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12.1 Homogeneous Plücker Coordinates in 3-D 328
12.1.1 Line Representation 328
12.1.2 The Elements in Coordinate Form 330
12.1.3 Combining Elements 332



C O N T E N T S xiii

12.1.4 Matrices of Motions in Plücker Coordinates 334
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Preface

Geometric algebra is a powerful and practical framework for the representation and
solution of geometrical problems. We believe it to be eminently suitable to those sub-
fields of computer science in which such issues occur: computer graphics, robotics, and
computer vision. We wrote this book to explain the basic structure of geometric algebra,
and to help the reader become a practical user. We employ various tools to get there:

• Explanations that are not more mathematical than we deem necessary, connecting
algebra and geometry at every step

• A large number of interactive illustrations to get the “object-oriented” feeling of
constructions that are dependent only on the geometric elements in them (rather
than on coordinates)

• Drills and structural exercises for almost every chapter

• Detailed programming examples on elements of practical applications

• An extensive section on the implementational aspects of geometric algebra (Part III
of this book)

This is the first book on geometric algebra that has been written especially for the com-
puter science audience. When reading it, you should remember that geometric algebra
is fundamentally simple, and fundamentally simplifying. That simplicity will not always
be clear; precisely because it is so fundamental, it does basic things in a slightly different
way and in a different notation. This requires your full attention, notably in the begin-
ning, when we only seem to go over familiar things in a perhaps irritatingly different
manner. The patterns we uncover, and the coordinate-free way in which we encode them,
will all pay off in the end in generally applicable quantitative geometrical operators and
constructions.

We emphasize that this is not primarily a book on programming, and that the subtitle
“An Object-oriented Approach to Geometry” should not be interpreted too literally. It is
intended to convey that we finally achieve clean computational “objects” (in the sense of
object-oriented programming) to correspond to the oriented elements and operators of
geometry by identifying them with “oriented objects” of the algebra.

xxxi
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AUDIENCE

The book is aimed at a graduate level; we only assume basic linear algebra (and a bit of
calculus in Chapter 8). No prior knowledge of the techniques of computer graphics or
robotics is required, though if you are familiar with those fields you will appreciate how
much easier things are in geometric algebra. The book should also be well suited for self-
study at the post-graduate level; in fact, we tried to write the book that we would have
wanted ourselves for this purpose. Depending on your level of interest, you may want to
read it in different ways.

• If you are a seasoned user of geometry and well-versed in the techniques of casting
geometry in linear algebra, but don’t have much time, you will still find this book
worthwhile. In a comfortable reading, you can absorb what is different in geometric
algebra, and its structure will help you understand all those old tricks in your library.
In our experience, it makes many arcane techniques comprehensible, and it helped
us to learn from useful math books that we would otherwise never have dared to
read. You may never actually use geometric algebra, but you will find it enlightening
all the same. And who knows—you may come back for more.

• If you are currently writing code using the coordinate-based linear algebra, a back-
ground study of the techniques in this book will be helpful and constructive. The
advantages for the previous category will apply to you as well. Moreover, you may
find yourself doing derivations of formulas you need to program in the compact
geometric algebra manner, and this will clarify and improve your implementations,
even if you continue writing those in the old linear algebra vocabulary. In particular,
the thinking behind your code will be more geometrical, less coordinate-based, and
this will make it more transparent, more flexibly applicable (for instance, in higher
dimensions), and ready to be translated into geometric algebra after the revolution.

• If you are starting out in geometric programming, take the time to absorb this book
thoroughly. This geometric algebra way of thinking is quite natural, and we are
rather envious that you can learn it from scratch, without having to unlearn old
methods. With study and practice you will be able to write programs in geometric
algebra rather fluently, and eventually contribute actively to its development.

Our style in this book is factual. We give you the necessary mathematics, but always relate
the algebra to the geometry, so that you get the complete picture. Occasionally, there is
a need for more extensive proofs to convince you of the consistency of aspects of the
framework. When such a proof became too lengthy and did not further the arguments, it
was relegated to an appendix. The derivations that remain in the text should be worth your
time, since they are good practice in developing your skills. We have attempted to avoid
the “pitfall of imprecision” in this somewhat narrative presentation style by providing the
fundamental chapters with a summary of the essential results, for easy consultation via
the index.
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HISTORY

We do not constantly attribute all results, but that does not mean that we think that we
developed all this ourselves. By its very nature, geometric algebra collates many partial
results in a single framework, and the original sources become hard to trace in their orig-
inal context. It is part of the pleasure of geometric algebra that it empowers the user; by
mastering just a few techniques, you can usually easily rediscover the result you need.

Once you grasp its essence, geometric algebra will become so natural that you will wonder
why we have not done geometry this way all along. The reason is a history of geometric
(mis)representation, for almost all elements of geometric algebra are not new—in hind-
sight. Elements of the quantitative characterization of geometric constructions directly in
terms of its elements are already present in the work of René Descartes (1595–1650); how-
ever, his followers thought it was easier to reduce his techniques to coordinate systems not
related to the elements (nevertheless calling them Cartesian, in his honor). This gave us
the mixed blessing of coordinates, and the tiresome custom of specifying geometry at the
coordinate level (whereas coordinates should be relegated to the lowest implementational
level, reserved for the actual computations). To have a more direct means of expression,
Hermann Grassmann (1809–1877) developed a theory of extended quantities, allowing
geometry to be based on more than points and vectors. Unfortunately, his ideas were
ahead of their time, and his very compact notation made his work more obscure than it
should have been. William Rowan Hamilton (1805–1865) developed quaternions for the
algebra of rotations in 3D, and William Kingdon Clifford (1845–1879) defined a more
general product between vectors that could incorporate general rigid body motions.

All these individual contributions pointed toward a geometric algebra, and at the end
of the 19th century, there were various potentially useful systems to represent aspects
of geometry. Gibbs (1839–1903) made a special selection of useful techniques for the 3D
geometry of engineering, and this limited framework is basically what we have been using
ever since in the geometrical applications of linear algebra. In a typical quote from his
biography “using ideas of Grassmann, Gibbs produced a system much more easily applied
to physics than that of Hamilton.” In the process, we lost geometric algebra. Linear alge-
bra and matrices, with their coordinate representations, became the mainstay of doing
geometry, both in practice and in mathematical development. Matrices work, but in their
usual form they only work on vectors, and this ignores Grassmann’s insight that extended
qualities can be elements of computation. (Tensors partially fix this, but in a cumbersome
coordinate-based notation.)

With the arrival of quantum physics, convenient alternative representations for spatial
motions were developed (notably for rotations), using complex numbers in “spinors.”
The complex nature of spinors was mistaken for an essential aspect of quantum mechanics,
and the representations were not reapplied to everyday geometry. David Hestenes
(1933–present) was perhaps the first to realize that the representational techniques in
relativity and quantum mechanics were essentially manifestations of a fundamental
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“algebra of spatial relationships” that needed to be explored. He rescued the half-forgotten
geometric algebra (by now called Clifford algebra and developed in nongeometric direc-
tions), developed it into an alternative to the classical linear algebra–based representa-
tions, and started advocating its universal use. In the 1990s, his voice was heard, and with
the implementation of geometric algebra into interactive computer programs its practical
applicability is becoming more apparent.

We can now finally begin to pick up the thread of geometrical representation where it
was left around 1900. Gibbs was wrong in assuming that computing with the geometry of
3D space requires only representations of 3D points, although he did give us a powerful
system to compute with those. This book will demonstrate that allowing more extended
quantities in higher-dimensional representational spaces provides a more convenient exe-
cutable language for geometry. Maybe we could have had this all along; but perhaps we
indeed needed to wait for the arrival of computers to appreciate the effectiveness of this
approach.

SOFTWARE

There are three main software packages associated with this book, each written with a
different goal in mind (interaction, efficiency and illustration of algorithms, respectively).
All three were developed by us, and can be found on the web site:

http://www.geometricalgebra.net

for free downloading.

• GAViewer is an interactive program that we used to generate the majority of the
figures in this book. It was originally developed as a teaching tool, and a web tutorial
is available, using GAViewer to explain the basics of geometric algebra. You can use
GAViewerwhen reading the book to type in algebraic formulas and have them act on
geometrical elements interactively. This interaction should aid your understanding
of the correspondence between geometry and algebra considerably. The (simplified)
code of the figures provides a starting point for your own experimentation.

• Gaigen2 is geometric algebra implementation in C++ (and Java), intended for
applications requiring more speed and efficiency than a simple tutorial. The GA
sandbox source code package used for the programming examples and exercises in
this book is built on top of Gaigen2. To compile and run the programming exam-
ples in Part I and Part II, you only have to download the sandbox package from the
web site.

• Our simplistic but educational “reference implementation” implements all algo-
rithms and techniques discussed in Part III. It is written in Java and intended to
show only the essential structure; we do not deem it usable for anything that is com-
putationally intensive, since it can easily be 10 to 100 times slower than Gaigen2.
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If you are serious about implementing further applications, you can start with the GA
sandbox package, or other available implementations of geometric algebra, or even write
your own package.
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