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Given two subspaces A and B of the overall vector space, the largest subspace common to both of them

is called the meet of those subspaces, and as a set is the intersection A ∩ B of those subspaces. The join

of the two given subspaces is the smallest superspace common to both of them, and as a set is the sum

A+ B = {x1 + x2 : x1 ∈ A and x2 ∈ B} of those subspaces. A+ B is not usually a “direct sum” A
⊕
B, as

the decomposition x1+x2 of a nonzero element of the join is uniquely determined only when A∩B = {0}.

The system of subspaces, with its subset partial ordering and meet and join operations, is an example of

the type of algebraic system called a “lattice”.

Recall that a subspace A can be represented by a blade A, with A = {x : x ∧A = 0}. If A is unoriented,

then any scalar multiple αA (α �= 0) also represents A; if A is oriented, then the scalar must be positive.

Our emphasis is on the algebra of the representing blades, so hereafter we usually do not refer to A and B

themselves but rather to their representatives A and B. When necessary we will abuse language and refer

to the “subspace” A or B rather than to A or B. We will examine the meet and join of two given blades

A and B, both before and after application of an (invertible) transformation f to get new blades Ā = f [A]

and B̄ = f [B]. We first define meet and join of blades and examine the consequences of those definitions.

Then we will see how to obtain a meet and join for the image blades Ā and B̄.

A meetM = A ∩B is defined to be any blade M which satisfies the condition

∀x : [x ∧M = 0]⇔ [x ∧A = 0 and x ∧B = 0] ,

while a join J = A ∪B is defined to be any blade which satisfies

∀x : [x ∧ J = 0]⇔ [∃x1∃x2 : x1 ∧A = 0 and x2 ∧B = 0 and x1 + x2 = x] .

The meet condition says that the subspace (determined by) M is the largest subspace of both the subspace

(determined by) A and the subspace (determined by) B, while the join condition says that J is the smallest

superspace of both A and B.

Notation borrowed or adapted from other areas of mathematics can suggest things that aren’t true, but

not borrowing would proliferate notation without limit and incur the wrath of the typesetter. We therefore

make some cautionary remarks so as to lend a perspective to the symbols used here. The “∪′′ symbol for

the join operation should be viewed as suggesting an operation in some sense dual to the meet operation

“∩”. Our ∪ and ∩ are suggestive of the notation “∨” and “∧” used in lattice theory for its join and meet

operations. Because of our preemptive use of “∧” for the outer product, we cannot simply appropriate lattice

theory’s notation, but ∪ and ∩ seem in most ways to be a good substitute. But “∪” and “∩” are also used

in set theory. It turns out that the A∩B subspace is indeed the set intersection of the subspaces A and B,

but some thought will show that to be a happy accident, for the definition of the A ∩B subspace involves

not just set theory operations but also vector space concepts. The definition of the A ∪B subspace, being

dependent on the concept of vector addition, also involves more than just set operations, but for A∪B there

is no happy accident: A ∪B it is not the set union of the subspaces A and B, but is rather their sum (not

direct sum). A final danger we mention is that, because of the subspace/blade correspondence, one might
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be tempted to think that the subspace join A+B has blade correspondent A+B. Avoid that temptation!

If nothing else, the join J must be a blade, but in Rn, n > 3, addition of blades doesn’t necessarily result

in another blade.

The two conditions which define meet and join determine the attitudes of the blades M and J but not

their magnitudes or orientations, as can be seen from the facts that λM satisfies the meet condition iff M

does, and µJ satisfies the join condition iff J does. We do not preclude λ or µ from being negative, which

would reverse the orientation ofM or J. We can speak of a meet or a join, but without further specification

we cannot speak of the meet or the join. As far as the definitions go, there is no coupling of the magnitude

and orientation ofM with those of J. Instead a coupling is introduced by adoption of a constraint between

M and J. The constraint we choose to use takes three equivalent forms,

J =
(
A⌊M−1

)
∧M ∧

(
M−1⌋B

)
or M =

(
B⌋J−1

)
⌋A or

(
M⌋J−1

)
=
(
B⌋J−1

)
∧
(
A⌋J−1

)
.

At this point in the discussion the constraint in its various forms is not particularly meaningful, but we can

at least see that the constraint serves to determine the magnitude and orientation of one of the blades M

and J given those same attributes for the other blade: If we make the change M −→ λM, the first version

of the constraint requires J −→ λ−1J; the change J −→ µJ and the second version of the constraint requires

M −→ µ−1M. (λµ = 1, of course.) Once the constraint is imposed and the magnitude and orientation of

one of the blades is chosen, we may speak of the meetM and the join J.

Let us try to motivate the contraint’s first version. GivenM, we can find its orthogonal complements in

A and B by using the left and right contractions to removeM from those blades in an orthogonal manner,

A′ := A⌊M−1 and B′ :=M−1⌋B.

Use of the right contraction to form A′ enables us to recover A by right outer multiplication withM, while

use of the left contraction to form B′ enables recovery of B by left outer multiplication with M:

A′ ∧M =
(
A⌊M−1

)
∧M = A and M ∧B′ =M ∧

(
M−1⌋B

)
= B.

This is convenient, for then we can write either A′ ∧M ∧B′ = (A′ ∧M) ∧B′ = A ∧B′ or A′ ∧M ∧B′ =

A′ ∧ (M ∧B′) = A′ ∧ B without worrying about whether the order of the factors A′, M, B′ must be

changed in order to combine A′ with M or to combine M with B′. With the orthogonal complements in

our possession, it’s reasonable to try creating J by putting together A′ (the part of A not M), M, and B′

(the part of B notM). We can write this variously as

J = A′ ∧M ∧B′ =
(
A⌊M−1

)
∧M ∧

(
M−1⌋B

)
(combine A notM with M and B notM)

= (A′ ∧M) ∧B′ = A ∧
(
M−1⌋B

)
(combine A with B notM)

= A′ ∧ (M ∧B′) =
(
A⌊M−1

)
∧B (combine A notM with B ),

depending on what’s convenient for the purpose at hand. Note that the constraint J = A′ ∧M ∧B′ is a

convention we choose to adopt. It is not required by or a consequence of the definitions of meet and join,

although it must integrate with those definitions. J = A′ ∧M ∧B′ is a reasonable convention to make. In

principle one could also use some weird scalar multiple like 7
3
(A′ ∧M ∧B′) = A∧

(
7

3
B′
)
=
(
7

3
A′
)
∧B, which

would also be a join if A′∧M∧B′ is, but such a multiple would be needlessly complicated and not so useful

for adoption as a constraint. Note that our constraint is not universally adhered to by other authors, so when

consulting other texts be sure to check which conventions they use; most deviations from our convention by
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other texts can be expressed as a sign factor dependent on the grades of the blades involved.

Loosely speaking, taking B out of J leaves A′ (sort of, but not precisely), which when taken out of A in

turn leaves M; therefore the second version M =
(
B⌋J−1

)
⌋A of the constraint is also reasonable. As will

be seen below, the constraint’s third version is closely related to the second version. Of course A′ ∧M∧B′

had better actually be a join if the constraint declaring it to be J is to make any sense! Observe that

A′ ∧M∧B′ satisfies the ⇒ portion of the join definition. For suppose x∧ (A′ ∧M ∧B′) = 0, i.e. suppose

x ∧ (A′ ∧B) = 0. Within the A′ ∧ B space, in which x resides, obtain x1 and x2 respectively by parallel

projection of x parallelly to B (not orthogonal projection) and to A′ to get x1 and x2 (see the figure). Then

x1 ∧A
′ = 0, whence x1 ∧A = x1 ∧ (A

′∧M) = 0, and x2 ∧B = 0. By the construction of x1 and x2, the

x ∈ A′ ∧M∧B′ with which we started is x = x1+x2. We have decomposed the subspace A
′ ∧M∧B′ into

the direct sum of the (disjoint but not-necessarily-orthogonal) subspaces A′ and B.

Conversely, A′ ∧M ∧ B′ satisfies the ⇐ portion of the definition: If x1 ∧ A = 0 and x2 ∧ B = 0, then

x = x1 + x2 satisfies

x ∧ J = x1 ∧ ((A
′ ∧M) ∧B′) + x2 ∧ (A

′ ∧ (M ∧B′)) = x1 ∧A ∧B
′ + x2 ∧A

′ ∧B = 0 + 0 = 0.

The first version of the constraint, J =
(
A⌊M−1

)
∧B, specifically gives J in terms ofM. We invert this

so as to give M in terms in J:

M =M ∧
(
J⌋J−1

)
because J⌋J−1 = 1

=M ∧
(((
A⌊M−1

)
∧B

)
⌋J−1

)
because J =

(
A⌊M−1

)
∧B

=M ∧
((
A⌊M−1

)
⌋
(
B⌋J−1

))
because (X ∧Y)⌋Z =X⌋ (Y⌋Z)

=M ∧
((
A⌊M−1

)
∗
(
B⌋J−1

))
because

(
A⌊M−1

)
and

(
B⌋J−1

)
have equal grades

=M ∧
(
A ∗

(
M−1 ∧

(
B⌋J−1

)))
because (Z⌊Y) ∗X = Z⌊(Y ∧X))

=M ∧
((
M−1 ∧

(
B⌋J−1

))
∗A

)
because ∗ is commutative

=M ∧
((
M−1 ∧

(
B⌋J−1

))
⌋A
)

because
(
M−1 ∧

(
B⌋J−1

))
and A have equal grades

=
(
M⌋

(
M−1 ∧

(
B⌋J−1

)))
⌋A because M ⊆A

=
((
M⌋M−1

)
∧
(
B⌋J−1

))
⌋A because M ⊥

(
B⌋J−1

)

=
(
B⌋J−1

)
⌋A because M⌋M−1 = 1.
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In short, we have obtained the equivalent versionM =
(
B⌋J−1

)
⌋A of the constraint. Incidentally, a similar

calculation in terms of the right contraction showsM = B⌊
(
J−1⌊A

)
.

Now M ⊆ A, so contraction into J−1 of both sides of the constraint’s second version gives still another

version

M⌋J−1 =M⌋
((
B⌋J−1

)
⌋A
)
=
(
B⌋J−1

)
∧
(
A⌋J−1

)
,

which may be written

M⋆ = B⋆ ∧A⋆; whence M =
(
B⋆ ∧A⋆

)−⋆
.

Here⋆ has been used to indicate dualization with respect to the join (as opposed to ∗ to indicate dualization

with respect to the overall space’s unit pseudoscalar I). The last boxed equation is the geometric algebra

justification for cross multiplication of the normals to two planes to find their line of intersection.

Let’s use the second constraint to find the meet of two 2-blades in R3,0. As we want to demonstrate that

our formulas give us what we think they should, we first rig the example so that we should be able to see

before calculation what should be the attitudes of the meet and join. We may visualize B = e1 ∧ e2 as a

unit square with first edge e1 and second edge e2. Rotate B’s edges by φ about the direction e3 orthogonal

to the B plane; this rotation gives a new unit square representation B =m∧b′ of blade B, with orthogonal

edges m = e1 cosφ + e2 sinφ and b′ = −e1 sinφ + e2 cosφ. Rotate the new version of B by θ about its

first edge m to obtain unit square A = m ∧ a′ = a′ ∧ (−m) with edges m and a′ = b′ cos θ + e3 sin θ =

−e1 sinφ cos θ + e2 cosφ cos θ + e3 sin θ. See the figure.

The normalized 2-blade

A =m ∧ a′ = (e1 cosφ+ e2 sinφ) ∧ (−e1 sinφ cos θ + e2 cosφ cos θ + e3 sin θ)

then represents an (oriented) plane rotated θ away from the (oriented) plane of

B = e1 ∧ e2 =m ∧ b′ =(e1 cosφ+ e2 sinφ) ∧ (−e1 sinφ+ e2 cosφ)

and meeting the B-plane along the direction m = e1 cosφ+ e2 sinφ. Assuming θ �= 0 and θ �= π, the join

subspace should be 3-dimensional, so we take J to be the 3-blade J = I3 = e1 ∧ e2 ∧ e3. The meet follows
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from the second version of the constraint,

M =
(
B⌋J−1

)
⌋A = ((e1 ∧ e2)⌋ (e3 ∧ e2 ∧ e1))⌋A = e3⌋A

= e3⌋ ((e1 cosφ+ e2 sinφ) ∧ (−e1 cos θ sinφ+ e2 cos θ cosφ+ e3 sin θ))

= − (e1 cosφ+ e2 sinφ) sin θ = −m sin θ.

We’ve shown—as we should have expected from the way A was constructed from B—that the meet M is

codirectional with m. An added bonus comes from noting that ‖M‖ = |sin θ|, where θ is the angle between

B and A; this is true not just for our example but also for general blades B and A when A, B, and J all

have unit magnitude. Now ‖M‖ = |sin θ| has maximum value 1 at θ = π

2
, but |sin θ| −→ 0 as θ −→ 0 or

θ −→ π. But M doesn’t actually vanish at θ = 0 or θ = π. Rather the critical assumption that J = I3

becomes invalid; we have A = B for θ = 0 and A = −B for θ = π, so the correct join when θ = 0 or θ = π

is not the trivector I3 but rather the bivector I2 = e1 ∧ e2; rather than M vanishing at θ = 0 or θ = π, it

becomes identical with I2 or −I2. This grade- and magnitude-changing discontinuity is why M and J are

described as “mostly linear”. In a further exploration of the example, computation shows the complements

ofM in A and B to be

A′ = A⌊M−1 = (m ∧ a′) ⌊
−m

sin θ
=

a′

sin θ
and B′ =M−1⌋B =

m

− sin θ
⌋m ∧ b′ =

−b′

sin θ
.

These are orthogonal toM,

A′ ·M =
a′

sin θ
· (−m sin θ) = −a′ ·m = 0 and B′ ·M =

−b′

sin θ
· (−m sin θ) = b′ ·m = 0,

and when combined with that blade give back the original blades A and B,

A′ ∧M =
a′

sin θ
∧ (−m sin θ) =m ∧ a′ =A and M ∧B′ = (−m sin θ) ∧

−b′

sin θ
=m ∧ b′ = B.

The expression A′ ∧M ∧B′ gives back J, as it should:

A′ ∧ (M ∧B′) =
a′

sin θ
∧ (m ∧ b′) =

a′

sin θ
∧B =

(b′ cos θ + e3 sin θ) ∧ (e1∧e2)

sin θ
=
I3 sin θ

sin θ
= J.

As depicted by the figure, the angle between A′ and B′ is arccos
(

A
′

‖A′‖ ·
B
′

‖B′‖

)
= arccos (− cos θ) = π− θ.

π

2
.

Thus it is not true that A′ ⊥ B′, and so the decomposition A′ ∧M ∧B′ of J is not an orthogonal one.

Finally we shall apply an invertible transformation f to A and B and examine the question of the meet

and join of the resultant image blades

Ā := f [A] and B̄ := f [B].

Since

[y ∧ f [M] = 0] ⇔
[
f−1 [y] ∧M = 0

]

⇔
[
f−1 [y] ∧A = 0 and f−1 [y] ∧B = 0

]

⇔
[
y ∧ f [A] = 0 and y ∧ f [B] = 0⇔ y ∧ Ā = 0 and y ∧ B̄ = 0

]
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and

[y ∧ f [J] = 0] ⇔
[
f−1 [y] ∧ J = 0

]

⇔
[
∃x1∃x2 : x1 ∧A = 0 and x2 ∧B = 0 and x1 + x2 = f

−1 [y]
]

⇔ [∃x1∃x2 : f [x1] ∧ f [A] = 0 and f [x2] ∧ f [B] = 0 and f [x1] + f [x2] = y]

⇔
[
∃y1∃y2 : y1 ∧ Ā = 0 and y2 ∧ B̄ = 0 and y1 + y2 = y

]
,

we see that f [M] is a meet of Ā and B̄ and f [J] is a join of those blades.

But—as noted above—the constraint is a separate question from the meet and join definitions, so we must

ask whether

M̄ : = f [M] and J̄ : = f [J]

are related by the constraint. The blade J̄ = f [J] = f
[(
A⌊M−1

)
∧B

]
expands to

J̄ =
(
f [A] ⌊f̄−1

[
M−1

])
∧ f [B] =

(
Ā⌊f̄−1

[
M−1

])
∧ B̄,

which expression is structurally similar to the right-hand side of the as-yet-unproven first version of the

constraint

J̄ =
(
Ā⌊M̄−1

)
∧ B̄.

This structural similarity suggests that we try to find M̄ in terms of J̄ in the same way used above to invert

the first version of the constraint between M and J:

M̄ = M̄ ∧
(
J̄⌋J̄−1

)
= M̄ ∧

(((
Ā⌊f̄−1

[
M−1

])
∧ B̄

)
⌋J̄−1

)

= M̄ ∧
((
Ā⌊f̄−1

[
M−1

])
⌋
(
B̄⌋J̄−1

))
= M̄ ∧

((
Ā⌊f̄−1

[
M−1

])
∗
(
B̄⌋J̄−1

))

= M̄ ∧
(
Ā ∗

(
f̄−1

[
M−1

]
∧
(
B̄⌋J̄−1

)))
= M̄ ∧

((
f̄−1

[
M−1

]
∧
(
B̄⌋f J̄−1

))
∗ Ā

)

= M̄ ∧
((
f̄−1

[
M−1

]
∧
(
B̄⌋J̄−1

))
⌋Ā
)

=
(
M̄⌋

(
f̄−1

[
M−1

]
∧
(
B̄⌋J̄−1

)))
⌋Ā

=
((
M̄⌋f̄−1

[
M−1

])
∧
(
B̄⌋J̄−1

))
⌋Ā =

(
M̄ ∗ f̄−1

[
M−1

]) ((
B̄⌋J̄−1

)
⌋Ā
)

Now use the definitions of M̄ and f̄ ,

M̄ =
(
f [M] ∗ f̄−1

[
M−1

]) ((
B̄⌋J̄−1

)
⌋Ā
)

=
(
M ∗ f̄

[
f̄−1

[
M−1

]]) ((
B̄⌋J̄−1

)
⌋Ā
)

=
(
M ∗M−1

) (
B̄⌋J̄−1

)
⌋Ā =

(
B̄⌋J̄−1

)
⌋Ā,

to arrive at the second version of the constraint between M̄ and J̄.

We summarize: If we chose J̄ := f [J] to be the join of Ā := f [A] and B̄ := f [B], then M̄ : = f [M]

will be the meet; and conversely. M̄ and J̄ will then satisfy any of the equivalent constraints

J̄ =
(
Ā⌊M̄−1

)
∧ M̄ ∧

(
M̄−1⌋B̄

)
or M̄ =

(
B̄⌋J̄−1

)
⌋Ā or M̄⌋J̄−1 =

(
B̄⌋J̄−1

)
∧
(
Ā⌋J̄−1

)
.

Note that dualization is taken with repect to J̄ = f [J], not with respect to J.

If we assign a magnitude and orientation to either M or J, the constraint fixes the other blade and in

particular its magnitude and orientation; M̄ and J̄ are in turn fixed by f . Thus the initial assignment of

magnitude and orientation attributes to one blade ripples through to the others.

1. Suppose we had reason to take a specific normalization for the preimage join, say ‖J‖ = 1. This would

fix ‖M‖,
∥∥M̄

∥∥ = ‖f [M]‖, and
∥∥J̄
∥∥ = ‖f [J]‖. So long as we insisted on both ‖J‖ = 1 and J̄ = f [J],

we would have no freedom to require
∥∥J̄
∥∥ = 1, . (We are not requiring the transformation f to be
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orthogonal, so it may change the magnitude of a blade on which it acts.)

2. Relaxation of either requirement would allow us to make
∥∥J̄
∥∥ = 1. If we kept the requirement J̄ = f [J],

we could adjust the magnitude of J and thereby adjust
∥∥J̄
∥∥ = ‖f [J]‖. The constraint would determine

‖M‖ and
∥∥M̄

∥∥).

3. Alternately we could keep ‖J‖ = 1 and scale f [J] to obtain J̄. That is to say we could take

J̄ =

(
±1

‖f [J]‖

)
f [J] and M̄ =(±‖f [J]‖) f [M]

instead of J̄ = f [J] and M̄ = f [M].

4. Suppose J is an eigenblade of f , f [J] = λJ, with nonzero eigenvalue λ. Then we could use J as the

join of Ā and B̄ as well as the join of A and B, and we would have

J̄ = J = λ−1f [J] and M̄ = λf [M] .

This can be done only when J is an eigenblade of f ; otherwise J and f [J] will not be co-attitudinal,

so J will not be a join of Ā and B̄.

We make one final observation about A∩B and A∪B. We have called ∪ the “join operation”. A binary

operation is usually regarded as a function in the sense of producing from its arguments a unique value, but

the value blade A ∪B is not uniquely determined from the argument blades A and B. This problem goes

away if we regard A, B, and A ∪B as subspaces instead of blades. Of course a similar remark holds about

A ∩B. Can A ∩B and A ∪B be made into blade operations? We could impose ‖A ∪B‖ = 1 as a second

constraint and thereby remove any indeterminancy in the magnitudes of M = A ∩B and J = A ∪B. But

a final indeterminancy in the orientation of one of A∩B and A∪B would still exist. The author knows no

way of removing that indeterminancy.
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