3)

ans =

-1*e2^e3 + -1*e3^e1

>> inner((e1^e2),((e1+e2)^e3))

ans =

0

>> (e1^e2)^((e1+e2)^e3)

ans =

0

In general, the geometric product of an r-vector and an s-vector contains vectors of grade
|r − s|, |r − s| + 2, · · · r + s − 2, r + s; the inner and outer product specify only two terms of
this sequence, and are therefore only a partial representation of the geometric product (which
contains all geometric relationships between its arguments). For objects other than vectors,
there is much more to geometric algebra than just perpendicularity (inner product) and spanning
(outer product), but in this tutorial we focus on those.

There are some useful formulas permitting the computation of the inner product of multi-
vectors made using the geometric product or the outer product. We state them without proof,
for vectors u and pure blades U, V and W (the general case then follows by linearity).

u · (VW) = (u ·V)W + V̂(u ·W) (12)

u · (V ∧W) = (u ·V) ∧W + V̂ ∧ (u ·W) (13)

(U ∧V) ·W = U · (V ·W) (14)

3 Geometry

In this section we will show how the products of geometric algebra can be used to perform many
geometrical tasks.

3.1 Projection, rejection

Given a subspace and a vector, one operation we commonly need to perform is to find the part
of the vector that lies in the subspace and the part of the vector that lies outside the subspace.
These operations are called projection and rejection respectively. Both are easy to perform with
geometric algebra.

5In this the inner product we use as a default in GABLE deviates from the most commonly used inner product
in geometric algebra, as defined by Hestenes, which has |s − r| rather than (s − r). Our product has a more direct
geometric interpretation, which we will need in the later chapters.
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Let us begin with a vector v and the desire to write it as v⊥ + v‖ relative to a subspace
characterized by a blade M, where v⊥ is the component of v perpendicular to M, and v‖ the
parallel component. Therefore v⊥ and v‖ need to satisfy

v⊥ ·M = 0 and v‖ ∧M = 0.

Thus

v⊥M = v⊥ ·M + v⊥ ∧M

= v⊥ ∧M

= v⊥ ∧M + v‖ ∧M

= v ∧M.

But we can divide by the blade M, on both sides, so we obtain:

v⊥ = (v ∧M)/M (15)

A similar derivation shows that
v‖ = (v ·M)/M. (16)

These are the general projection and rejection formulas for a vector v relative to any subspace
with invertible blade M, in any number of dimensions. Powerful stuff!

It is important to visualize what is going on. Take M to be a 2-blade, determining a plane.
Then v∧M is a volume spanned by v with that plane. It is a ‘reshapable’ volume: any vector v
that has its endpoint on the plane parallel to M, through v’s endpoint, spans the same trivector.
The division by M in the formula for the projection demands the factoring of this volume into
a component M, and therefore returns what is left: the unique vector perpendicular to M that
spans the volume. This is a general property:

Dividing a space B by a subspace A produces the orthogonal complement to A in B.

If A is not a proper subspace, other things happen that we’ll cover later.
These relationships can be seen in GABLE. To begin, clear the graphics screen (clf) and

draw a bivector. For this demonstration, we will use DrawBivector to draw the graphical
representation of a bivector. Next, draw a vector that lies outside the plane of this bivector:

>> clf; B = DrawBivector(e1,e1+e2)

>> v = 1.5*e1+e2/3+e3;

>> draw(v);

To get a better feel for the 3D relationships, use GAorbiter to rotate around the scene a bit.
We can now type our formulas for the perpendicular and parallel parts of v directly into

GABLE and draw the resulting perpendicular and parallel components of v relative to B:

>> %... needs v,B

>> vpar = inner(v,B)/B;

>> draw(vpar);

>> vperp = (v^B)/B;

>> draw(vperp,’r’)

We stated that this computation works for any subspace B. In particular, we can set B to be a
vector, and the same computations for vpar and vperp work. Try this!

As we will see later (but you could try it now), you may project a bivector A onto a bivector
B using the ‘same’ formula: A‖ = (A ·B)/B. However, the rejection of the bivector is now not
obtained by A⊥ = (A∧B)/B, (which is zero since quadvectors do not exist in 3D), but simply
by A⊥ = A −A‖ (a formula that also works in the previous case where A is a vector). More
about the relationships of subspaces in Section 4.

Exercises

1. Redo the example of projection and rejection using the same v as above, but with B=e1+e2.
You will need to use GAorbiter to see the perpendicular relationship, although it can also
be tested non-graphically using inner().

2. Let v = −3e1 − 2e2 and let B = 2e2 ∧ (e3 + 3e1). Compute the projection and rejection
of v by B. Draw v, B, and this projection and rejection. Try this exercise once using
DrawBivector to draw B and a second time using draw to draw B.
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3. With the same v and B as the previous exercise, study how the rejection formula works:
first draw v ∧B using DrawTrivector; as decomposition use v, v ·B and the projection
P((v),B). Then draw that trivector again in a decomposition that uses the rejection.

4. Prove the formula for projection: v‖ = (v ·M)/M.

5. (Not easy!) Using Equations 12, 13 and 14, show that

((a ∧ b) ·M)/M = a‖ ∧ b‖

(still a useful exercise!). This gives two ways to compute the projection of a bivector a∧b
relative to a blade M. Which do you prefer and why?

3.2 Orthogonalization

Geometric algebra does not require the representation of its elements in terms of a particular
basis of vectors. Therefore the specific treatment of issues like orthogonalization are much less
necessary. Yet it is sometimes convenient to have an orthogonal basis, and they are simple to
construct using our products.

Suppose we have a set of three vectors u, v, w, and would like to form them into an
orthogonal basis. We arbitrarily keep u as one of the vectors of the perpendicularized frame,
which will have vectors denoted by primes:

u′ ≡ u.

Then we form the rejection of v by u′, which is perpendicular to u′:

v′ ≡ (v ∧ u′)/u′

Now we take the rejection of w by u′ ∧ v′, which is perpendicular to both u′ and v′:

w′ ≡ (w ∧ u′ ∧ v′)/(u′ ∧ v′)

and we are done. (This is the Gram-Schmidt orthogonalization procedure, rewritten in geometric
algebra.) Here’s an example (no need to type it, use GAblock(1), see section 1.2!):

>> %GAblock(1)

>> % ORTHOGONALIZATION

>> clf;

>> u = e1+e2;

>> v = 0.3*e1 + 0.6*e2 - 0.8*e3;

>> w = e1 -0.2*e2 + 0.5*e3;

>> up = u;

>> vp = (v^up)/up;

>> wp = (w^up^vp)/(up^vp);

>> draw(u); draw(v); draw(w); %% The original vectors ...

>> draw(up,’r’); draw(vp,’r’); draw(wp,’r’); %% ... and orthognalized

>> GAorbiter

You might want to draw the duals to show the perpendicularity of the resulting basis more
clearly (see Exercise 1).

Note that in this construction, v′∧u′ = v′u′ = v∧u, and w′∧v′∧u′ = w′(v′u′) = w∧v∧u,
so that it preserves the trivector spanned by the basis, in magnitude and orientation. Check
this in GABLE:

>> u^v^w == up^vp^wp

ans =

1

As an exercise, you might want to give the algorithm for n-dimensional orthogonalization.

Exercises

1. Convince yourself that up, vp and wp are orthogonal, using graphics routines to explore
their construction. You might for instance draw dual(up), and in that plane study vp and
wp.
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Figure 3: Reflecting v through m.

3.3 Reflection

Suppose we wish to reflect a vector v through some subspace (a vector, a plane, whatever). In
a geometric algebra, this subspace is naturally described by a blade, so we will look at reflecting
v through a unit blade M. If we write v as

v = v⊥ + v‖,

where v⊥ is the part of v perpendicular to M and v‖ is the part parallel to M (we derived
formulas for both in the Section 3.1), then r, the reflection of v through M, is given by

r = v‖ − v⊥.

Using our formulas for the parallel and perpendicular parts of v relative to M, we see that

r = v‖ − v⊥

= (v ·M)M−1 − (v ∧M)M−1

= 1
2
(vM− M̂v)M−1 − 1

2
(vM + M̂v)M−1

= −M̂vM−1.

This is an interestingly simple expression for such arbitrary reflections.
Let us see what the formula yields for specific choices of the blade we reflect in. In 3D, there

are four possibilities for the blades.

• scalar: M = 1
The scalar, viewed as a subspace, is a point at the origin (see Section 2.2.5). And indeed,
our reflection formula yields v → − v, which is clearly a point reflection in the origin.

• vector: M = u
Let the blade M characterize the reflecting subspace be a unit vector u; then the reflection
is relative to a line in direction u. This gives

r = uvu.

An attractive formula for a basic process!

• bivector M = B
For a plane in 3D characterized by a unit bivector B (so that B2 = −1, and therefore
B−1 = −B), we obtain

r = BvB.

We could also write this in terms of the dual to the plane, i.e., the normal vector n defined
as n = BI−1

3 :
r = BvB = nI3vnI3 = nI2

3vn = −nvn.

(It is a good exercise to prove r = −nvn for reflection in a hyperplane dual to n in
arbitrary-dimensional space.)

You can see this in GABLE with the following sequence of commands:
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>> v = e1+2*e3;

>> M = e1^e2;

>> draw(v)

>> draw(M,’g’)

>> draw(M*v*M,’r’)

• volume M = I3

Since Î3 = −I3 and I3 commutes with v, this gives v → v. Reflection in the containing
space is the identity, since v⊥ = 0.

To develop the formula for the reflection of an arbitrary blade of grade k in the blade M of
grade m, first see what happens for the geometric product of the reflection of k vectors:

(−M̂u1M
−1)(−M̂u2M

−1) · · · (−M̂ukM
−1) =

= (−1)kM̂u1M
−1M̂u2M

−1 · · · M̂umM−1

= (−1)k+kmMu1M
−1Mu2M

−1 · · ·MukM
−1

= (−1)k(m+1)Mu1u2 · · ·ukM−1.

Therefore:

X even grade : X→MXM−1

X odd grade : X→ −M̂XM−1

A bit complicated; but that is how reflections are for such subspaces.
By the way, you see from this what happens if you reflect a plane characterized by a bivec-

tor B, relative to the origin: it is preserved. However, its normal would reflect, and that is
undesirable. In the past, when people could only characterize planes by normal vectors, they
therefore had to make two kinds of vectors: position vectors which do reflect in the origin, and
‘axial’ vectors which don’t, and realize that a normal vector is an axial vector. Using bivectors
directly to characterize planes, we have no need of such a strange distinction: the algebra and
its semantics simplifies by admitting objects of higher grade!

Exercises

1. Reflect the bivector B = (e1^e2+2/3*e2^e3+e3^e1/3) through the plane spanned by the
bivector M = e1^e2. Note carefully what happens to the orientation of the bivector. Is
that what you expected?

2. Reflect the pseudoscalar I3 through a bivector. Note the orientation.

3. Do orientation and magnitude of the reflecting blade M matter to the reflection result?

3.4 Rotations

3.4.1 Rotations in a plane

Consider a vector a, and a vector b that is ‘a rotated version of a’. We can try to construct b
as the multiplication of a with some element R of our algebra:

b = Ra,

and since the geometric product with a is invertible we find simply that

R = b/a =
ba

a · a .

This is a bit too general to describe a rotation, since we have nowhere demanded explicitly that
a and b should have the same norm. Therefore ba contains both a rotation and a dilation
(‘stretch’) of the vector a. This is then a possible interpretation for the geometric product: ba
is the operator that maps a−1 to b. (Or, alternatively, b/a is the operator that transforms a
into b.)

For the pure rotation we wished to consider, the length of the rotated vector (and equiva-
lently, the norm of the vector) does not change. To create an R that does not depend on the
length of the vectors we used to construct it, we should construct R using vectors of the same
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norm in the direction of a and b; for instance, both unit vectors. In Euclidean space the inverse
of a unit vector is the vector itself. So then we get: a rotation operator is the geometric product
of two unit vectors (and vice versa).

Try this in GABLE using the following sequence of commands:

>> a = e1;

>> b = unit(e1+e2);

>> R = b/a;

>> clf; draw(a); draw(b);

At this point, we see the vectors a and b drawn in blue. By construction, they are separated by
a 45 degree angle. If you now type:

>> %... needs a,R

>> draw(R*a,’r’);

we see a red vector drawn over-top b, since this is a rotated to become b. Rotating this vector
a second time and looking from above

>> %... needs a,R

>> draw(R*R*a,’g’);

>> GAview([0 90]);

we see that we have rotated a by the angle between a and b (45 degrees) twice, giving rotation
of a by 90 degrees (drawn in green).

You can use this rotation to rotate any vector in the a ∧ b-plane; for instance, if you wish
to rotate c = 2a + b, then you are looking for a vector d such that d is to c as b is to a. In
formula: d/c = b/a, and therefore d = (b/a)c = Rc. Let us try that:

>> %... needs a,b

>> c = 2*a + b;

>> draw(c,’m’);

>> draw(R*c,’m’);

Writing things in their components of fixed grade, the expression for R is (taking a and b
unit vectors)

R = ba = b · a + b ∧ a = cosφ− i sinφ,

where i is the bivector denoting the oriented plane containing a and b, oriented from a to b,
and φ is the angle between them in that oriented plane, so from a to b. Note that if we would
orient the plane from b to a, then i would change sign, and R would only be the same if φ
changes sign as well. So the orientation of i specifies how to measure the angle.

If you have had complex numbers or Taylor series in your math courses, you may realize
that we can write the above as an exponential:

cosφ− i sinφ = e−iφ

This is based on i2 = −1, which is correct since i is a unit bivector in C̀ 3,0 (Equation 5). If
you have not had those subjects, just consider this as a definition of a convenient shorthand
notation in terms of ‘abstract’ exponentials. In fact, there are several equivalent ways of writing
the relationship between a and b, and hence the rotation over the ‘bivector angle’ iφ:

b = e−iφa = aeiφ.

The sign-change in the exponent is due to the non-commutative properties of the geometric
product. So i is not really a complex number: then the order would not have mattered.

As we showed before when rotating the vector c = 2a+b, you can use this formula to rotate
arbitrary vectors in the i-plane over an angle φ as

Rx = e−iφx.

Let us try this, using the geometric exponent function gexp():

>> i = e1^e2;

>> R = gexp(-i*pi/2);

>> a = e1;

>> draw(a); draw(R*a,’r’); draw(a*R,’g’);
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Figure 4: A rotation represented as two reflections.

Note that Ra indeed rotates a over π/2 in the positive orientation direction of the plane e1∧e2

(from e1 to e2), and aR is the opposite orientation (it rotates over −π/2). If you print R, you
will notice that there are some numerical issues: it is not the pure bivector it should have been,
but this affects the result R*a but little. Geometric algebra is numerically stable!

However, if x is not in the i-plane, the formula e−iφx does not produce a pure vector. You
might try this, for instance with b=e1+e3; you will see something a bit surprising. So the above
rotation formulas (Ra and aR) only work for vectors a in the plane in which R is defined; i.e.,
we do not yet have the formula for general rotations in 3-space, which is the topic of the next
section.

3.4.2 Rotations as spinors

There is a better representation of those rotations that keep the i-plane invariant, and which
will work on any vector, whether in the i-plane or not. We construct it by realizing that a
rotation can be made by two reflections. We saw in Section 3.3 that the reflection of a vector x
in a vector a can be written as: axa−1. Following this by a reflection in a vector b we obtain
(take a and b as unit vectors):

b(axa−1)b−1 = (ba)x(ba)−1 = e−iφ/2xeiφ/2,

where i is the plane of a and b (so proportional to a ∧ b) and φ/2 the angle between a and
b. This produces a rotation over φ, as you may find by inspecting Figure 4 or writing out the
shorthand explicitly. In doing this, it is convenient to split x in components perpendicular and
contained in i, and to use that x⊥i = ix⊥ (since x⊥ · i = 0) and x‖i = −ix‖ (since x‖ ∧ i = 0):

e−iφ/2xeiφ/2 = (cos(φ/2)− i sin(φ/2))x(cos(φ/2) + i sin(φ/2))

= (cos(φ/2)− i sin(φ/2))(x⊥ + x‖)(cos(φ/2) + i sin(φ/2))

= (cos2(φ/2)− i2 sin2(φ/2))x⊥ + x‖(cos2(φ/2)− sin2(φ/2) + 2 sin(φ/2) cos(φ/2) i)

= x⊥ + x‖(cos(φ) + sin(φ)i)

= x⊥ + x‖e
iφ

So the perpendicular component is unchanged, and the parallel component rotates over φ.
Therefore the rotation of x over φ in the i-plane is given by the formula

x→ e−iφ/2xeiφ/2.

This formula represents the desired rotation. Let us try the last example of the previous section
(a 90 degree rotation in the e1 ∧ e2-plane) again, now properly using the new formula:
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>> i = e1^e2;

>> R = gexp(-i*pi/2/2); %note the half angle!

>> a = e1;

>> b=e1+e3;

>> Ra = R*a/R;

>> Rb = R*b/R;

>> draw(a,’b’); draw(Ra,’b’);

>> draw(b,’r’); draw(a^b,’g’); draw(R*(a^b)/R,’g’);

The new formula easily extends to arbitrary multivectors, as follows. Suppose we want to rotate
cd. We can perform this rotation by rotating c and d independently and multiplying the results.
But this is simply (

e−iφ/2ceiφ/2
) (

e−iφ/2deiφ/2
)

=
(
e−iφ/2cdeiφ/2

)
.

Linearity of the rotation permits us to rotate sums of geometric products using this formula;
and since that is all that inner products and outer products are (see Equations 10 and 11), the
formula applies to those as well. Therefore, characterizing a rotation R by R = e−iφ/2, we can
use it as

X→ RXR−1

to produce the rotated version of X, whatever X is.

>> %... needs a,b,R

>> draw(a^b,’g’); draw(R*(a^b)/R,’g’);

>> draw(b^Rb,’m’); draw(R*(b^Rb)/R,’m’);

The object R = e−iφ/2 is called a spinor (or sometimes a rotor). It is all we need to characterize
a rotation in n dimensions. Composition of rotations (independent of what we are going to
rotate) is then just a multiplication of their spinors. For rotating X first by R1 and then by R2

gives:
R2(R1XR

−1
1 )R−1

2 = (R2R1)X(R2R1)−1

which is a new rotation using the spinor R = R2R1. Be careful, though: spinors do not commute,
so you cannot simply say e−i2φ2e−i1φ1 = e−(i2φ2+i1φ1).

Exercises

1. On paper and on the computer, make an operator that implements a rotation of 90 degrees
around the e1 axis, followed by 90 degrees around the e2 axis. After you have constructed
it, write it in exponential form again (on paper only) – this should give you the effective
total rotation, in terms of a rotation plane and an angle. (Use GAview([135 -45]) to
bring the view more or less along the effective rotation axis.)

2. Repeat the same exercise using rotation matrices; especially the final step of retrieving
axis and angle is quite a bit more work!

3. Draw, rotate and draw a bivector, and make sure your intuition keeps up with these results!

4. What happens when you rotate a trivector? Can you prove that?

3.4.3 Rotations around an axis

In the previous section, we took a rotation in the plane and extended it to a rotation in 3-space.
However, we can also characterize rotations in 3-dimensions by an axis and an angle. You may
wonder how this 3-dimensional rotation is related to the above rotation.

The answer: it is simply related by duality. We can rewrite the bivector iφ/2 (the rotation
plane and angle) as

iφ/2 = (iφ/2)I−1
3 I3 = (dual(i)φ/2)I3 = (uφ/2)I3 = I3uφ/2,

with u ≡ dual(i) the unit vector dual to i. It is the rotation axis. Thus a rotation in 3D may
be characterized by a vector of length φ/2 along the axis u:

R = e−iφ/2 = e−I3uφ/2

A very handy formula, all you need is uφ to get a computable representation of the rotation! This
is natural, much more so than rotation matrices in which the axis is hidden as the eigenvector
of eigenvalue 1, and the angle in the complex eigenvalues or the trace. (Beware: in higher



GABLE Version 1.3 (revised tutorial) 28

dimensions, this rewriting does not work, and you will have to use the bivectors. For instance
in 4-dimensional space the dual of the bivector characterizing the rotation plane is a bivector;
rotations in 4D do not have an axis).

Obviously, all this is similar to the cross product trick, which is also valid in 3D only. We
have seen that a × b = dual(a ∧ b), so that u = dual(i) can be written as the cross product
of two vectors in the i-plane. However, the characterization of rotation by a bivector works in
arbitrary dimensions, and is therefore a good habit even in 3D.

To move back and forth between the spinor in exponential form, and the argument of the
exponential, it is convenient to have an inverse of the exponential, i.e., a logarithm. This inverse
is not unique, since if R = exp(iφ/2), then also exp(iφ/2 + 2πi) = R; so the logarithm of
a spinor has multiple values (those of you familiar with complex analysis may recognize the
phenomenon). In the implementation for the logarithm of a spinor we choose the value of the
bivector between −πi and πi; this is the function sLog(). You see it used in the exercise below.6

Exercises

1. Verify that the following code is an implementation of the first exercise of the previous
section. Note especially how we retrieve the direction of the effective rotation axis.

>> %GAblock(2)

>> % ROTATION EXERCISE

>> clf;

>> R1 = gexp(-I3*e1*pi/2/2);

>> R2 = gexp(-I3*e2*pi/2/2);

>> R = R2*R1;

>> a = e1+e2;

>> Ra = R*a/R;

>> RRa = R*Ra/R;

>> draw(a); draw(Ra,’m’); draw(RRa,’r’); %% Draw the objects

>> axisR = unit( -GAZ(sLog(R))/I3 );

>> draw(axisR,’g’); % Draw the axis of rotation

You may be able to visualize things a little better using the bivector of the rotation plane:

>> %... needs axisR

>> draw(dual(axisR),’g’);

3.5 Orientations in 3-space

When a vector, bivector, or other geometric element is rotated relative to another element, we
can use that to encode orientation. This representation is itself an element of the geometric
algebra. Here is how that works, in a Euclidean space.

3.5.1 Interpolation of orientations

Interpolation between orientations in 3-space is a notorious problem; often required, but not
easy to do tidily in many a classical representation. In geometric algebra, the problem is fairly
easily solved – about as easily as it is stated. First, we characterize orientations in terms
of rotation operators, in a coordinate-free manner. The idea is straightforward: when you
consider an object to have a certain orientation, what you mean is that relative to its standard
orientation (whatever that may be), it has undergone some rotation R. So its orientation may be
characterized by this rotation R. If we have two orientations, then these may be characterized
by two rotations RA and RB . A smooth interpolation between these two orientations may then
be achieved by n intermediate identical rotation operators R, to be applied to RA, so that the
subsequent rotations are

R0 = RA; Ri+1 = RRi; Rn = RB .

The intermediate orientations of whatever object X we wanted oriented are then RiXR
−1
i ,

for i = 1, · · · , n. With this specification of the manner of rotation (n identical operators) the
problem can be solved in a fairly straightforward manner.

6If you use sLog on a non-unit spinor S, then there is an additive scalar term equal to log(|S|), in agreement with
the usual behavior of the logarithm on products.
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The total rotation to be made by the n operators R is the rotation from RA to RB , which
is RBR

−1
A . This should equal Rn, so we have

Rn = RBR
−1
A = e−I3aφ/2,

where a and φ follow from RB and RA (see below for an example). The solution is then

R =
(
e−I3aφ/2

)1/n
= e−I3aφ/(2n).

Taking the n-th root of a spinor can be done by taking its logarithm using sLog (giving the
argument of the exponential), dividing by n, and then exponentiating.

The following example shows the computations to implement this. Let RA be the orientation
achieved from some standard orientation by a rotation over Ie1π/2, and let RB be the rotation
Ie2π/2. Let us say that the aim is to get from RA to RB in eight intermediate steps. We
compute:

>> %GAblock(3)

>> % INTERPOLATION OF ORIENTATIONS

>> clf;

>> RA = gexp(-I3*e1*pi/2/2);

>> RB = gexp(-I3*e2*pi/2/2);

>> Rtot = RB/RA

>> n = 8; % we rotate in 8 steps

>> R = gexp(sLog(Rtot)/n);

To demonstrate the correctness, we need an object that shows the orientations. So we choose
to draw some bivector u^v in orientation RA and RB, and show the intermediate orientations.

>> %... needs n, R, RA, RB

>> u = e1+e2-e3;

>> v = e1+e3;

>> view = [-0.6 2.5 -1 1.16 -2 1.1]; % select the view

>> % === initial orientation:

>> DrawBivector(RA*u/RA,RA*v/RA,’b’); axis(view); GAview([30 30]); %%

>> % === final orientation:

>> DrawBivector(RB*u/RB,RB*v/RB,’g’); axis(view); %%

>> axisR = unit(GAZ(-sLog(R)/I3)); % reorientation axis:

>> draw(axisR,’r’); %% displayed for visualization

>> % === display of the 7 intermediate orientations

>> Ri = RA;

>> for i=1:n-1

>> Ri = R*Ri;

>> ui = Ri*u/Ri;

>> vi = Ri*v/Ri;

>> DrawBivector(ui,vi);

>> drawnow;

>> end

>> GAorbiter(125);

This gives a result similar to Figure 5. Make sure you understand the reason behind these
steps (the drawnow command forces Matlab to display the draw commands in DrawBivector;
without this command, nothing would be displayed until the for loop was exited). If you have
learned about quaternions before, you may realize that the above geometric algebra approach
to interpolating orientation is equivalent to unit quaternions (see also next section). For most
people, those are an isolated technique; you may now appreciate how they are a natural part of
the algebraic structure of the 3-dimensional space.

Exercises

1. Verify the axis and angle in the example above by hand.

2. What happens in the example if one of the rotations, say RB , was over 180 degrees, so
ψ = π. Is the solution still well-behaved?

3. What happens if RA and RB occur in the same plane?
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Figure 5: Interpolation of orientations for a bivector.

3.6 Complex numbers and quaternions: subsumed

So rotations are characterized by the plane in which they occur; those planes are characterized
by bivectors; and combinations of rotations are represented by geometric products of these
bivectors. If you have heard of complex numbers and quaternions, you know that those may
also be used to do rotations, in the plane and in space, respectively. How does this compare
to the geometric algebra method? Surprisingly, the answer is: it is exactly the same (but in a
richer context)!

Algebraically, we may observe that the linear space C̀ 3,0 has several interesting subspaces
with corresponding sub-algebras. In particular, consider the subspace spanned by {1, e1 ∧ e2}
on an orthonormal basis e1, e2, e3. The product of e1 ∧ e2 with itself is

(e1 ∧ e2)(e1 ∧ e2) = e1e2e1e2 = −e1e1e2e2 = −1.

Thus in this subspace, the bivector e1 ∧ e2 has similar properties to the complex number i,
and we see that indeed we can use this linear subspace of our geometric algebra spanned by 1
and e1 ∧ e2 as the complex numbers, with their product represented by the geometric product
(at least if we are careful about the order, due to difference in the commutative properties of
the two algebras). Within geometric algebra, these can be seen as operators, which can act on
geometrical subspaces represented by vectors, bivectors, trivectors or scalars. Complex numbers
can only multiply each other, not ‘operate’ on other objects such as vectors.

Now consider the subalgebra spanned by {1, e1 ∧ e2, e2 ∧ e3, e1 ∧ e3}. The analysis of the
previous paragraph shows that

(e1 ∧ e2)2 = (e2 ∧ e3)2 = (e1 ∧ e3)2 = −1,

Further, we have

(e1 ∧ e2)(e2 ∧ e3) = e1 ∧ e3

(e2 ∧ e3)(e1 ∧ e3) = e1 ∧ e2

(e1 ∧ e3)(e1 ∧ e2) = e2 ∧ e3

and changing the order in which we multiply these bivectors changes the sign of the result. In
other words, with the identification i = e1 ∧ e2, j = e2 ∧ e3, and k = e1 ∧ e3 we get:

i2 = j2 = k2 = −1, i j = k, j k = i, k i = j.

You may recognize this: they are the defining equations of quaternions, usually introduced as a
special ‘number system’, somehow mysteriously handy for computations with rotations.
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Figure 6: A line described by offset p and tangent v, with moment V.

Now we see that the basic ‘complex numbers’ occurring in quaternions are actually a basis
of bivectors in the geometric algebra C̀ 3,0. Those seemingly imaginary numbers are actually
real spatial planes in disguise, and their product is just the geometric product. Not a big sur-
prise, then, that quaternions are so useful in describing orientations: quaternions are actually
disguised spinors representing the rotation planes, and their products therefore represent succes-
sive rotations. Within the same framework, we can now also represent the objects on which the
rotations need to act, and that is a significant improvement over the quaternion representation.

3.7 Subspaces off the origin

3.7.1 Lines off the origin

You may have noticed that most of the objects we have drawn are based about the origin.
Vectors start from the origin, bivectors and trivectors contain the origin. It is possible, however,
to describe objects that are not centered at the origin, basically by adding a vector, bivector,
etcetera to offset them to where we desire. Let’s see how.

We have already seen that a blade B characterizes a subspace through the outer product,
as follows: the equation

x ∧B = 0

holds if and only if x is linearly dependent on the vectors ‘in’ the blade. So in particular, if the
blade is a vector v, the equation x ∧ v = 0 characterizes the vectors of points on the line in
direction v, through the origin. Its parametric solution is x = τv, for any real number τ .

To characterize a line off the origin, through a point p, we simply translate x, i.e., we let
x− p satisfy the line equation. This gives

x ∧ v = p ∧ v

as the implicit equation of the line parallel to v, through p. So all points x on the line span the
same bivector with v. A line is thus implicitly characterized by a vector v (called the tangent)
and a bivector V ≡ p∧v (called the moment), and determined by an arbitrary vector p on the
line. These terms are illustrated in Figure 6.

This implicit characterization of the line leads to a parametric specification of the points on
it, which is

x = (p ∧ v)/v + τv.

You may recognize in the first term the rejection of p by v, i.e., the perpendicular support vector
of the line. It can also be written in terms of the moment as V/v. The variable τ is a real
number; as it varies from −∞ to +∞ we obtain all points on the line.

(For those interested, here is how the parametric equation is obtained from the implicit
equation x ∧ v = V. First write it as: xv = V + x · v, then divide out v to obtain: x =
V/v + (x ·v)/v = V/v + (x ·v−1)v. Now recognize that x ·v−1 is a real number taking values
between −∞ and +∞, effectively specifying for each point x its characterizing parameter; call
it τ , and you have the parametric equation.)

So for example, if we want a line parallel to v = e2 that passes through p = e1 + e2, we are
interested in all vectors x satisfying the equation x ∧ e2 = (e1 + e2) ∧ e2 = e1 ∧ e2. Obviously
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x = e1 + τe2 is the parametric solution, and this is readily verified:

x ∧ e2 = (e1 + τe2) ∧ e2 = e1 ∧ e2 = (e1 + e2) ∧ e2,

for all real numbers τ . For example, e1 + 2e2 lies on our line. We can test this in GABLE by
checking that the equation is satisfied:

>> (e1+2*e2)^e2 == (e1+e2)^e2

ans =

1

We can give a graphic illustration of the bivector equality characterizing a line by using DrawBivector.
First draw the defining bivector for the line, i.e., its moment:

>> DrawBivector(e1,e2);

Next let’s draw the corresponding bivectors for two more pieces of the line:

>> %...

>> DrawBivector(e1+e2,e2);

>> DrawBivector(e1+2*e2,e2);

What we see in this figure is that the green arrows (which connect points on the line) are
collinear.

By varying τ in the parametric equation, we can sample points along the line. We have
written a routine called DrawPolyline() that will draw the piecewise line segment, in a ‘connect
the dots’ fashion. As arguments, DrawPolyline takes a cell array of geometric objects that are
all vectors, and draws the piecewise line segment that connects the tips of these vector arguments
(in Matlab, a cell array is a list of items enclosed in ‘{}’). We can use DrawPolyline to draw
a portion of our line. We begin by clearing the screen and redrawing the bivector representing
our line:

>> clf; DrawBivector(e1+e2,e2);

Next, we use DrawPolyline to draw part of the line x = e1 + τe2:

>> %...

>> DrawPolyline({e1,e1+3*e2,e1+7*e2});

The tips of the three vectors listed should be collinear, as indicated pictorially by DrawPolyline.
To see that the tips of the vectors e1+3*e2 and e1+7*e2 are on the line, draw them using draw.

3.7.2 Planes off the origin

For planes, we just use a bivector as characterizing the tangent blade B. That gives

x ∧B = p ∧B

as the equation characterizing all vectors x of points on the plane with tangent B and moment
p ∧B (i.e., passing through p). We can show this graphically:

>> p = e1; b1 = e2; b2 = e3;

>> DrawTrivector(b1,b2,p);

>> DrawTrivector(b1,b2,p+b1);

>> DrawTrivector(b1,b2,p+b2);

>> DrawTrivector(b1,b2,p+b1+b2);

This shows pictorially that all these trivectors have a common bivector (which is b1^b2), and
all the same moment; so the position vectors p, p+b1, p+b2, p+b1+b2 all lie in the same plane.
Use GAorbiter and try GAview([0 60]) to help see that the tips of these four red vectors are
coplanar.

You may derive that the perpendicular support vector is now (p ∧B)/B.
The parametric equation of the plane involves two scalar parameters (this is a slightly more

advanced subject; read the rest of this section only if you are interested). Let B = b1 ∧ b2

with b1 and b2 orthogonal so that we may even write B = b1b2, then starting from the
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Figure 7: Intersection of two lines.

parametric equation derived similarly to that of the line, we rewrite using the inner product
identity x · (b1b2) = (x · b1)b2 − (x · b2)b1 (which is equation 13):

x = (x ∧B)/B + (x ·B)/B

= (p ∧B)/B + (x ·B)/B

= (p ∧B)/B + (x · (b1b2))B−1

= (p ∧B)/B + ((x · b1)b2 − (x · b2)b1) B−1

= (p ∧B)/B + (x · b1)b2B
−1 − (x · b2)b1B

−1

= (p ∧B)/B + (x · b1)b−1
1 + (x · b2)b−1

2

= (p ∧B)/B + (x · b−1
1 )b1 + (x · b−1

2 )b2

= (p ∧B)/B + τ1b1 + τ2b2,

with the appropriate definitions of τ1 ≡ (x · b−1
1 ) and τ2 ≡ (bx · b−1

2 ).

3.7.3 Intersection of two lines

Suppose we have two lines in a plane (but not through the origin) and we wish to find their
intersection. For example, as illustrated in the left half of Figure 7, suppose we have the two
lines described by

x ∧ u = p ∧ u

x ∧ v = q ∧ v

In this figure, we draw p and q emanating from the origin, and u and v emanating from the
heads of p and q respectively to indicate the direction of the lines.

Rearranging to get the diagram on the right half of this figure, we see that the intersection
is given by U + V, where U and V are scaled versions of u and v respectively. What we need
to find are the two scale factors. But from the figure, we see that the scale factor needed to
scale u to U is given by the ratio of the area of the parallelogram defined by U and v (which is
q ∧ v) to the area of the parallelogram defined by u and v (which is u ∧ v). These quantities
thus come immediately from the outer product, and we using the symmetric construction to get
the scale factor for V, we see that the intersection is given by

q ∧ v

u ∧ v
u +

p ∧ u

v ∧ u
v. (17)

Note here that the outer products in each ratio are bivectors whose area is the area of the
parallelogram spanned by the two vectors. When we divide a bivector by a parallel bivector,
the bivector parts cancel, leaving only the ratio of the two scalar components. Here is an
example of application of Equation 17:

>> %GAblock(4)

>> % LINE INTERSECTS LINE

>> p = e2; u = 0.2*e2 + e1;
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>> q = e1; v = e2-2*e1;

>> clf;

>> draw(p); GAview([0 90]);

>> DrawPolyline({p-2*u,p+2*u});

>> draw(q,’g’); DrawPolyline({q-v,q+2*v},’g’);

In this diagram, we have drawn two lines, one in blue and one in green. Now draw

>> %...

>> U = (q^v/(u^v)) * u

>> V = (p^u/(v^u)) * v

>> draw(U,’m’) %% Draw U

>> draw(V, ’m’) %% Draw V

>> draw(U+V, ’r’ ) % Draw U+V

Here we see the magenta vectors are scaled versions of the u and v directions of the lines. The
sum of the magenta vectors is the red vector, which points to the intersection point of the two
lines.

Exercises

1. Intersect the line x ∧ (e1 + 2e2) = 0 with the line x ∧ (e2 − e1) = (e1 + e2) ∧ (e2 − e1).
Draw a picture similar to the one above.

2. What happens to the above intersection code if one of the lines passes through the origin
(e.g., p=0;)? Does it still work? Why or why not?

3. What happens to the above intersection code if the lines are parallel (i.e., u = v)? Try
this in GABLE. Later we will see line intersection code that does not have this problem.

4. As a guess for the formula specifying the intersection point of a line x ∧ u = p ∧ u and a
plane x ∧V = q ∧V (where V is the bivector tangent of the plane), try:

q ∧V

u ∧V
u +

p ∧ u

V ∧ u
V

on some examples. Did it work? Can you see why, geometrically?

3.8 Summary

In this section, we have studied geometric computations. Using the three products, we have
seen how to compute projections, rejections, reflections and rotations. We also looked at lines
off the plane, and saw how to use the geometric operations to intersect these lines.

4 Blades and subspace relationships

Blades are the fundamental objects in geometric algebra. We have seen how a k-blade is formed
by taking the outer product of k independent vectors. We have also shown that a blade represents
a k-dimensional subspace containing the origin. In the next section, we present a trick to make
blades represent subspaces off-set from the origin. That obviously makes blades very relevant
objects in geometric algebra, and their geometry worthy of a separate study.

In this section, we determine the operations required to assess the relative positions of blades:
how they project onto each other, how they can be decomposed relative to each other, and how
they intersect. This intersection will necessitate the definition of a new kind of product in
geometric algebra, the meet, and a related product, the join, as geometric union.

4.1 Subspaces as blades

Picture, in your mind, two blades; they can be a vector and a bivector, two vectors, two bivectors,
or they may even be scalars (blades of grade 0). As you visualize them in the way we have done,
you actually make each of those k-blades characterize a k-dimensional subspace, through the
equivalence

vector x in subspace determined by A ⇔ x ∧A = 0.
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Figure 8: Subspace A and its geometric relationship relative to a subspace B, for several relative
grades and positions.

This interpretation of blades is not specific on sign or magnitude of A, so by themselves,
subspaces have no significant sign or magnitude. For now, we can think of subspaces as ‘blades
modulo a multiplicative scalar’ – but we’ll keep in mind that geometric algebra would allow us
to be more quantitative about subspaces than we may have been used to. By the way, note that
a scalar blade A yields the equation x = 0, so that it represents a point at the origin.

We would like to encode the following relationships of subspaces into geometric algebra:

• projection of subspaces onto each other, and its counterpart: rejection of subspaces by each
other

• intersection of subspaces, including how ‘orthogonal’ this intersection is

• ‘union’ of subspaces: common span, or common superspace, with some measure of their
degree of parallelness

• the ‘sides’ of a space split by a subspace

• a distance measure between subspaces

We will see that a limited set of operators can express all these concepts, and that they are
composed of the products we have defined so far.

4.2 Projection, rejection, orthogonal complement

Consider the examples of the subspaces sketched in Figure 8. It depicts subspaces A and B
of various grades, and some subspaces derived from their geometric relationships. We will now
find the corresponding formulas.

We have already mentioned before, in Section 3.1, that the projection of a blade A onto a
blade B is given by the formula

proj(A,B) ≡ (A ·B)/B.

We interpret this as the projection formula for subspaces: it gives the component of A entirely
in B.7 This projection is the inner product divided by B, which is like the dual in the B-
plane of the inner product. The inner product A · B by itself therefore also has geometric
significance: it is the orthogonal complement, within B, of the projection of A. We will denote
it by comp(A,B) if we mean to imply this meaning. You may want to think of it as ‘the part
of B not contributing to A’,

The ‘perpendicular’ part of A to B is the rejection, it is the component of A not in B:

rej(A,B) = A− proj(A,B) = (AB−A ·B)/B (18)

Only when A is a vector a can we write this as rej(a,B) = a− proj(a,B) = (aB− a ·B)/B =
(a ∧ B)/B, and even then there are problems in 1-dimensional space; it is better to use the
universal Equation 18.

So the relationship of two subspaces A and B split into three parts:

• The projection proj(A,B) of A onto B, which equals (A ·B)/B.

• The rejection rej(A,B) of A by B, which is A− proj(A,B); it projects to zero, which we
may express by saying it is the part of A perpendicular to B.

7If you use the Hestenes inner product, you have to perform an extra test to make sure that you have the blade
with smallest grade as first argument, or this interpretation will not work. Our use of the contraction as inner product
requires no such testing.
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projection rejection ‘complement’
proj(A,B) rej(A,A) comp(A,B) description

= (A ·B)/B = A− (A ·B)/B A ·B
scalar 0 `-blade A is a scalar
k-blade 0 (`− k)-blade A lies in B
k-blade 0 scalar A and B coincide
k-blade k-blade (`− k)-blade ` 6= k: in general position
k-blade k-blade scalar non-trivial intersection

0 k-blade 0 A perpendicular to B

Table 2: Relationship between two subspaces A (of grade k) and B (of grade ` ≥ k).

• The complement comp(A,B), which is the part of B orthogonal to A and its projection;
this is the subspace A · B. This is a new concept; you see how it is an atom in the
construction of the projection. (Proof of orthogonality to A is easy using Equation 14:
A · (A ·B) = (A ∧A) ·B = 0 ·B = 0.)

Depending on how they relate, some of these subspaces may be zero, or identical to A. Such
events define the various relative situations of A and B, see Table 2 and Figure 8.

Let us play with this in 3 dimensions:

>> A = e1-e2/2+e3; % a line

>> B = e1^(e2+e3/2); % a plane

>> cAB = inner(A,B);

>> pAB = cAB/B;

>> rAB = A - pAB;

>> clf; draw(A,’b’); draw(B,’g’);

>> draw(cAB,’r’); draw(pAB,’c’); draw(rAB,’m’);

(use GAorbiter for interpretation!). Now replace B by the line e1/2+e2+e3/3 (or a line of your
choice) and run the same commands. Note that projection and rejection are as expected, and
that the orthogonal complement to A in B is now a scalar (printed in red above the figure). The
point at the origin is indeed the only subspace of B and ‘orthogonal’ to both A and its projection.

Now do the same on two non-identical planes, for instance A = e2^(e1+e3) and B = e1^(e2+e3/2),
and interpret the results. (As you may see, the magnitudes of the bivectors are somewhat diffi-
cult to interpret using the draw command. We’ll soon use DrawBivector instead, but then we
first need to find the intersection of the planes, to span them nicely.)

This subspace interpretation casts an interesting new light on the inner product of vectors.
We have seen that a scalar is, geometrically, the representation of a point at the origin. The inner
product u ·v of two vectors u and v is the subspace of v which is the orthogonal complement of
u; and geometrically, that is the point at the origin, on the line determined by v. So the inner
product of two vectors is a weighted point...

If you want to stretch your intuition for generalization to new limits, use the space itself for
B, so take B = I3 and take A to be a line, and then a plane. Verify what you see by computation!
Why does the dual subspace appear? Can you make yourself see and feel that the rejection of
A from 3-space is 0, which is ‘not even a point’?

The same formulas and interpretation are still applicable when A and B are coincident spaces:
play around with B = 2*A, choosing a line, plane or I3 for A. What is the projection now?

What you may learn from all this is that geometric algebra has no special cases for computing
such geometric relationships. It is not always easy to find the characterization in words of what
is computed since it may not be a classically recognized concept (our notion of ‘orthogonal
complement of A in B’ is a bit of a stretch), but we have found it rewarding to add the
outcomes of straightforward computations as a elementary concepts to our intuition.

4.3 Angles and distances

A vector x has several relevant relationships with respect to a planar or linear subspace A in
3-space such as its incidence angle, the distance of its tip to the subspace, and the ‘side’ it lies
on. With projection and rejection, these are easy to compute.
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• perpendicular distance
The perpendicular distance is obviously the length of the rejection |(rej(x,A))| = |(x− (x ·A)/A)| =
|((x ∧A)/A)|.

• side
The quantity x ∧A is the space spanned by x and A; we can compare this to the blade
we might already have for this subspace to determine whether x lies on the ‘positive’ or
‘negative’ side of A. If A is a 2-blade, then x ∧ A is a 3-blade (or zero, in which case
x lies in A). So we can compute the side as the sign of the scalar (x ∧ A)/I3. If A is
one-dimensional, there is no natural orientation to give to the 2-blade x ∧A: so a line in
3-space has no sides (for a point – it does induce a sense in lines).

Note that the side is closely related to the perpendicular distance: for the plane we can
write I3 = nA, with n the normal vector of A (so that n ·A = 0). Then (x ∧A)I−1

3 =
(x ∧ A)/A/n = rej(x,A)/n. Since the rejection and n are parallel, this is a scalar,
expressing the perpendicular distance in units of n (if you take x = n, you get 1). So for
a point relative to a plane, we obtain a signed distance, and that is often more useful than
just the absolute value of the perpendicular distance.

• angle
The angle of a vector relative to a line or plane is characterized by the ratio between its
rejection and projection, which is like the tangent function from trigonometry:

rej(x,A)

proj(x,A)
=

x ∧A

x ·A .

The magnitudes of x and A cancel, so it is properly independent of scale. Note that we
have not taken norms, so that the result is a bivector (it is the ratio of a (k+1)-blade and a
(k− 1)-blade, so a 2-blade). We may write the outcome as i tanφ. This explicitly gives us
the plane i in which the angle is to be measured, and it cancels the bothersome ambiguity
of sign which the use of a tangent always involves. The above expression computes i tanφ,
and if you wished to interpret the angle in the oppositely oriented plane −i, the value of
the tangent function (and therefore the angle φ) automatically changes sign. As we have
seen when treating rotations, angles are essentially bivectors! (It is even possible to extend
the trigonometric functions naturally to geometric algebra; then the formula may be said
to compute tan(iφ), see [7]).

Let us try this out:

>> % GAblock(5)

>> % PROJECTION, REJECTION

>> x = e1 + e2/2+e3;

>> A = e2 + e3/3; % a linear subspace

>> xA = geoall(x,A);

>> clf; draw(x,’b’); draw(A,’g’); %% Draw A and x

>> DrawPolyline({xA.rej,xA.rej+xA.proj,xA.proj},’k’);

>> draw(xA.rej,’m’); draw(xA.proj,’m’); %% Draw rej and proj

>> distxA = norm(xA.rej)

>> tanglexA = xA.rej/xA.proj

>> anglexA = atan(norm(tanglexA))*180/pi %%

>> B = e1^A; % A planar subspace (containing A)

>> xB = geoall(x,B);

>> draw(B,’y’); %%

>> DrawPolyline({xB.rej,xB.rej+xB.proj,xB.proj},’k’);

>> draw(xB.rej,’r’); draw(xB.proj,’r’); %% rej and proj for B

>> distxB = norm(xB.rej)

>> tanglexB = xB.rej/xB.proj

>> anglexB = atan(norm(tanglexB))*180/pi

>> side = sign((x^B)/I3)

By the way, the GABLE code GA(0) creates the geometric zero object.

Exercises

1. What do you get if you compute these quantities relative to a 0-dimensional subspace
A = 2, or relative to the total 3-space A = I3? Can you interpret those outcomes
sensibly?
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2. If you add ‘1’ to the bivector we computed above, you get an operator which (under post-
multiplication) rotates and scales x to be in the subspace A. Why? Check this for the
subspaces in the GABLE example above.

3. In 3-dimensional space, the relative orientation of two planes is also determined by an
angle. Can you give a formula for the value of its tangent function?

4.4 Intersection and union of subspaces: meet and join

In the example of the two planes:

>> % GAblock(6)

>> % MEET, JOIN

>> A = e2^(e1+e3);

>> B = e1^(e2+e3/2);

>> cAB = inner(A,B); pAB = cAB/B; rAB = A - pAB;

>> clf; draw(A,’b’); draw(B,’g’); %%

>> draw(cAB,’r’); draw(pAB,’c’); draw(rAB,’m’);

we see that the formulas so far do not determine their line of intersection. Such an intersection
between subspaces is obviously something we often need; so we need to make it computational.

First, how do we determine that a subspace A has a non-trivial intersection with subspace
B? In such a case, there is at least a 1-dimensional subspace c in common. Rewriting the
blades in the form A = A′ ∧ c and B = c ∧ B′, we see that A ∧ B = (A′ ∧ c) ∧ (c ∧ B′) =
A′ ∧ (c ∧ c) ∧B′ = A′ ∧ 0 ∧B′ = 0. So we find:

A and B have non-trivial intersection ⇔ A ∧B = 0.

Of course the fact that A ∧B = 0 may mean that there are several independent 1-dimensional
subspaces in common; A and B might even coincide completely. Let us suppose that C is a
largest common subspace of A and B (in the sense of: the highest dimensionality, so the highest
grade). Then we can write A = A′ ∧C and B = C ∧ B′, so we can ‘factor out’ the common
subspace C. (The weird order is to get better signs later on.)

The common subspace C is the ‘intersection’ of the two subspaces A and B. We would like
to define an operation in geometric algebra that produces it; let us call that the meet operation.
It is thus defined by:

If A and B can be factored using a highest grade sub-blade C as A = A′∧C and B =
C ∧B′, then their meet is meet(A,B) = C.

We have indeed implemented such an operation:

>> %... needs A,B

>> mAB = meet(A,B)

>> clf; draw(A,’b’); draw(B,’g’); draw(mAB,’y’);

However, you should be somewhat careful with using its outcome. The problem is that the
factorization is not unique, and so neither is the meet. Since C is a blade indicating a subspace,
any multiple γC is just as valid, and that would produce a meet of γC. We could demand
|C| = 1 (at least in Euclidean spaces), but that would still leave the sign undetermined. The
outcome of the meet is therefore a strange ‘object’: it has no well-defined sign. Its meaning as
a subspace is perfectly clear (x is in C iff x ∧C = 0), but as a blade it is ambiguous: it has no
unique orientation that can be established on the basis of A and B alone.

If we consider C in the context of the superspace spanned by A and B, we can be more
specific on its orientation. This common superspace is like a union of the spaces A and B. It
is often called the join of A and B, and we define it through the factorization we had before:

If A and B can be factored using a highest grade sub-blade C as A = A′∧C and B =
C ∧B, then their join is: join(A,B) = A′ ∧C ∧B′ (= A′ ∧B = A ∧B′).

This we have also implemented:

>> %... needs A,B

>> jAB = join(A,B)

>> draw(jAB,’k’);
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Obviously, in this case of two distinct 2-blades in 3-space, it is proportional to I3. If A and B
would be disjoint, then join(A,B) is proportional to A ∧B.

Again, the problem is that the factorization is not unique, and replacing C by γC now
changes the join by a factor of 1/γ. Thus we have the problem of assigning a magnitude to the
join, as we did for the meet. Although we have no mechanism in geometric algebra to fix the
magnitudes uniquely (and this is a fundamental impossibility, since it is the ambiguity of the
factorization that causes it), we can at least make a meet and join that are consistent, in the
sense that they are based on the same factorization. This can be done based on the observation
that join and meet are related by

join(A,B) =
A

meet(A,B)
∧B.

(A derivation may be found in [12, 13].) It can be rewritten to the more commonly seen form

meet(A,B) =
B

join(A,B)
·A.

We have moreover scaled the meet to have unit norm. This fixes meet and join up to one shared
ambiguous sign.

4.5 Combining subspaces: examples

With projection, rejection, orthogonal complement, meet and join, we have a powerful set of
terms to describe many (all?) relationships between subspaces. And they are all computationally
related, we can use their properties both synthetically to construct new objects reflecting the
relationships, or analytically in derivations.

Let us play around with these new tools. It is convenient to have a function that computes
all the quantities, so that you can execute it whenever you have defined new objects (using cut-
and-paste, or the scroll in Matlab, or as a .m-file), and a function to draw them all in standard
colors. So we use what we had before, but make it into a function that computes the things in
a single structure:

function r = geoall(A,B)

r.obj1 = A;

r.obj2 = B;

r.comp = inner(A,B);

r.proj = r.comp/B;

r.rej = A - r.proj;

r.meet = meet(A,B);

r.join = join(A,B);

function drawall(r)

clf; draw(r.obj1,’b’); draw(r.obj2,’g’);

draw(r.comp,’r’); draw(r.proj,’c’); draw(r.rej,’m’);

draw(r.meet,’k’); draw(r.join,’y’);

These functions have been precoded for your convenience (in the actual code, we have included
some argument protection – testing for blades – to make them more robust). Note the colors
used to draw objects, and realize that if objects overlap exactly, only the last one drawn is
visible. It is therefore a good idea to use non-unit-norm blades for A and B, so that the various
objects are more likely to have different magnitudes.

Let us first continue the example of the two intersecting planes A and B of Section 4.2.
Remember how it was hard to see whether the projection was done correctly when we drew the
bivectors using draw? We can use the above functions to redo that quickly:

>> A = e2^(e1+e3);

>> B = e1^(e2+e3/2);

>> clf; drawall(geoall(A,B));

Now that we have the meet operation, we can use the meet as a common vector in the two
planes, and this permits us to use DrawBivector to show the various blades more clearly in a
factored form.
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>> % GAblock(7)

>> % MEET AND JOIN DECOMPOSED

>> A = e2^(e1+e3);

>> B = e1^(e2+e3/2);

>> aAB = geoall(A,B);

>> M = aAB.meet;

>> clf;

>> DrawBivector(A/M,M,’b’); % draw A, decomposed

>> DrawBivector(M,1/M*B,’g’); %% draw B, decomposed

>> DrawBivector(aAB.proj/M,M,’c’); % draw proj, decomposed

>> DrawBivector(aAB.rej/M,M,’m’); %% draw rej, decomposed

>> draw(aAB.comp,’r’);

>> draw(aAB.meet,’k’);

>> draw(aAB.join,’y’);

(use GAorbiter(30,2) repeatedly to interpret the result – note how this partially shows up the
projection in cyan). You now see how the magnitudes of projection and rejection obviously give
the original A as their sum, which was hard to appreciate in the circular way of drawing the
bivectors.

What we have defined is general for blades of any dimension. For instance, let’s take a
1-blade and a 2-blade.

>> figure % pop up a new figure for comparison with previous

>> A = e1-e2/2+e3;

>> B = e1^(e2+e3/2);

>> drawall(geoall(A,B));

The black caption scalar = 1 shows that the intersection is now the point at the origin.
Or take a 0-blade and a 1-blade, a rather degenerate case:

>> figure

>> A = 3;

>> B = 2*(e2+e3);

>> drawall(geoall(A,B));

(By the way, if you want to go back to drawing in the window for previous figure k, type
figure(k).)

No matter how degenerate the situation, our relationship operators have no exceptions,
and the results are always sensibly interpretable. These functions and operators are extremely
stable to any blades you might use them on, and they can be used to implement all of classical
geometry. One more step is needed: to show how blades can represent off-set subspaces such as
lines and planes in general position. We do that in the next section.

Exercises

1. The vector p = e1 + e2 lies in the plane A = (e1 + e2) ∧ e3 (as you may verify). How
far does its endpoint lie from the intersection of A with the plane B = 2(e1 ∧ (e2 + e3)?
Draw this!

2. What is the angle between p and the intersection of A and B?

5 The homogeneous model

We have focused on blades, which represent subspaces through the origin. In many applications,
you are of course interested in subspaces translated off the origin, such as tangent blades. In
Section 3.7 we treated those by implicit equations, and that is rather indirect. We will show now
that blades can represent such ‘off-set subspaces’ – but we have to use blades from a geometric
algebra of one dimension higher. We first create the intuition by using the pinhole model of
imaging, and then dive into the mathematics.

5.1 The geometry of imaging: the pinhole camera

Consider the geometry of imaging, which is a geometrical problem common for many application
fields such as computer graphics, computer vision and robotics. To simplify the physical issues
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Figure 9: Pinhole camera model.

of imaging, we use a simple pinhole model for our camera, in which light rays are straight lines
passing through a point hole, and imaged by intersection with an image plane. Although this
image plane is behind the hole at the distance of the focal length, we may equivalently draw the
image in front of the hole at the same distance, as is customary in those fields of application.

So consider Figure 9; the focal point is at fe (with e a unit vector), the carrier of the image
plane is perpendicular to e and is therefore a multiple of dual(e); we denote it by i. This image
plane is the set of points x whose inner product with e equals the focal length f . We will take
f = 1, so the image plane points satisfy:

x · e = 1.

A point a in the world is imaged onto the image plane in the direction a: P (a) ≡ a′. Thus
a′ satisfies the two equations a′ ∧ a = 0 and a′ · e = 1; solving this system of equations using
Equation 12 gives

0 = e · (a′ ∧ a) = a− (e · a)a′, so that a′ =
a

a · e .

This is what you would expect: the vector is rescaled to have inner product 1 (the focal length)
with the focal point vector e, to make it lie in the image plane.

Here is how we draw this in GABLE:

>> %GAblock(8)

>> % PINHOLE IMAGING

>> clf;

>> e = e1;

>> %==== indicate focal point and image plane:

>> draw(e,’k’);

>> IP = {e1+e3+e2,e1+e3-e2,e1-e3-e2,e1-e3+e2,e1+e3+e2}; % image plane rectangle

>> DrawPolygon(IP,’y’) %% The image plane

>> %==== vector x and its projection

>> x = 3*e1 - 1.5*e2 + 2*e3;

>> px = x/inner(x,e);

>> draw(x,’b’); %% Draw x

>> DrawSimplex({px},’r’,’r’);

(The DrawSimplex routine with one vector argument between the parentheses draws that vector
in the first specified color, with a thickly drawn point at its tip in the second color specified.)

Any vector on the line x ∧ a = 0 is of course mapped onto the same point P (a), so this is a
projection of Euclidean 3-space onto a 2-dimensional space. The ray in space maps onto a point
of the image plane.

In the pinhole projection, a 3-space line projects onto line on a 2-dimension space. While we
could project the 3-space line point-by-point, it is more interesting to determine its complete
2-space geometric representation. We derive that now, but let us first draw the figure that
results so that you can visualize better what is going on in the derivation.
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>> %... needs e, IP, x, px

>> y = 1.8*e1 + 1.5*e2 + e3;

>> u = y-x;

>> U = x^y;

>> d = U/u;

>> clf; draw(e1,’k’); DrawPolygon(IP,’w’); % Redraw e and the image plane

>> DrawPolygon({GA(0),x,y},’y’); % Draw Polygon

>> draw(d,’g’); draw(x); draw(y); %% Draw x and y and support

>> DrawSimplex({x,y},’n’,’g’); %% Draw line

>> uprime = inner(e1,U);

>> dprime = U/uprime;

>> draw(dprime,’r’); %% Draw proj support

>> DrawSimplex({px,px+unit(uprime)},’n’,’r’); %% Projected line

>> DrawSimplex({e1,dprime},’n’,’m’); %% Perpendicular support in plane

>> GAview([-30 10])

Use GAorbiter(20,2) repeatedly to get the 3-D feeling of the situation, as you go through the
explanation. Remember that the GABLE code GA(0) creates the geometric zero object.

Points on a line in space are characterized by the line’s tangent u (in green) and moment
U (the yellow triangle indicates half the moment), as x ∧ u = U (Figure 6), or parametrically
as x = U/u + τu. The vector U/u is the perpendicular support vector (also in green). This
1-dimensional subspace of 3-space gets projected to a line in the image plane. The projected
tangent vector of the line into the image plane we denote by u′ (in red). It needs to satisfy
u′ · e = 0 and u′ ∧ U = 0: u′ is in U, perpendicular to e. It follows immediately from this
geometric formulation that

u′ = e ·U
or any positive multiple of it. The moment of this line in the image plane (viewed as a 3-
dimensional line) is obviously still proportional to U (after all, this line is in the yellow triangle
as well), so the spatial line in the plane has the implicit equation

x ∧ u′ = U.

A position vector on it is the perpendicular to it, computed as usual by

d′ =
U

u′
=

U

e ·U .

This is a vector in 3-space (in red in the figure). It can be written as the sum of e and a vector
in the tangent to the image plane i: d′ = e+d. This d (in magenta) is the actual perpendicular
support vector of the projected line in the image plane. The implicit equation of the projected
line in the image plane is therefore

y ∧ u′ = d ∧ u′,

(we use y for the image plane vector) or, after some substituting u′ and d,

y ∧ (e ·U) = U− e ∧ (e ·U).

So its tangent, moment and support are all determined fully by U only. The tangent u of the
original line in 3-space is not important: it gets ‘projected out’. This is all obvious from the
figure: once you know the yellow triangle (which denotes U) and the image plane (determined
by e), the projection of the line is fully determined.

In the figure we have drawn on the screen, you see that the tangent of the projected line
corresponds properly to the tangent of the original; it has the same sense of direction. (Note
that we rescaled uprime: its magnitude is related to U and can be rather large. It is not possible
to relate it to the magnitude of the projection of u in a constant manner, since that projected
magnitude varies along the projected line.)

So we find, with those expressions for u′ and d′, that the pinhole projection of a line in 3
dimensions onto a plane depends only on the moment 2-blade U of that 3-space line. Reversing
this construction, now for a general plane (not just the image plane of a pinhole camera), we
get that

each line (‘off-set 1-space’) in the plane is determined by a 2-blade U in a 3-dimensional
space.



GABLE Version 1.3 (revised tutorial) 43

e

p B
P = e+p

Figure 10: Homogeneous representations.

Of course any multiple of U works just as well. This trick works for lines, and also for other
off-set subspaces, of any dimension. For instance, we have also seen how a ray through the
origin, characterized by a 3-dimensional vector u, becomes a point in the plane at the position
characterized by the planar vector u/(e · u)− e. Therefore each point (‘off-set 0-space’) in the
plane is determined by a vector (i.e., a 1-blade) in 3-dimensional space.

The pinhole model thus gives us the intuition that lines, whether in space or in the image
plane, can be represented by 2-blades, and similarly for other subspaces. (The coefficients of
such a 2-blade in 3-space are actually the Plücker coordinates of the line, giving another natural
embedding of an extraneous trick.) In the geometric algebra treatment of projective geometry,
this representation of lines in space is exploited – but we will not get into that in this tutorial
(you might check [6] for more on this subject). Instead, we focus completely on the image plane,
and use the blade representation of lines there to give a treatment of some of the elements of
affine geometry in geometric algebra, namely the subspaces off the origin. This is known as the
homogeneous model of 2-dimensional Euclidean space.

5.2 The homogeneous model in C̀ 3,0 of 2-space

Obviously, off-set subspaces are useful in many geometric settings. They are in fact what we
usually describe as points, lines, etcetera; we always mean that those objects are translatable
subspaces. However, common usage identifying terms from vector algebra with these objects
tends to be a bit sloppy. Often people equate ‘point’ and ‘vector’, whereas actually a vector
is a measured direction, and not a point (which is an object, to which we could apply that
vector as a translation). Yet we saw in the previous section that points and vectors are closely
related, so it is no surprise that they ‘feel similar’: points can be represented as vectors ‘in 1
more dimension’. The way we ran into that was fairly ad hoc, through studying imaging. Let
us now formalize these representational issues independent of such a physical motivation.

The basic procedure is this: to represent n-dimensional space with off-set subspaces, we
embed it in an (n + 1)-dimensional space. We do so by extending the space with an ‘extra
vector’ e perpendicular to the n-space. Then we get the following representation of our k-
dimensional subspaces off the origin:

• point
A point P in n-space, at location p, is represented by the (n+ 1)-space vector:

P = e + p.

In the pinhole model, this is the vector characterizing the ray projecting to the point P.

• direction vector
The difference between two such points is a direction vector in the plane. Therefore
direction vectors in n-space are represented by (n+1)-space vectors with zero e-component.
Such vectors are perpendicular to e, so a direction vector is represented by

v such that e · v = 0
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• direction bivector
A 2-dimensional direction of the n-space (i.e., the tangent of a plane in n-space) is repre-
sented as a 2-blade in (n+ 1)-space, without an e component.

B such that e ·B = 0

• higher grade tangents
Obviously, a direction blade (tangent) of grade k is represented by a k-blade in (n+1)-space
without e-component.

• line
A line in n-space, with direction v and some given point P on it is represented as the
(n+ 1)-space 2-blade

P ∧ v = (e + p) ∧ v = e ∧ v + p ∧ v.

Note that this contains the tangent v and the moment p∧v, in a manner in which we can
retrieve them (simply by taking the inner product with e). This is indeed a line, for if we
ask which points x are on it, we can resolve this by checking whether the representation
of the points x (which is e + x) are contained in the bivector:

0 = (e + x) ∧ (e ∧ v + p ∧ v) = e ∧ p ∧ v + x ∧ e ∧ v = e ∧ (p ∧ v − x ∧ v)

and since e is independent of the n-space vectors, this retrieves the implicit line equation

x ∧ v = p ∧ v,

which we used to describe the line in Section 3.7. The representation of a line by a 2-blade
is more elegant, and simplifies line intersection. (As we will soon see, you just use the meet

to intersect them.)

• higher dimensional subspaces
In n-space the higher dimensional directions and affine subspaces are constructed in a
similar way: the tangent blade V is represented as V, a point P at p by e + p, and the
affine subspace through p with tangent V is represented as the blade

A = P ∧V = (e + p) ∧V = e ∧V + p ∧V.

(Note that a point P = e + p = (e + p) ∧ 1 can be viewed as a 0-dimensional subspace
with as tangent the 0-blade 1 (or any multiple); somewhat strange, but consistent.)

Any of these representations is curiously unspecific on the location that generated them: p
cannot be retrieved from A = (e + p) ∧ V. If there is a need to give a point on them to
determine how they are off-set in space, it is convenient to use the perpendicular support vector
d. We saw in Section 3.7.1 that this vector can be computed as the moment divided by the
tangent, and both of those can be retrieved from the homogeneous representation A by some
clever manipulation (nice exercise!):

d =
p ∧V

V
=

e · (e ∧A)

e ·A .

We have implemented a drawing routine that uses the homogeneous representation of off-set
subspaces. In the same notation as the general case discussed above, we have

>> % GAblock(9)

>> % HOMOGENEOUS REPRESENTATION

>> e = e3; % direction of extra dimension

>> clf; draw(e,’k’)

>> p = e1+e2/2;

>> P = e+p; % point representation

>> U = 1;

>> DrawHomogeneous(e,P^U,’y’,’b’) %% point

>> V = e2-e1/3;

>> DrawHomogeneous(e,P^V,’y’,’r’) %% line segment

>> W = e1^e2;

>> DrawHomogeneous(e,P^W,’y’,’g’) % plane segment

(The two color arguments have the same function as in DrawSimplex. In particular, you can use
as first color ’n’ (to avoid drawing the carrier) and then use GAview([0 90]) to see the 2-space
by itself.) Note that the line through p in the direction V is not drawn starting at p, but at the
perpendicular support vector (which is the only objectively retrievable point).



GABLE Version 1.3 (revised tutorial) 45

5.3 Creating geometric objects: a line as the join of points

Now that we have the homogeneous model in which all subspaces are represented by pure blades,
we can think in a more structured manner about the creation of geometric objects: we can make
many of them by the union and intersection of blades, i.e., through meet and join. In particular,
let us revisit our representation of lines.

Consider a line through two distinct points P (at location p) and Q (at location q). In
the homogeneous model, these points are represented by P = e + p and Q = e + q. The line
through them is represented by a bivector; could this be P ∧Q? Let us verify:

P ∧Q = (e + p) ∧ (e + q) = e ∧ q + p ∧ e + p ∧ q = e ∧ (q− p) + p ∧ q

Now introduce the direction vector of the line as the difference between two points on it: u ≡
q−p. Observe that p∧q = p∧ (q−p) = p∧u ≡ U, with U the moment of the line in n-space.
So the above reads

P ∧Q = e ∧ u + p ∧ u = P ∧ u

which is precisely the homogeneous representation of the line. Therefore we indeed find that

the homogeneous representation of the line through two distinct points is the outer
product of their homogeneous representations

What happens if the points are identical? Obviously, the outer product becomes zero, and
we could accept this as: there is no line connecting two identical points. However, in many
situations we would like to return the point itself, as the degenerate object now defined by the
‘connect-the-dots’ intuition.

Knowing that the points are represented by blades, we might try the join operation on
those as the implementation of this generalized ‘connect-the-dots’. And indeed, the join of two
distinct blades is proportional to their outer product, covering the case above, whereas the join
of identical blades is proportional to either of them. So we have the more general, and more
robust:

the homogeneous representation of the object obtained by connecting two points is the
join of their homogeneous representations

Let’s try this:

>> % GAblock(10)

>> % HOMOGENEOUS BIVECTOR REPRESENTATION OF A LINE

>> clf;

>> e = e3; % the extra dimension of the homogeneous embedding

>> p = e1/3+e2; % position of point P

>> q = e1+e2/2; % position of point Q

>> P = e+p; % homogeneous representation of P

>> Q = e+q; % homogeneous representation of Q

Now that we have defined points P and Q, we can construct the line between them with the join

operation:

>> %... needs P,Q

>> PQ = join(P,Q); % homogeneous representation of the line join(P,Q)

>> DrawSimplex({P},’y’,’b’); DrawSimplex({Q},’y’,’b’);

>> draw(PQ,’g’) %% the 2-blade PQ drawn as a planar tangent

>> DrawBivector(P,Q,’y’) %% the 2-blade redrawn

>> DrawSimplex({P,Q},’n’,’r’); % the line segment PQ

>> DrawSimplex({e,e+2*e1,e+2*e2},’n’,’w’); %% the plane of 2-space

This plot shows both the 2-blade in 3-space determining the line, and a segment of the line
in the plane x · e = 1. But it is not fair to represent the points P and Q defining the line,
for the homogeneous representation is not specific on location; the 2-blade drawn in green
shows that clearly. A better representation is to draw an objective position on the line (for
instance, its perpendicular support vector d) and its direction v. These can be retrieved from
the homogeneous representation (remember how? if not, see Section 5.2). DrawHomogeneous

does just this.

>> % GAblock(11)

>> % HOMOGENEOUS REPRESENTATION OF OFFSET SUBSPACES

>> e = e3; % the extra dimension of the homogeneous embedding
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>> p = e1/3+e2; % position of point P

>> q = e1+e2/2; % position of point Q

>> P = e+p; % homogeneous representation of P

>> Q = e+q; % homogeneous representation of Q

>> PQ = join(P,Q); % homogeneous representation of the line join(P,Q)

>> clf; draw(e,’k’);

>> DrawHomogeneous(e,P,’y’,’b’); GAtext(1.07*P,’P’); % Draw P

>> DrawHomogeneous(e,Q,’y’,’g’); GAtext(1.07*Q,’Q’) %% Draw Q

>> DrawHomogeneous(e,PQ,’y’,’r’);

>> GAorbiter(30,2);

which still shows the 3-D embedding, but with less clutter. We can see the line direction in red,
‘carried’ by the yellow vectors. Of course when we do computations in the plane, the embedding
is irrelevant and we prefer a view that does not show it.

>> %...

>> IP = {e-e1/2-e2/2,e+3/2*e1-e2/2,e+3/2*e1+3/2*e2,e-e1/2+3/2*e2};

>> DrawPolygon(IP,’w’);

>> GAview([0 90]);

Now try this for identical points:

>> %... needs P

>> DrawHomogeneous(e,join(P,P),’n’,’b’);

This shows the point P resulting from the connection of P to P. Or how about this:

>> %... needs P,Q

>> r = e1/2-e2/4;

>> R = e+r;

>> DrawHomogeneous(e,join(join(P,Q),R),’n’,’g’);

This shows the plane connecting the three points P, Q, and R. Only the area is significant, since
any plane in 2-space contains any point of that space. Let us draw all these objects defined by
connecting three points in all their significantly different permutations:

%...

>> %... needs P,Q,R

>> clf;

>> DrawHomogeneous(e,P,’n’,’b’);

>> DrawHomogeneous(e,Q,’n’,’b’);

>> DrawHomogeneous(e,R,’n’,’b’);

>> DrawHomogeneous(e,join(P,Q),’n’,’r’);

>> DrawHomogeneous(e,join(Q,R),’n’,’r’);

>> DrawHomogeneous(e,join(R,P),’n’,’r’);

>> DrawHomogeneous(e,join(join(P,Q),R),’n’,’g’);

Note again that the position is not present in any of the homogeneous objects of grade higher
than 1, but that the magnitude correctly represents the connection length (for lines) or area
(for the triangular simplex). Thus the representation of line is indeed of a ‘measured direction
along a particular line’ without being specific on position, and the representation of a plane is
a ‘measured area’.

We have thus found that the join operation in geometric algebra, applied in a homoge-
neous representation, is the precise computational equivalent of joining the geometrical objects
involved. This makes for a convenient computational language: the definition join(P,Q) of
the segment of the segment determined by P and Q is simultaneously the computational symbol
with all the proper properties. Perhaps surprisingly, those do not involve the locations P and
Q themselves. A line only acquires definite points through intersection with other geometrical
objects, as the next section shows.

5.4 Creating geometric objects: a point as the meet of lines

With off-set spaces represented as pure blades, it should be clear that their intersection should
be related to the meet of these blades. And indeed, continuing the previous example we can
retrieve the points as the intersection of two lines, even though each of those lines do not contain
that position explicitly anymore.
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>> % GAblock(12)

>> % LINE INTERSECTION AS MEET OF HOMOGENEOUS BIVECTORS

>> clf;

>> e = e3; % extra dimension of the homogeneous embedding

>> P = e+ e1/3+e2; % point P

>> Q = e+ e1+e2/2; % point Q

>> R = e+ e1/2-e2/4; % point R

>> PQ = join(P,Q); % line PQ

>> QR = join(Q,R); % line QR

>> meet(PQ,QR) % intersection of those lines

So even though neither PQ nor QR contains the point Q explicitly, their combination retrieves it
neatly. A drawing shows this:

>> %... needs P,Q,R,PQ,QR

>> clf;

>> draw(e,’k’);

>> GAview([0 90]);

>> DrawHomogeneous(e,P,’n’,’b’); GAtext(1.07*P,’P’); % P

>> DrawHomogeneous(e,Q,’n’,’b’); GAtext(1.07*Q,’Q’); % Q

>> DrawHomogeneous(e,R,’n’,’b’); GAtext(1.07*R,’R’); %% R

>> DrawHomogeneous(e,PQ,’n’,’c’); %% PQ

>> DrawHomogeneous(e,QR,’n’,’g’); %% QR

>> DrawHomogeneous(e,meet(PQ,QR),’n’,’m’); % Meet of PQ, QR

So indeed, the meet acts as the intersection operator in the homogeneous representation.
It is insightful to show this in the 3-dimensional space of the representing blades:

>> %... needs P,Q,R,PQ,QR

>> GAview([30 15]);

>> DrawHomogeneous(e,P,’y’,’b’); % P

>> DrawHomogeneous(e,Q,’y’,’b’); % Q

>> DrawHomogeneous(e,R,’y’,’b’); % R

>> DrawHomogeneous(e,meet(PQ,QR),’n’,’m’); %% Meet of PQ, QR

>> draw(PQ,’c’); draw(QR,’g’); draw(meet(PQ,QR),’m’); %%

>> IP = {e-e1-e2,e-e1+2*e2,e+2*e1+2*e2,e+2*e1-e2};

>> DrawPolygon(IP,’w’);

(use GAorbiter to interpret!). This shows the two 2-blades representing the lines (in cyan and
green) and their meet (in magenta). The interpretation in the 2-space of the meet is precisely
the point Q.

5.5 Distances between offset subspaces

(Warning: this section goes a bit far, and can be skipped.)
Using the homogeneous representation, we can also retrieve the quantitative aspects of re-

lationships between objects. In general in 3-dimensional space, you need a translation and
a rotation to bring objects to coincide as much as they will. For instance, two lines can be
translated to have a common point, and then rotated/scaled to have their tangents coincide.

In the homogeneous model, translating an object A = (e + p) ∧V over a vector t to a new
location p + t to make A′ = (e + p + t)∧V is done simply by adding the moment t∧V to A:

translation of A over t: add t ∧ (e ·A).

Let us call this the translational moment of t for A. This has all the right properties: translating
a line over a vector t is obviously only sensitive to the component of t perpendicular to the line.8

Verify that the above has this property!
We can retrieve the translation required to bring A into the origin of 2-space (i.e., minus its

moment) from A. It is
−rej(A, e ∧ (e ·A)) = −e · (e ∧A).

8For those of you in image analysis, this is the solution to the ‘aperture problem’ in optic flow, which has difficulty
in retrieving a translation vector for a moving straight edge, partially seen. The problem was in the representation,
not in the observation.
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The left hand side should be understood as follows: we span a blade e∧ (e ·A), using the vector
e (pointing to the origin) and the tangent of A (which is e ·A); then the rejection of A by that
blade is fully in 2-space, and is the moment of A. You may want to verify that the right hand
side is indeed p ∧V.

Let us compute the translation required to bring A into a non-trivial intersection with a
second offset subspace B, possibly of a different grade than A. We first need to determine the
common elements in the tangent directions e ·A and e ·B of A and B, since we want to measure
the translation perpendicular to such directions (for example, two parallel lines have a distance
measured perpendicular to their direction). So we determine the join of the directions, and
divide out their meet; together this gives the non-common parts of their tangents. Then, as
before, we construct a blade through e containing this tangent:

U ≡ e ∧ join(e ·A, e ·B)

meet(e ·A, e ·B)
.

The translational moment required to bring A to coincide with this in the origin is −rej(A,U);
the perpendicular translation vector corresponding to that is −rej(A,U)/(e ·A). To then get
to B we need the translation vector rej(B,U)/(e · B). Combining these to obtain the desired
translational moment for A, we get

The translational moment for A to make the meet with B non-trivial is:(
rej(B,U)

e ·B − rej(A,U)

e ·A

)
∧ (e ·A),

where U = e ∧ join(e ·A, e ·B)/meet(e ·A, e ·B).

This is universally valid, independent of the grade of A and B. You may check that the unknown
scalar factors in meet and join cancel in this formula (since the resulting blade is used in a
rejection, which is insensitive to scalar factors), so that it yields a proper object in geometric
algebra, without ambiguity in scale or orientation.

We have implemented this formula as connection(e,A,B), for the translational moment
from A to B. Note that the interchange of A and B will in general give an object of different
grade. Let’s play with this:

>> %GAblock(13)

>> % CONNECTIONS OF LINES AND POINTS

>> clf;

>> e = e3;

>> P = e+ e1/4+e2/2;

>> Q = e- e1/2+e2/4;

>> R = e+ e1/3-e2/5;

>> PQ = P^Q;

>> PtoQ = connection(e,P,Q);

>> RtoPQ = connection(e,R,PQ) % a vector!

>> PQtoR = connection(e,PQ,R) %% a bivector!

>> draw(e,’k’);

>> DrawHomogeneous(e,P,’y’,’b’); GAtext(1.07*P,’P’); % P

>> DrawHomogeneous(e,Q,’y’,’b’); GAtext(1.07*Q,’Q’); % Q

>> DrawHomogeneous(e,R,’y’,’b’); GAtext(1.07*R,’R’); %% R

>> DrawHomogeneous(e,PQ,’n’,’g’); %% PQ

>> DrawSimplex({P,P+PtoQ},’y’,’r’); %% segment P to Q

>> DrawSimplex({R,R+RtoPQ},’y’,’m’); %% segment R to PQ

>> DrawHomogeneous(e,R+RtoPQ,’n’,’k’); %% closest point on PQ

>> DrawHomogeneous(e,PQ+PQtoR,’n’,’k’); %% closest line through R

>> IP = {e-e1-e2,e-e1+e2,e+e1+e2,e+e1-e2};

>> DrawPolygon(IP,’w’);

It also works for parallel lines:

>> %... needs P,R,PtoQ

>> Pline = P^PtoQ; % the line PQ: at P, tangent PtoQ

>> Rline = R^PtoQ; % the line at R parallel to PQ

>> DrawHomogeneous(e,Rline,’n’,’c’); %% Rline drawn

>> linecon = connection(e,Pline,Rline);

>> DrawHomogeneous(e,Pline+linecon,’n’,’m’); %% translated Pline
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For intersecting lines, the connection is zero, since nothing needs to be added to make their
meet non-trivial:

>> %... needs PQ,Q,R

>> QR = join(Q,R);

>> intersect = meet(PQ,QR)/inner(e,meet(PQ,QR));

>> linecon = connection(e,PQ,QR);

>> DrawSimplex({intersect,intersect+linecon},’y’,’k’);

(Note the black result: a scalar.) Again, the geometric algebra formula has no exceptions, it
works for all objects whatever their dimensionality. This means that there is no use for any
conditional statements in our programs – this simpler code is much less error-prone!

To determine the angle between the objects A and B at their point of intersection, you can
use the techniques of Section 4.3 directly on the tangent blades (e ·A) and (e ·B).

5.6 Summary: the grammar of Euclidean geometry

With the homogeneous model, we have the power to embed much of Euclidean geometry directly
into geometric algebra. This is the way it works in general in n-dimensional spaces:

• Any off-set subspace is represented by a pure blade in (n + 1)-space. Notably, points
(off-set 0-spaces) are represented by vectors in (n+ 1)-space.

• Creating a k-dimensional off-set subspace by connecting a point to a (k − 1)-dimensional
subspace, is represented by the join of a 1-blade to a k-blade (a line is the join of two
points, etc.). And in general, you can connect `-dimensional spaces to k-dimensional spaces
using the connection operation on their blade representations.

• Intersection of the off-set subspaces is represented by the meet of their representative blades
(the intersection point of a line is their meet, etc.).

It is therefore now possible to give a computationally prescriptive meaning to such symbols as
‘PQ’ for the line determined by the points P and Q: represent the points by the appropriate
homogeneous 1-blades, and read the symbol ‘PQ’ as join(P,Q), the 2-blade representation of
the line. (If you know the points are disjoint, you may use the outer product: so then P ∧Q
represents the line through the points P and Q.) The permissible algebraic manipulations of
these symbols then follow from the laws of geometric algebra. People actually use this for
automatic theorem proving, see [1]. In this sense, geometric algebra provides the grammar of
geometry, and it does so in a fully computational manner. The step from a geometric theorem
in Euclidean geometry to an algorithm using it has never been smaller, since there is now a
direct correspondence between object names and their computational implementation.

5.7 Euclidean geometry using geometric algebra

To illustrate the geometric concepts we have discussed, and to show how to use the geometric
algebra in computations, we conclude this section by illustrating three geometry theorems:
Napoleon’s theorem, Pappus’ theorem, and Morley’s triangle9. For all three of these theorems,
we will work in the homogeneous model of two space with e3 as the homogeneous coordinate.

5.7.1 Napoleon’s theorem

Napoleon’s theorem (attributed to Napoleon Bonaparte) states that if you have a triangle and
you construct three equilateral triangles along its sides, then the centers of these equilateral
triangles form another equilateral triangle. To begin, let’s create and draw a triangle:

>> %GAblock(14)

>> % NAPOLEON’S THEOREM

>> clf;

>> P1 = e3; P2 = e3+e1; P3 = e3+e2;

>> DrawPolyline({P1,P2,P3,P1}, ’k’); GAview([0,90]);

9These and other interesting geometry problems can be found in The Penguin Guide of Curious and Interesting
Geometry [14]
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We now want to create the equilateral triangles. We already have two of the vertices of each
triangle (they are two of the vertices of 4P1 P2 P3); we only need to construct the third vertex
to complete each equilateral triangle.

One way to construct this third vertex is to take an edge of our original triangle and rotate
it by 60 degrees. We can make such a rotation operator by first constructing the rotation plane
i=e1^e2, and then constructing our rotation operator taking gexp of i times the angle by which
we wish to rotate (remember from section 3.4 that an angle is best viewed as a bivector!)::

>> %...

>> i = e1^e2; RR = gexp(i*2*pi/3);

We can now compute and draw the other two sides of the equilateral triangles by rotating the
vector along each side of 4P1 P2 P3 and adding it to one corner of the edge:

>> %...

>> S12 = (P1-P2)*RR+P1; DrawPolyline({P1,S12,P2}, ’b’);

>> S23 = (P2-P3)*RR+P2; DrawPolyline({P2,S23,P3}, ’b’);

>> S31 = (P3-P1)*RR+P3; DrawPolyline({P3,S31,P1}, ’b’);

To complete the illustration of Napoleon’s theorem, we need to compute the centroids of the
three equilateral triangles and draw the triangle connecting them:

>> %...

>> C1 = (P1+S12+P2)/3;

>> C2 = (P2+S23+P3)/3;

>> C3 = (P3+S31+P1)/3;

>> DrawPolyline({C1,C2,C3,C1},’r’);

We have written a routine, napoleon, to illustrate this theorem. To use the routine, add the
gable/Apps directory to your Matlab path with the addpath command, and type help napoleon

to see the calling sequence and a few examples of calls.

5.7.2 Pappus’ theorem

Take any two lines and three points on each line (P1 P2 P3 and Q1 Q2 Q3). Cross-join the
points (i.e., build the line segments P1Q2, P1Q3, P2Q1, P2Q3, P3Q1, and P3Q2) and compute the
intersection of the three cross-joined pairs of segments (i.e., intersect P1Q2 with P2Q1, P2Q3 with
P3Q2, and P3Q1 with P1Q3). Then Pappus’ theorem states that the three points of intersection
will be collinear.

To illustrate this theorem, we first need to construct six points and draw the relevant line
segments:

>> %GAblock(15)

>> %PAPPUS’S THEOREM

>> clf

>> P1 = e3+e1; P2 = e3+2*e1; P3 = e3+4*e1;

>> Q1 = e3+e2; Q2 = e3+e1+2*e2; Q3 = e3+2*e1+3*e2;

>> DrawPolyline({P1,P3},’r’); DrawPolyline({Q1,Q3},’r’);

>> DrawPolyline({P1,Q2},’k’); DrawPolyline({P1,Q3},’k’);

>> DrawPolyline({P2,Q1},’k’); DrawPolyline({P2,Q3},’k’);

>> DrawPolyline({P3,Q1},’k’); DrawPolyline({P3,Q2},’k’);

>> GAview([0,90]);

Next we want to compute the intersection of corresponding line segments. As a first step, we
need to compute each line segment (which we can do by joining two points on the segment)
and as a second step we need to intersect pairs of line segments (which we do by computing the
meet of the two segments). Note that the meet will give us a homogeneous point, and we will
need to normalize its coordinates to put the point back in the homogeneous plane:

>> %...

>> H3 = meet(join(P1,Q2),join(P2,Q1)); A3 = H3/inner(H3,e3);

>> H2 = meet(join(P1,Q3),join(P3,Q1)); A2 = H2/inner(H2,e3);

>> H1 = meet(join(P2,Q3),join(P3,Q2)); A1 = H1/inner(H1,e3);

>> DrawHomogeneous(e3,H1,’n’,’g’);

>> DrawHomogeneous(e3,H2,’n’,’g’);

>> DrawHomogeneous(e3,H3,’n’,’g’);

>> DrawPolyline({A1,A3},’b’)
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We have written a routine, pappus, to illustrate this theorem. To use the routine, add the
gable/Apps directory to your Matlab path with the addpath command, and type help pappus

to see the calling sequence and a few examples of calls.

5.7.3 Morley’s triangle

Morley’s triangle is constructed by taking any triangle and trisecting the angles. It states that
the intersections of adjacent trisectors form an equilateral triangle. To illustrate this theorem,
we need to trisect an angle. We will build the trisector of an angle by first constructing the
rotation operator mapping one side to the other, taking the logarithm of this operator, which
gives us the “bivector angle” of rotation. We divide this by three and exponentiate to get the
desired rotation.

>> %GAblock(16)

>> %MORLEY’S TRIANGLE

>> clf;

>> P1 = e3; P2 = e3+e1; P3 = e3+e2;

>> DrawPolyline({P1,P2,P3,P1}, ’k’); GAview([0,90]);

>> R1 = (P3-P1)*(P2-P1); R13 = gexp(sLog(R1)/3);

>> R2 = (P1-P2)*(P3-P2); R23 = gexp(sLog(R2)/3);

>> R3 = (P2-P3)*(P1-P3); R33 = gexp(sLog(R3)/3);

We can now apply each rotation operator to the edges adjacent to the angle; by applying the
operator on different sides, we get rotations of opposite sign. While these operators scale as well
as rotate, they are sufficient for our purposes. By taking the outer product of each vector with
the vertex at which it is rooted, we construct the desired trisecting line.

>> %...

>> L12 = P1^(R13*(P2-P1)); L13 = P1^((P3-P1)*R13);

>> L23 = P2^(R23*(P3-P2)); L21 = P2^((P1-P2)*R23);

>> L31 = P3^(R33*(P1-P3)); L32 = P3^((P2-P3)*R33);

Now we intersect the lines using the meet operation, normalize and draw these intersections,
and draw the trisecting segments and the equilateral triangle.

>> %...

>> H1 = meet(L12,L21); C1 = H1/inner(H1,e3); DrawHomogeneous(e3,H1,’n’,’y’)

>> H2 = meet(L23,L32); C2 = H2/inner(H2,e3); DrawHomogeneous(e3,H2,’n’,’y’)

>> H3 = meet(L31,L13); C3 = H3/inner(H3,e3); DrawHomogeneous(e3,H3,’n’,’y’)

>> DrawPolyline({P1,C1,P2},’g’)

>> DrawPolyline({P2,C2,P3},’g’)

>> DrawPolyline({P3,C3,P1},’g’)

>> DrawPolyline({C1,C2,C3,C1},’r’)

We have written a routine, morley, to illustrate this theorem. To use the routine, add the
gable/Apps directory to your Matlab path with the addpath command, and type help morley

to see the calling sequence and a few examples of calls.

Exercises

After these illustrations of the geometry of triangles, we have an exercise to let you practice
on your own. When you solve it, use the proper operators we have defined to make your code
stable under degeneracies (so join, meet, connection, etcetera): even if all the vertices coincide
it should still compute sensibly. Do not use conditional case-statements; that is old-fashioned
thinking about geometry which can now be replaced.

1. Define three points P, Q and R, define and draw the triangle determined by them. (Hint:
use connection, DrawHomogeneous and DrawSimplex.)

2. Now degenerate the triangle by bringing all three points on the same line, or making some
coincide. Your program should still give sensible results. But: no if statements allowed!

3. On a non-degenerate triangle, compute and draw the altitudes (lines perpendicular to the
opposite sides), and their intersection (hint: use connection). Test if they intersect in
one point, and if they do, draw that. (Hint: if the three mutual intersection points are
separate, they would span an area; so test for that.) You should get something that looks
like Figure 11.



GABLE Version 1.3 (revised tutorial) 52

Figure 11: A triangle with its altitude lines.

4. Now draw the lines from the vertices to the midpoints of the opposite sides, and their
possible intersection.

5. Now draw the perpendicular bisectors, using quantities from the previous two exercises.

6. Check computationally whether the intersection points of the three sets of lines we have
defined are all on one line. (Hint: if they are not, they span an area – so compute the
blade spanned by all three points.)

7. Write a GABLE routine illustrating Aubel’s theorem, which says that for any quadrilateral,
if you construct a square on each edge and form the two lines through centers of opposite
squares, then these lines are perpendicular.

8. Write a GABLE routine illustrating Thebault’s theorem, which says that if you construct
square on each side of a parallelogram, then the centers of these squares are the corners of
another square.

9. Write a GABLE routine to illustrate that the average of similar triangles yields a similar
triangle. For the average to be similar, one triangle must be a rotated, scaled version of
the other. Further, the averaging is performed by averaging like vertices.

Your routine should take as arguments a triangle, an angle, and a scale factor. Draw
the triangle, then scale and rotate it to produce a second triangle (which you should also
draw). Then average like vertices and draw the resulting triangle.

The theorem also holds for any weights where the weights sum to 1. For example, instead
of adding 1/2 of one vertex to 1/2 of the like vertex of the other triangle, you could add
1/3 of one vertex and 2/3 of the other vertex (but be sure to use the same combination
for all three pairs of vertices!). You may wish to extend your routine to take an optional
argument of weights to apply.

6 Is this all there is?

Our tutorial stops here. We have familiarized you with the basic operators that geometric
algebra offers, and some of their geometrical significance. The intuition acquired should enable
you to read some of the other texts which are available, and get you into the right mode of
thinking in geometrical concepts.

There are some things we left out of the tutorial. Since they are rather elementary, you may
run into them soon after trying other texts, so a few words may be appropriate.

• signatures
3-dimensional space can be given different signatures, so that the unit vectors do not
square to 1, but to another scalar such as −1. We have chosen not to confuse the novice
with the strange properties of non-Euclidean spaces, but GABLE can handle this: use
GAsignature.

• inner products
There are several inner products around; the one we have chosen is by no means standard,
though it has the most straightforward geometric interpretation. The most common in
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texts is the one introduced by Hestenes, which we have coded as innerH. You can play
around with the other inner products through GAitype.

• higher dimensions
At the moment, our implementation is only for 3-dimensional spaces. We have seen that
a treatment of offset subspaces in Euclidean 3-space requires a 4-dimensional geometric
algebra, so GABLE cannot be used for that at present. We will extend it in the near
future. For now, you may want to use the Maple program of [5]. You can also use that for
the conformal model of Euclidean space (which is 5-dimensional).

• other models of Euclidean geometry; other geometries
In a fairly recent development (see for instance [9]), an improved embedding of Euclidean
geometry into geometric algebra has been found. This is the conformal model of Euclidean
space, and it is achieved by adding one more dimension to the homogeneous model, of
negative signature. This dimension helps to represent the point at infinity (as our e rep-
resents the point at the origin). In this model, m-spheres are representable as elementary
objects (a ∧ b ∧ c is the circle through the points a, b and c), and the linear subspaces
we have treated in the homogeneous model are then m-spheres containing the point at
infinity. The principle is the same as in the homogeneous model: to do geometrically more
sophisticated things, embed in a higher-dimensional Clifford algebra and use the products,
meet and join there – that should provide all that is required: no new operators, only a
new embedding. The basic operators still form the grammar of the geometry. In this same
model, you can treat projective geometry and even conformal geometry more naturally. We
may write a tutorial on that in the future.

• differential geometry
A major subject we have not treated is differential geometry, and geometric calculus. The
objects in geometric algebra can be differentiated, in new and powerful ways, and this
is beginning to expand the scope of all fields using differential geometry. Matlab is less
suited to show this flexibly. The Maple implementation of geometric algebra written in
Cambridge [5] is a good tool to use when studying these new forms of differentiation (for
instance combined with their course [3]).

Further reading

There is a growing body of literature on geometric algebra. Unfortunately much of the more
readable writing is not very accessible, being found in specialized books rather than general
journals. Little has been written with computer science in mind, since the initial applications
have been to physics. No practical implementations in the form of libraries with algorithms yet
exist (though there is a package for Maple [5] that can be used as a study-aid or for algorithm
design, and we are currently developing a C++ package). We would recommend the following
as natural follow-ups on this paper:

• The first part of the two part CG&A tutorial [4, 11] is mostly covered by this tutorial; the
second part goes into more advanced topics.

• The introductory chapters of ‘New Foundations of Classical Mechanics’ [7].

• An introductory course intended for physicists [3].

• An application to a basic but involved geometry problem in computer vision, with a brief
introduction into geometric algebra [8].

• Papers showing how linear algebra becomes enriched by viewing it as a part of geometric
algebra [2, 6].

Read them in approximately this order. We are working on texts more specifically suited for a
computer graphics audience; these may first appear as SIGGRAPH courses. The material from
a course on Geometric Algebra that we co-presented at SIGGRAPH ’01 can be found in the
GABLE web page:

http://www.wins.uva.nl/~leo/GABLE/

http://www.cgl.uwaterloo.ca/~smann/GABLE/

This material is slides from our SIGGRAPH presentation, with the GABLE code we ran being
available as “GAD”s (GA Demos); see the web page for details.

You can also find a large amount of additional literature from the usual sources. However,
one warning about the literature: some people make no distinction between ‘geometric algebra’
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and ‘Clifford algebra’ so you may want to check both; but you will find that the literature on
the latter contains little basic geometry (it tends to be about spinors). Your best keyword for
initial search is ‘geometric algebra’. You will find that most of the literature in the field aims
at an audience familiar with physics; yet the introductory chapters are often also readable to
non-physicists. We trust that introductory material for the computer sciences will appear in
the next few years.
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A Matlab details

In this appendix, we discuss some Matlab implementation details that are relevant to using our
geometric algebra package.

In many ways, Matlab eased the implementation of this geometric algebra. It was convenient
to not have to write the matrix routines, etc. Also, Matlab objects and operator overloading
nicely encapsulated many of the ideas we wanted to show while hiding many of the distracting
details of the implementation.

On the other hand, using Matlab caused us to introduce several “warts” in GABLE. Some
of these are straight-forward, such as the following:

• Matlab objects use standard arithmetic precedence for arithmetic on objects. This means
that ‘ˆ’ has a higher precedence than ‘*’, while for our system, we would want the two
operators to have equal precedence. The standard arithmetic precedence may necessitate
the use of parentheses at times.

• If a function name is the first entry on the command line, and the character following it is
a space, then the rest of the line is treated as arguments to that function. We implemented
e1, e2, e3 as functions, which means you can not type

>> e1 + e2

??? Error using ==> e1

Too many input arguments.

and must instead type

>> e1+e2

ans =

e1 + e2

However, any where else you may freely use spaces around e1, e2, e3. So for example,

>> a = e1 + e2

ans =

e1 + e2

Other problems are more complex and subtle. This appendix describes some of these prob-
lems, how we addressed them, and what problems the user of GABLE may need to work around.

A.1 Global variables and naming conventions

We needed global variables to implement a few of our routines. We name our global variables
starting with ’GA’, so in your own code, it is best to avoid using variables starting with ’GA’.

The following were our naming convention for our functions:

• We use lower case function names for those functions that operator on GA objects. (An
exception is made for a set of special routines as described in Section A.3; however, you
probably won’t need these special routines.)

• We use function names starting with ’Draw’ for the drawing routines, except for the basic
drawing routine draw.

• Except for the frame routines, all other related routines that do not operate on GA objects
begin with ’GA’.
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A.2 Graphics

The Matlab hold, axis, and rendering methods interacted poorly with our package. The following
summarizes how we overrode Matlab’s defaults and why:

• axis. To properly display the arrow heads of our vectors, we need equally scaled axes. If
we have non-uniform scaling, the arrow heads look like open umbrellas, and further no
longer appear perpendicular to the arrow body itself.

To force equal axes, in the draw command we call axis(’equal’). If you want non-uniform
scaling of your axes, you will need to make a call to axis after your last call to draw.

The problems are worse for GAorbiter, especially when drawing multiple subgraphs.
GAorbiter sets axis vis3d, and rotates all subgraphs simultaneously. Further, DrawOuter,
etc., call a routine that finds the min/max of all the subgraph axes (being careful of 2D
plots) and sets all subplots to have the same axis.

• hold. We use the patch command to draw some of our objects and plot3 command to
draw other objects, and some objects are drawn with both. Matlab appears to call ’hold
on’ when patches are drawn, but does not make such a call when drawing lines. To make
our drawing routines behave consistently for all geometric objects, we call hold on at
various places internal to our routines.

• render. There are two rendering modes: ‘painter’ and ‘zbuffer’. Unfortunately, the painter
mode does not split overlapping polygons. Since all our bivectors overlap, drawing two
bivectors in painter mode draws one on top of the other, which is incorrect. Thus, we set
the default rendering mode to ‘zbuffer’, which correctly renders the bivectors.

However, when saving the graphics screen to a PostScript file (such as for making figures),
if you’ve rendered with the ‘zbuffer’ mode Matlab creates a bitmap image, which is huge
and of low quality. If you’re using the ’painter’ rendering mode, Matlab will create a
smaller, more reasonable PostScript file. If there is only one bivector in your image, this
latter method is preferred. To allow for both, we wrote a GArender command. With
no arguments, it returns the current rendering mode. With one argument, it sets the
rendering mode to that argument.

A.3 Scalars

Scalar values caused us several problems. Matlab represents these as type double. However, a GA

object is a matrix of eight scalars. When all but the first entry are zero, the GA object represents
a scalar. For ease of use, our routines check their input for type double and automatically convert
it to a GA scalar as needed.

We also had to decide what to do if the results of one of our procedures was a scalar. Our
choices were to leave this as a GA object, which facilitates certain internal choices and simplifies
some code, or to automatically convert scalars back and forth between double and GA. We chose
the latter approach, as it fits more naturally with the rest of Matlab and seems more appropriate
for the tutorial setting.

However, this automatic conversion interacts poorly with our overloading of the circumflex
for the outer product. With automatic conversion of GA to double, if A and B in the expression A^B

are both scalars, then both are converted to double and Matlab calls the scalar exponentiation
function rather than our outer product function. Since the outer product of two scalars is
actually the product of the two scalars, the result will be incorrect.

For simple testing of geometric algebra, the wedge product problem should not be a problem.
However, if you are concerned, you can turn off automatic conversion of GA scalars to double by
using the command GAautoscalar. Called with an argument of 0 turns off the auto-conversion,
and called with an argument of 1 turns auto-conversion on.

GAautoscalar does not affect the automatic conversion of arguments to our routines from
double to GA scalars. Since checking the type of the arguments takes time, we have a set of
internal routines that assume their arguments are of type GA and always leave their results as
type GA. If you prefer to do the conversion manually, you may use this alternative set of routines;
note, however, that you will be unable to use the overloaded operators. Table 3 summarizes the
correspondence between the two sets of routines.

To create a GA object from a scalar, use the GAs routine. To convert a GA object to a double,
use the double routine.
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Autoconvert GA arguments
* GAproduct
+ GAplus
- GAminus
^ GAouter
/ GAdivide
dual GAdual

Table 3: Correspondence between auto-conversion routines and GA routines

A.4 Numerics

Numerically, some routines (particularly the inverse routine) may create small error terms. For
example, we might get a geometric algebra object that should be a vector, but has a small (on
the order of 10−17) bivector term. Several of our routines check to make sure that the arguments
are blades. Thus, while the numerical error causes no particular computational problems, some
routines will reject such geometric objects as not being blades. Thus, we wrote gazv, which sets
all small terms of a geometric object to zero.

gazv will set to zero all terms of a GA that are smaller in absolute value than 1e-16, giving
a warning when it does so. When developing code, it is a good idea to use gazv to overcome
small numerical problems, and once the code is debugged switch to grade (since presumably
you know the grade you want). Although you could use grade from the beginning, its use might
hide some bugs that the system would otherwise automatically catch for you.

Since this software is meant for a tutorial, our == and = operators compare to within a
numerical tolerance. Thus, vectors, etc., differing by only small amounts will be considered
equal. If an exact equality is desired, one may use the eeq function. Any further testing will
require extracting the coordinates using inner.

B Frames

In geometric algebra there is no particular basis for the space that is special: we can compute
with any basis, and algebraically our formulas are independent of the coordinate system. Often,
we do not even use the coordinates in our derivations. Computationally, however, we need to
enter data and display it, which necessitated our use of a special frame. GABLE uses a default
basis for C̀ 3,0: e1, e2, e3.

However, in GABLE, we provide a routine to let you specify a different frame. To create a
frame relative to vectors u, v, w, you should type

>> F = Frame(’f’, u,v,w, ’u’, ’v’, ’w’);

The first argument is the frame name; the next three are the basis vectors; and the last three
are the names of the basis vectors. The last three arguments are optional; if you omit them,
then Frame will construct names for the basis vectors by appending ‘1’, ‘2’, and ‘3’ to the frame
name.

To print a geometric objective g relative to this frame, you type

>> charF(g,F)

You can use the OFrame command to change the default output routine so that all further output
is printed relative to F. Both commands print the vector portion of a geometric object relative
to the basis vectors we gave. And it is clear how to print the scalar, since that is independent
of the frame. For bivectors, we had to choose a convention to make a bivector basis from the
vector basis (this is of course not unique). We picked: u ∧ v, v ∧w, and w ∧ u.

We can construct frames from any linearly independent vectors, including non-orthonormal
frames. What follows is an example of the use of Frame and OFrame:

>> f1=e1+e2; f2=e2; f3=e3;

>> F = Frame(’f’,f1,f2,f3);

>> a=e1^(e1+e2+e3)

ans =

e1^e2 + -1*e3^e1
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>> OFrame(F);

>> a

ans =

f1^f2 + -1*f2^f3 + -1*f3^f1

>> draw(a);

The first time we printed a, we were using the default frame. After setting the output frame
using OFrame, a was printed using frame f. When you draw a, you will see it drawn relative to
the standard frame e1, e2, e3 (unless you had axis off). If you would like to see the f1, f2,
f3 basis vectors, you will have to draw them yourself.

To reset the output frame to be the default frame, call OFrame([]);.
Frames are a bit awkward because you can’t write procedures that define variables outside

their scope (except for global variables). Thus, when creating a frame, you have to pass both
the vectors and the names of the vectors to the frame creation routine. For example, in the
above example we carefully constructed the vectors f1, f2, and f3 to match the names that the
Frame command would use. This allows us to enter vectors relative to the frame as well as print
relative to this frame. Thus, while we could call

>> G = Frame(’g’, e1+e2, e2+e3, e3+e1);

>> OFrame(G);

>> e1

ans =

0.5*g1 + -0.5*g2 + 0.5*g3

we would be unable to enter values relative to frame basis elements g1, g2, g3 because we haven’t
defined these Matlab variables.

Second, when we define the variables corresponding to the basis elements (as we did above
for f1, f2, and f3), these are local variables. In particular, realize that if you pass the frame
to a procedure, that procedure will be unable to create vectors relative to f1, f2, and f3, even
if you passed the names of the vectors to this procedure. However, we do provide a means for
extracting the basis vectors of a frame via the FE command. The command FE(f,n) returns
the nth basis vector of frame f. Naturally, n should be an integer between 1 and 3.

We illustrate the use of FE by continuing the above example:

>> OFrame([]);

>> FE(F,1)

ans =

e1 + e2

>> OFrame(G);

>> FE(F,1)

ans =

g1

Thus, if you wish to pass a frame to a procedure and have it create vectors, etc., relative to that
frame, the procedure could use the FE command to extract the basis vectors of the frame and
proceed from there.

But let us emphasize that in geometric algebra, you use the actual frames only for the
definition of the objects; none of their interactions or operations need ever use a particular
frame representation; all are coordinate-free, in that sense.

C More about drawing routines

You may remember the three routines for illustrating the three products:

• DrawOuter(A,B): Draw the outer product of A and B.

• DrawInner(A,B): Draw the inner product of A and B.

• DrawGP(A,B): Draw the geometric product of A and B.

Depending on the type of objects, all three draw routines will draw in one of two different
modes. If neither object in the product is a mixed-grade multivector, then the drawing routine
will bring up two subplots. In the left plot, you will see the first object drawn in blue and second
object drawn in green. In the right plot, you will see the product of the two objects drawn in
red.
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Character ’r’ ’g’ ’b’ ’c’ ’m’ ’y’ ’k’ ’w’
Color red green blue cyan magenta yellow black white

Table 4: Matlab colors

If either object is a mixed-grade multivector, then it is hard to visualize the two objects in
a single plot. Therefore, the drawing routines will bring up three subplots. In the left plot,
you will see the first object drawn in blue; in the middle plot you will see the second object
drawn in green; and in the right plot, you will see the product drawn in red. If any of the three
objects have a scalar part, a label will appear above the appropriate graph stating the value of
the scalar.

After the graphs appear, you should use GAorbiter to get a better feel of the three-
dimensional relationships between the objects.

C.1 Optional color arguments

Several of the drawing routines take an optional color argument. This color argument should
be a Matlab color character, one of the colors given in Table 4.

The following list summarizes the effects of the color argument. The default colors are given
in parentheses.

• draw(a,c): draw the scalar (black), vector (blue), bivector (green with black border),
trivector (red) or multivector (mixed) a in the color c.

• DrawBivector(v1,v2,c): draw the parallelogram specified by v1 (blue) and v2 (green),
with the interior shaded in c (yellow).

• DrawPolyline(P,c): Draw the polyline specified by the cell array of vectors P in color c

(blue).

• DrawPolygon(P,c): Draw the polygon specified by the cell array of vectors P in color c

(blue).

• DrawSimplex(S,c1,c2): Draw the simplex specified by cell array S. The cell array S may
have 1, 2, or 3 vectors in it. Each vector in S is drawn by calling draw with color c1 (blue).
Then draw the simplex formed by the tips of the vectors in S in color c2 (yellow).

• DrawHomogeneous(e,A,c1,c2):draw a simplex for the flat A in homogeneous representa-
tion. This draws the tangent blade at a position given by the perpendicular support vector.
e is the special vector in homogeneous coordinates (typically e3); A is the homogeneous
blade; c1 is the color of the supporting vectors of the simplex; c2 is the color of the simplex;
c1 and c2 are optional, although c1 must be specified if c2 is used.

D Glossary

This glossary is meant to convey the geometric flavor of terms, rather than their exact definitions
– for those the reader is referred to the appropriate sections.

• Bivector - A directed area element, a 2-dimensional direction. Formed by the outer product
of two independent vectors, it determines a plane through the origin. (Section 2.2.2)

• Blade - a subspace through the origin; a k-blade is constructed as the outer product of k
vectors. (Section 2.2.7)

• Dual - The orthogonal complement of a multivector (usually a blade); made through
division by the unit volume. (Section 2.4.3)

• Geometric product - The product to scale, rotate and orthogonalize multivectors; it pro-
vides a geometric operator. (Section 2.4.1)

• Grade involution - take the k-blade A and multiply it by (−1)k; for multivectors, do this
for each of its blades. (Section 2.5)

• Homogeneous model - The embedding of n-dimensional Euclidean space in an (n + 1)-
dimensional geometric algebra. (Section 5.2)

• Inner product - the product used when orthogonal complements are involved. (Section 2.3)
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• Inverse - The inverse under the geometric product; denoted by A−1 (as object) or by /A
(as right-side operator). (Section 2.4.2)

• Multi-vector - a sum of blades, the most general element of geometric algebra. (Sec-
tion 2.2.7)

• Outer product - The product used for spanning subspaces. (Section 2.2)

• Projection - The component of a blade totally contained in another blade; or the operation
producing this. (Section 3.1)

• Pseudoscalar - The outer product of all the vectors in a basis for our vector space; the
‘volume-element’ of the space. (Section 2.2.3)

• Rejection - The component of a blade totally outside another blade; or the operation
producing this. (Section 3.1)

• Spinor - a product of vectors, to be used as the operator S in the spinor product SxS−1.
(Section 3.4.2)

• Trivector - A directed volume element. Formed by the outer product of three independent
vectors. (Section 2.2.3)

• Vector - The basic 1-dimensional elements of a linear space spanning a geometric space.
A basis for this vector space generates the linear space of the geometric algebra of the
geometric space.

• Wedge product - Another name for the outer product. (Section 2.2)
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