
Geometric Algebra for
Computer Science





Geometric Algebra for
Computer Science

An Object-oriented Approach to Geometry

LEO DORST

DANIEL FONTIJNE

STEPHEN MANN

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann Publishers is an imprint of Elsevier



Publishing Director Denise Penrose
Senior Acquisitions Editor Tim Cox
Publishing Services Manager George Morrison
Senior Project Manager Brandy Lilly
Editorial Assistant Michelle Ward
Text Design Multiscience Press, Inc.
Composition diacriTech
Technical Illustration diacriTech
Copyeditor Multiscience Press, Inc.
Proofreader Multiscience Press, Inc.
Indexer Multiscience Press, Inc.
Interior printer Hing Yip Printing Co., Ltd.
Cover printer Hing Yip Printing Co., Ltd.

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.

c© 2007 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or
registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the
product names appear in initial capital or all capital letters. Readers, however, should contact the
appropriate companies for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means—electronic, mechanical, photocopying, scanning, or otherwise—without prior written
permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford,
UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may
also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting
“Support & Contact” then “Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Application submitted

ISBN 13: 978-0-12-369465-2
ISBN10: 0-12-369465-5

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in China

07 08 09 10 11 5 4 3 2 1



Contents

LIST OF FIGURES xx

LIST OF TABLES xxvi

LIST OF PROGRAMMING EXAMPLES xxviii

PREFACE xxxi

CHAPTER 1. WHY GEOMETRIC ALGEBRA? 1
1.1 An Example in Geometric Algebra 1

1.2 How It Works and How It’s Different 7
1.2.1 Vector Spaces as Modeling Tools 8
1.2.2 Subspaces as Elements of Computation 9
1.2.3 Linear Transformations Extended 12
1.2.4 Universal Orthogonal Transformations 12
1.2.5 Objects are Operators 14
1.2.6 Closed-Form Interpolation and Perturbation 15

1.3 Programming Geometry 15
1.3.1 You Can Only Gain 15
1.3.2 Software Implementation 16

1.4 The Structure of This Book 17
1.4.1 Part I: Geometric Algebra 18
1.4.2 Part II: Models of Geometry 18
1.4.3 Part III: Implementation of Geometric Algebra 18

1.5 The Structure of the Chapters 19

PART I GEOMETRIC ALGEBRA

CHAPTER 2. SPANNING ORIENTED SUBSPACES 23
2.1 Vector Spaces 24

v



vi C O N T E N T S

2.2 Oriented Line Elements 25
2.2.1 Properties of Homogeneous Lines 25
2.2.2 Visualizing Vectors 26

2.3 Oriented Area Elements 27
2.3.1 Properties of Planes 27
2.3.2 Introducing the Outer Product 28
2.3.3 Visualizing Bivectors 31
2.3.4 Visualizing Bivector Addition 32

2.4 Oriented Volume Elements 33
2.4.1 Properties of Volumes 33
2.4.2 Associativity of the Outer Product 35
2.4.3 Visualization of Trivectors 36

2.5 Quadvectors in 3-D Are Zero 37

2.6 Scalars Interpreted Geometrically 37

2.7 Applications 39
2.7.1 Solving Linear Equations 39
2.7.2 Intersecting Planar Lines 41

2.8 Homogeneous Subspace Representation 42
2.8.1 Parallelness 42
2.8.2 Direct Representation of Oriented Weighted Subspaces 43
2.8.3 Nonmetric Lengths, Areas, and Volumes 43

2.9 The Graded Algebra of Subspaces 44
2.9.1 Blades and Grades 44
2.9.2 The Ladder of Subspaces 45

2.9.3 k-Blades Versus k-Vectors 46
2.9.4 The Grassmann Algebra of Multivectors 47
2.9.5 Reversion and Grade Involution 49

2.10 Summary of Outer Product Properties 50

2.11 Further Reading 51

2.12 Exercises 51
2.12.1 Drills 51
2.12.2 Structural Exercises 52

2.13 Programming Examples and Exercises 53
2.13.1 Drawing Bivectors 57
2.13.2 Exercise: Hidden Surface Removal 57
2.13.3 Singularities in Vector Fields 60

CHAPTER 3. METRIC PRODUCTS OF SUBSPACES 65

3.1 Sizing Up Subspaces 66
3.1.1 Metrics, Norms, and Angles 66
3.1.2 Definition of the Scalar Product ∗ 67



C O N T E N T S vii

3.1.3 The Squared Norm of a Subspace 67
3.1.4 The Angle Between Subspaces 68

3.2 From Scalar Product to Contraction 71
3.2.1 Implicit Definition of Contraction � 71
3.2.2 Computing the Contraction Explicitly 73
3.2.3 Algebraic Subtleties 74

3.3 Geometric Interpretation of the Contraction 75

3.4 The Other Contraction � 77

3.5 Orthogonality and Duality 78
3.5.1 Nonassociativity of the Contraction 78
3.5.2 The Inverse of a Blade 79
3.5.3 Orthogonal Complement and Duality 80
3.5.4 The Duality Relationships 82
3.5.5 Dual Representation of Subspaces 83

3.6 Orthogonal Projection of Subspaces 83

3.7 The 3-D Cross Product 86
3.7.1 Uses of the Cross Product 86
3.7.2 The Cross Product Incorporated 87

3.8 Application: Reciprocal Frames 89

3.9 Further Reading 91

3.10 Exercises 91
3.10.1 Drills 91
3.10.2 Structural Exercises 91

3.11 Programming Examples and Exercises 93
3.11.1 Orthonormalization 93
3.11.2 Exercise: Implementing the Cross Product 94
3.11.3 Reciprocal Frames 95
3.11.4 Color Space Conversion 95

CHAPTER 4. LINEAR TRANSFORMATIONS OF
SUBSPACES 99

4.1 Linear Transformations of Vectors 100

4.2 Outermorphisms: Linear Transformations of Blades 101
4.2.1 Motivation of the Outermorphism 102
4.2.2 Examples of Outermorphisms 103
4.2.3 The Determinant of a Linear Transformation 106

4.3 Linear Transformation of the Metric Products 108
4.3.1 Linear Transformation of the Scalar Product 108
4.3.2 The Adjoint of a Linear Transformation 108
4.3.3 Linear Transformation of the Contraction 109
4.3.4 Orthogonal Transformations 110



viii C O N T E N T S

4.3.5 Transforming a Dual Representation 111
4.3.6 Application: Linear Transformation of the Cross Product 112

4.4 Inverses of Outermorphisms 113

4.5 Matrix Representations 114
4.5.1 Matrices for Vector Transformations 114
4.5.2 Matrices for Outermorphisms 115

4.6 Summary 117

4.7 Suggestions for Further Reading 117

4.8 Structural Exercises 118

4.9 Programming Examples and Exercises 120
4.9.1 Orthogonal Projection 120
4.9.2 Orthogonal Projection, Matrix Representation 120
4.9.3 Transforming Normal Vectors 122

CHAPTER 5. INTERSECTION AND UNION OF SUBSPACES 125
5.1 The Phenomenology of Intersection 125

5.2 Intersection through Outer Factorization 127

5.3 Relationships Between Meet and Join 128

5.4 Using Meet and Join 129

5.5 Join and Meet are Mostly Linear 131

5.6 Quantitative Properties of the Meet 132

5.7 Linear Transformation of Meet and Join 133

5.8 Offset Subspaces 136

5.9 Further Reading 136

5.10 Exercises 137
5.10.1 Drills 137
5.10.2 Structural Exercises 137

5.11 Programming Examples and Exercises 138
5.11.1 The Meet and Join 138
5.11.2 Efficiency 140
5.11.3 Floating Point Issues 140

CHAPTER 6. THE FUNDAMENTAL PRODUCT OF
GEOMETRIC ALGEBRA 141

6.1 The Geometric Product for Vectors 142
6.1.1 An Invertible Product for Geometry 142
6.1.2 Symmetry and Antisymmetry 143
6.1.3 Properties of the Geometric Product 143
6.1.4 The Geometric Product for Vectors on a Basis 144



C O N T E N T S ix

6.1.5 Dividing by a Vector 145
6.1.6 Ratios of Vectors as Operators 146

6.2 The Geometric Product of Multivectors 147
6.2.1 Algebraic Definition of the Geometric Product 148
6.2.2 Evaluating the Geometric Product 149
6.2.3 Grades and the Geometric Product 150

6.3 The Subspace Products Retrieved 151
6.3.1 The Subspace Products from Symmetry 152
6.3.2 The Subspace Products as Selected Grades 154

6.4 Geometric Division 154
6.4.1 Inverses of Blades 155
6.4.2 Decomposition: Projection to Subspaces 155
6.4.3 The Other Division: Reflection 158

6.5 Further Reading 159

6.6 Exercises 159
6.6.1 Drills 159
6.6.2 Structural Exercises 160

6.7 Programming Examples and Exercises 161
6.7.1 Exercise: Subspace Products Retrieved 161
6.7.2 Gram-Schmidt Orthogonalization 162

CHAPTER 7. ORTHOGONAL TRANSFORMATIONS
AS VERSORS 167

7.1 Reflections of Subspaces 168

7.2 Rotations of Subspaces 169
7.2.1 3-D Rotors as Double Reflectors 170
7.2.2 Rotors Perform Rotations 172
7.2.3 A Sense of Rotation 174

7.3 Composition of Rotations 176
7.3.1 Multiple Rotations in 2-D 177
7.3.2 Real 2-D Rotors Subsume Complex Numbers 177
7.3.3 Multiple Rotations in 3-D 179
7.3.4 Visualizing 3-D Rotations 179
7.3.5 Unit Quaternions Subsumed 181

7.4 The Exponential Representation of Rotors 182
7.4.1 Pure Rotors as Exponentials of 2-Blades 183
7.4.2 Trigonometric and Hyperbolic Functions 184
7.4.3 Rotors as Exponentials of Bivectors 185
7.4.4 Logarithms 187

7.5 Subspaces as Operators 188
7.5.1 Reflection by Subspaces 188
7.5.2 Subspace Projection as Sandwiching 190
7.5.3 Transformations as Objects 190



x C O N T E N T S

7.6 Versors Generate Orthogonal Transformations 191
7.6.1 The Versor Product 192
7.6.2 Even and Odd Versors 193
7.6.3 Orthogonal Transformations are Versor Products 193
7.6.4 Versors, Blades, Rotors, and Spinors 195

7.7 The Product Structure of Geometric Algebra 196
7.7.1 The Products Summarized 196
7.7.2 Geometric Algebra versus Clifford Algebra 198
7.7.3 But—is it Efficient? 199

7.8 Further Reading 201

7.9 Exercises 202
7.9.1 Drills 202
7.9.2 Structural Exercises 202

7.10 Programming Examples and Exercises 204
7.10.1 Reflecting in Vectors 204
7.10.2 Two Reflections Equal One Rotation 204
7.10.3 Matrix-Rotor Conversion 1 204
7.10.4 Exercise: Matrix-Rotor Conversion 2 206
7.10.5 Julia Fractals 208
7.10.6 Extra Example: Rotations Used for Example User Interface 210

CHAPTER 8. GEOMETRIC DIFFERENTIATION 213
8.1 Geometrical Changes by Orthogonal Transformations 214

8.2 Transformational Changes 215
8.2.1 The Commutator Product 215
8.2.2 Rotor-Induced Changes 217
8.2.3 Multiple Rotor-Induced Changes 218
8.2.4 Transformation of a Change 219
8.2.5 Change of a Transformation 220

8.3 Parametric Differentiation 221

8.4 Scalar Differentiation 221
8.4.1 Application: Radius of Curvature of a Planar Curve 223

8.5 Directional Differentiation 224
8.5.1 Table of Elementary Results 225
8.5.2 Application: Tilting a Mirror 228

8.6 Vector Differentiation 230
8.6.1 Elementary Results of Vector Differentiation 232
8.6.2 Properties of Vector Differentiation 234

8.7 Multivector Differentiation 235
8.7.1 Definition 236
8.7.2 Application: Estimating Rotors Optimally 236

8.8 Further Reading 239



C O N T E N T S xi

8.9 Exercises 240
8.9.1 Drills 240
8.9.2 Structural Exercises 240

PART II MODELS OF GEOMETRIES

CHAPTER 9. MODELING GEOMETRIES 245

CHAPTER 10. THE VECTOR SPACE MODEL:
THE ALGEBRA OF DIRECTIONS 247

10.1 The Natural Model for Directions 248

10.2 Angular Relationships 248
10.2.1 The Geometry of Planar Triangles 249
10.2.2 Angular Relationships in 3-D 251
10.2.3 Rotation Groups and Crystallography 254

10.3 Computing with 3-D Rotors 256
10.3.1 Determining a Rotor from Rotation Plane and Angle 256
10.3.2 Determining a Rotor from a Frame Rotation in 3-D 257
10.3.3 The Logarithm of a 3-D Rotor 258
10.3.4 Rotation Interpolation 259

10.4 Application: Estimation in the Vector Space Model 260
10.4.1 Noisy Rotor Estimation 260
10.4.2 External Camera Calibration 260

10.5 Convenient Abuse: Locations as Directions 263

10.6 Further Reading 264

10.7 Programming Examples and Exercises 265
10.7.1 Interpolating Rotations 265
10.7.2 Crystallography Implementation 267
10.7.3 External Camera Calibration 268

CHAPTER 11. THE HOMOGENEOUS MODEL 271
11.1 Homogeneous Representation Space 272

11.2 All Points Are Vectors 274
11.2.1 Finite Points 274
11.2.2 Infinite Points and Attitudes 275
11.2.3 Addition of Points 276
11.2.4 Terminology: from Precise to Convenient 278

11.3 All Lines Are 2-Blades 278
11.3.1 Finite Lines 278
11.3.2 Lines at Infinity 282
11.3.3 Don’t Add Lines 282



xii C O N T E N T S

11.4 All Planes Are 3-Blades 283

11.5 k-Flats as (k + 1)-Blades 285
11.5.1 Finite k-Flats 285
11.5.2 Infinite k-Flats 285
11.5.3 Parameters of k-Flats 285
11.5.4 The Number of Parameters of an Offset Flat 286

11.6 Direct and Dual Representations of Flats 286
11.6.1 Direct Representation 286
11.6.2 Dual Representation 288

11.7 Incidence Relationships 292
11.7.1 Examples of Incidence Computations 292
11.7.2 Relative Orientation 296
11.7.3 Relative Lengths: Distance Ratio and Cross Ratio 298

11.8 Linear Transformations: Motions, and More 302
11.8.1 Linear Transformations on Blades 302
11.8.2 Translations 303
11.8.3 Rotation Around the Origin 304
11.8.4 General Rotation 305
11.8.5 Rigid Body Motion 305
11.8.6 Constructing Elements Through Motions 305
11.8.7 Rigid Body Motion Outermorphisms as Matrices 306
11.8.8 Affine Transformations 306
11.8.9 Projective Transformations 308

11.9 Coordinate-Free Parameterized Constructions 309

11.10 Metric Products in the Homogeneous Model 312
11.10.1 Non-Euclidean Results 312
11.10.2 Nonmetric Orthogonal Projection 314

11.11 Further Reading 315

11.12 Exercises 316
11.12.1 Drills 316
11.12.2 Structural Exercises 316

11.13 Programming Examples and Exercises 320
11.13.1 Working with Points 320
11.13.2 Intersecting Primitives 322
11.13.3 Don’t Add Lines 324
11.13.4 Perspective Projection 325

CHAPTER 12. APPLICATIONS OF THE HOMOGENEOUS
MODEL 327

12.1 Homogeneous Plücker Coordinates in 3-D 328
12.1.1 Line Representation 328
12.1.2 The Elements in Coordinate Form 330
12.1.3 Combining Elements 332



C O N T E N T S xiii

12.1.4 Matrices of Motions in Plücker Coordinates 334
12.1.5 Sparse Usage of the 24 Dimensions 336

12.2 Imaging by Multiple Cameras 336
12.2.1 The Pinhole Camera 337
12.2.2 Homogeneous Coordinates as Imaging 339
12.2.3 Cameras and Stereo Vision 340
12.2.4 Line-based Stereo Vision 342

12.3 Further Reading 346

12.4 Exercises 347
12.4.1 Structural Exercises 347

12.5 Programming Examples and Exercises 348
12.5.1 Loading Transformations into OpenGL 348
12.5.2 Transforming Primitives with OpenGL Matrices 349
12.5.3 Marker Reconstruction in Optical Motion Capture 351

CHAPTER 13. THE CONFORMAL MODEL:
OPERATIONAL EUCLIDEAN GEOMETRY 355

13.1 The Conformal Model 356
13.1.1 Representational Space and Metric 356
13.1.2 Points as Null Vectors 359
13.1.3 General Vectors Represent Dual Planes and Spheres 361

13.2 Euclidean Transformations as Versors 364
13.2.1 Euclidean Versors 364
13.2.2 Proper Euclidean Motions as Even Versors 365
13.2.3 Covariant Preservation of Structure 367
13.2.4 The Invariance of Properties 369

13.3 Flats and Directions 370
13.3.1 The Direct Representation of Flats 370
13.3.2 Correspondence with the Homogeneous Model 372
13.3.3 Dual Representation of Flats 374
13.3.4 Directions 376

13.4 Application: General Planar Reflection 377

13.5 Rigid Body Motions 379
13.5.1 Algebraic Properties of Translations and Rotations 380
13.5.2 Screw Motions 381
13.5.3 Logarithm of a Rigid Body Motion 383

13.6 Application: Interpolation of Rigid Body Motions 385

13.7 Application: Differential Planar Reflections 386

13.8 Further Reading 388

13.9 Exercises 388
13.9.1 Drills 388
13.9.2 Structural Exercises 389



xiv C O N T E N T S

13.10 Programming Examples and Exercises 390
13.10.1 Metric Matters 390
13.10.2 Exercise: The Distance Between Points 392
13.10.3 Loading Transformations into OpenGL, Again 393
13.10.4 Interpolation of Rigid Body Motions 395

CHAPTER 14. NEW PRIMITIVES FOR EUCLIDEAN
GEOMETRY 397

14.1 Rounds 398
14.1.1 Dual Rounds 398
14.1.2 Direct Rounds 400
14.1.3 Oriented Rounds 402

14.2 Tangents as Intersections of Touching Rounds 404
14.2.1 Euclid’s Elements 406
14.2.2 From Blades to Parameters 408

14.3 A Visual Explanation of Rounds as Blades 410
14.3.1 Point Representation 410
14.3.2 Circle Representation 412
14.3.3 Euclidean Circles Intersect as Planes 414

14.4 Application: Voronoi Diagrams 415

14.5 Application: Fitting a Sphere to Points 417
14.5.1 The Inner Product Distance of Spheres 417
14.5.2 Fitting a Sphere to Points 419

14.6 Application: Kinematics 420
14.6.1 Forward Kinematics 420
14.6.2 Inverse Kinematics 423

14.7 Further Reading 426

14.8 Exercises 427
14.8.1 Drills 427
14.8.2 Structural Exercises 427

14.9 Programming Examples and Exercises 428
14.9.1 Voronoi Diagrams and Delaunay Triangulations 428
14.9.2 Exercise: Drawing Euclid’s Elements 431
14.9.3 Conformal Primitives and Intersections 432
14.9.4 Fitting a Sphere to a Set of Points 434

CHAPTER 15. CONSTRUCTIONS IN EUCLIDEAN
GEOMETRY 437

15.1 Euclidean Incidence and Coincidence 438
15.1.1 Incidence Revisited 438
15.1.2 Co-Incidence 438



C O N T E N T S xv

15.1.3 Real Meet or Plunge 440
15.1.4 The Plunge of Flats 442

15.2 Euclidean Nuggets 444
15.2.1 Tangents Without Differentiating 445
15.2.2 Carriers, Tangent Flat 445
15.2.3 Surrounds, Factorization of Rounds 446
15.2.4 Affine Combinations 447

15.3 Euclidean Projections 449

15.4 Application: All Kinds of Vectors 451

15.5 Application: Analysis of a Voronoi Cell 455
15.5.1 Edge Lines 455
15.5.2 Edge Point 456
15.5.3 Edge Length 457
15.5.4 Conversion to Classical Formulas 458

15.6 Further Reading 460

15.7 Exercises 460
15.7.1 Drills 460
15.7.2 Structural Exercises 461

15.8 Programming Examples and Exercises 462
15.8.1 The Plunge 462
15.8.2 Affine Combinations of Points 463
15.8.3 Euclidean Projections 464

CHAPTER 16. CONFORMAL OPERATORS 465
16.1 Spherical Inversion 465

16.2 Applications of Inversion 468
16.2.1 The Center of a Round 468
16.2.2 Reflection in Spheres and Circles 468

16.3 Scaling 469
16.3.1 The Positive Scaling Rotor 469
16.3.2 Reflection in the Origin: Negative Scaling 471
16.3.3 Positively Scaled Rigid Body Motions 472
16.3.4 Logarithm of a Scaled Rigid Body Motion 473

16.4 Transversions 475

16.5 Transformations of the Standard Blades 477

16.6 General Conformal Transformations 477
16.6.1 Loxodromes 477
16.6.2 Circular Rotations 479
16.6.3 Möbius Transformations 479

16.7 Non-Euclidean Geometries 480
16.7.1 Hyperbolic Geometry 480
16.7.2 Spherical Geometry 482



xvi C O N T E N T S

16.8 Further Reading 483

16.9 Exercises 483
16.9.1 Drills 483
16.9.2 Structural Exercises 484

16.10 Programming Examples and Exercises 486
16.10.1 Homogeneous 4×4 Matrices to Conformal Versors 486
16.10.2 Logarithm of Scaled Rigid Body Motion 493
16.10.3 Interpolation of Scaled Rigid Body Motions 493
16.10.4 The Seashell 494

CHAPTER 17. OPERATIONAL MODELS FOR GEOMETRIES 497
17.1 Algebras for Geometries 497

PART III IMPLEMENTING GEOMETRIC ALGEBRA

CHAPTER 18. IMPLEMENTATION ISSUES 503
18.1 The Levels of Geometric Algebra Implementation 504

18.2 Who Should Read What 506

18.3 Alternative Implementation Approaches 506
18.3.1 Isomorphic Matrix Algebras 506
18.3.2 Irreducible Matrix Implementations 507
18.3.3 Factored Representations 508

18.4 Structural Exercises 509

CHAPTER 19. BASIS BLADES AND OPERATIONS 511
19.1 Representing Unit Basis Blades with Bitmaps 512

19.2 The Outer Product of Basis Blades 513

19.3 The Geometric Product of Basis Blades in an Orthogonal
Metric 515

19.4 The Geometric Product of Basis Blades in Nonorthogonal
Metrics 516

19.5 The Inner Products of Basis Blades 518

19.6 Commutator Product of Basis Blades 518

19.7 Grade-Dependent Signs on Basis Blades 518



C O N T E N T S xvii

CHAPTER 20. THE LINEAR PRODUCTS AND OPERATIONS 521
20.1 A Linear Algebra Approach 522

20.1.1 Implementing the Linear Operations 522
20.1.2 Implementing the Linear Products 523

20.2 The List of Basis Blades Approach 526

20.3 Structural Exercises 527

CHAPTER 21. FUNDAMENTAL ALGORITHMS FOR
NONLINEAR PRODUCTS 529

21.1 Inverse of Versors (and Blades) 529

21.2 Inverse of Multivectors 530

21.3 Exponential, Sine, and Cosine of Multivectors 531

21.4 Logarithm of Versors 532

21.5 Multivector Classification 532

21.6 Blade Factorization 533

21.7 The Meet and Join of Blades 536

21.8 Structural Exercises 540

CHAPTER 22. SPECIALIZING THE STRUCTURE FOR
EFFICIENCY 541

22.1 Issues in Efficient Implementation 541

22.2 Generative Programming 543

22.3 Resolving the Issues 544
22.3.1 The Approach 545

22.4 Implementation 546
22.4.1 Algebra Specification 546
22.4.2 Implementation of the General Multivector Class 547
22.4.3 Implementation of the Specialized Multivector Classes 549
22.4.4 Optimizing Functions Over the Algebra 550
22.4.5 Outermorphisms 552
22.4.6 Optimizing the Nonlinear Functions 553

22.5 Benchmarks 554

22.6 A Small Price to Pay 556

22.7 Exercises 556



xviii C O N T E N T S

CHAPTER 23. USING THE GEOMETRY IN A RAY-TRACING
APPLICATION 557

23.1 Ray-Tracing Basics 558

23.2 The Ray-Tracing Algorithm 559

23.3 Representing Meshes 560

23.4 Modeling the Scene 566
23.4.1 Scene Transformations 566

23.5 Tracing the Rays 573
23.5.1 The Representation of Rays 573
23.5.2 Spawning Rays 575
23.5.3 Ray-Model Intersection 577
23.5.4 Reflection 579
23.5.5 Refraction 580

23.6 Shading 580

23.7 Evaluation 581

PART IV APPENDICES

A METRICS AND NULL VECTORS 585
A.1 The Bilinear Form 585

A.2 Diagonalization to Orthonormal Basis 586

A.3 General Metrics 586

A.4 Null Vectors and Null Blades 587

A.5 Rotors in General Metrics 587

B CONTRACTIONS AND OTHER INNER PRODUCTS 589
B.1 Other Inner Products 589

B.1.1 The Dot Product 589
B.1.2 Hestenes’ Inner Product 590
B.1.3 Near Equivalence of Inner Products 590
B.1.4 Geometric Interpretation and Usage 591

B.2 Equivalence of the Implicit and Explicit Contraction
Definitions 591

B.3 Proof of the Second Duality 594

B.4 Projection and the Norm of the Contraction 595



C O N T E N T S xix

C SUBSPACE PRODUCTS RETRIEVED 597
C.1 Outer Product from Peometric Product 597

C.2 Contractions from Geometric Product 598

C.3 Proof of the Grade Approach 599

D COMMON EQUATIONS 603

BIBLIOGRAPHY 609

INDEX 613



List of Figures

1.1 Example of the use of geometric algebra 2

1.2 Code to generate Figure 1.1 5

1.3 Example of the use of geometric algebra 6

1.4 The outer product and its interpretations 11

2.1 Spanning homogeneous subspaces in a 3-D vector space 25

2.2 Imagining vector addition 27

2.3 Bivector representations 32

2.4 Imagining bivector addition in 2-D space 33

2.5 Bivector addition in 3-D space 34

2.6 The associativity of the outer product 35

2.7 Solving linear equations with bivectors 40

2.8 Intersecting lines in the plane 41

2.9 Code for drawing bivectors 58

2.10 Drawing bivectors screenshot (Example 1) 59

2.11 The orientation of front- and back-facing polygons 59

2.12 A wire-frame torus with and without backface culling 60

2.13 The code that renders a model from its 2-D vertices (Exercise 2) 61

2.14 Sampling a vector field and summing trivectors 62

2.15 Code to test for singularity (Example 3) 63

2.16 A helix-shaped singularity, as detected by Example 3 64

3.1 Computing the scalar product of 2-blades 70

3.2 From scalar product to contraction 72

3.3 The contraction of a vector onto a 2 76

3.4 Duality of vectors in 2-D 81

xx



L I S T O F F I G U R E S xxi

3.5 Duality of vectors and bivectors in 3-D 82

3.6 Projection onto a subspace 84

3.7 Three uses of the cross product 87

3.8 Duality and the cross product 89

3.9 Orthonormalization code (Example 1) 93

3.10 Orthonormalization 94

3.11 Reciprocal frame code 96

3.12 Color space conversion code (Example 4) 97

3.13 Color space conversion screenshot 98

4.1 The defining properties of a linear transformation 100

4.2 Projection onto a line a in the b-direction 104

4.3 A rotation around the origin of unit vectors in the plane 105

4.4 Projection of a vector onto a bivector 121

4.5 Matrix representation of projection code 122

4.6 Transforming normals vector 123

5.1 The ambiguity of the magnitude of the intersection of two planes 126

5.2 The meet of two oriented planes 130

5.3 A line meeting a plane in the origin 131

5.4 When the join of two (near-)parallel vectors becomes a 2-blade (Example 3) 140

6.1 Invertibility of the subspace products 142

6.2 Ratios of vectors 146

6.3 Projection and rejection of a vector 156

6.4 Reflecting a vector in a line 158

6.5 Gram-Schmidt orthogonalization 163

6.6 Gram-Schmidt orthogonalization code (Example 2) 164

7.1 Line and plane reflection 169

7.2 A rotation in a plane parallel to I is two reflections in vectors in that plane 170

7.3 A rotor in action 171

7.4 Sense of rotation 175

7.5 The unique rotor-based rotations in the range � = [0, 4π) 176

7.6 (a) A spherical triangle. (b) Composition of rotations through concatenation
of rotor arcs 180

7.7 A reflector in action 189

7.8 The rotor product in Euclidean spaces as a Taylor series 197



xxii L I S T O F F I G U R E S

7.9 Interactive version of Figure 7.2 205

7.10 Rotation matrix to rotor conversion 207

7.11 2-D Julia fractal code 210

7.12 A 2-D Julia fractal, computed using the geometric product of real vectors 211

7.13 3-D Julia fractal 212

8.1 Directional differentiation of a vector inversion 227

8.2 Changes in reflection of a rotating mirror 229

8.3 The directional derivative of the spherical projection 241

10.1 A triangle a + b + c = 0 in a directed plane I 249

10.2 The angle between a vector and a bivector (see text) 252

10.3 A spherical triangle 253

10.4 Interpolation of rotations 259

10.5 Interpolation of rotations (Example 1) 266

10.6 Crystallography (Example 2) 267

10.7 External camera calibration (Example 3) 268

11.1 The extra dimension of the homogeneous representation space 274

11.2 Representing offset subspaces in Rn+1 280

11.3 Defining offset subspaces fully in the base space 288

11.4 The dual hyperplane representation in R2 and R1 290

11.5 The intersection of two offset lines L and M to produce a point p 293

11.6 The meet of two skew lines 295

11.7 The relative orientation of oriented flats 296

11.8 The combinations of four points taken in the cross ratio 300

11.9 The combinations of four lines taken in the cross ratio 301

11.10 Conics in the homogeneous model 308

11.11 Finding a line through a point, perpendicular to a given line 310

11.12 The orthogonal projection in the homogeneous model (see text) 315

11.13 The beginning of a row of equidistant telegraph poles 319

11.14 Example 2 in action 323

11.15 Perspective projection (Example 4) 325

12.1 Plücker coordinates of a line in 3-D 329

12.2 A pinhole camera 337

12.3 The epipolar constraint 342

12.4 The plane of rays generated by a line observation L 343



L I S T O F F I G U R E S xxiii

12.5 The projection of the optical center onto all rays generates an eyeball 348

12.6 Reconstruction of motion capture data 351

12.7 Reconstruction of markers 352

12.8 Crossing lines code 354

13.1 Euclidean transformations as multiple reflections in planes 366

13.2 Flat elements in the conformal model 373

13.3 Planar reflection in the conformal model 377

13.4 Chasles’ screw 382

13.5 Computation of the logarithm of a rigid body motion 384

13.6 Rigid body motion interpolation 385

13.7 Reflection in a rotating mirror 387

13.8 The output of the solution to Example 2 393

13.9 Example 4 in action: the interpolation of rigid body motions 394

14.1 Dual rounds in the conformal model 398

14.2 Intersection of two spheres of decreasing radii 405

14.3 Visualization of a 2-D Euclidean point on the representative paraboloid 411

14.4 The representation of a circle on the representative paraboloid 412

14.5 Cross section of the parabola of null vectors 413

14.6 Visualization of the intersection of circles on the representative paraboloid 414

14.7 A Voronoi diagram in the conformal model 416

14.8 Inner product as distance measure 418

14.9 Forward kinematics of a robot arm 421

14.10 Inverse kinematics of a robot arm 422

14.11 A Voronoi diagram of a set of points, as computed by Example 1 429

14.12 Euclid’s elements (Example 2) 432

14.13 Example 3 in action 433

14.14 Fitting-a-sphere code 435

15.1 The meet and plunge of three spheres 439

15.2 The plunge of diverse elements 441

15.3 The meet and plunge of two spheres at decreasing distances 442

15.4 Visualization of flats as plunge 443

15.5 Orbits of a dual line versor 444

15.6 Tangents of elements 445

15.7 Factorization of rounds 447



xxiv L I S T O F F I G U R E S

15.8 Affine combination of conformal points 448

15.9 Affine combination of circles and point pairs 449

15.10 Orthogonal projections in the conformal model of Euclidean geometry 450

15.11 Various kinds of vectors in the conformal model 452

15.12 Definition of symbols for the Voronoi derivations 456

15.13 Construction of a contour circle 462

15.14 Screenshot of Example 2 463

15.15 Screenshot of Example 3 on projection and plunge 464

16.1 Inversion in a sphere 467

16.2 Reflection in a sphere 469

16.3 Generation of a snail shell 472

16.4 Swapping scaling and translation 473

16.5 Computation of the logarithm of a positively scaled rigid body motion 475

16.6 Loxodromes 478

16.7 Conformal orbits 479

16.8 Hyperbolic geometry 481

16.9 Spherical geometry 482

16.10 Imaging by the eye 484

16.11 Reflection in a point pair 485

16.12 Dupin cycloid as the inversion of a torus into a sphere 486

16.13 Metrical Mystery Tour 487

16.14 Function matrix4×4 ToVersor() 489

16.15 Function log(const TRSversor &V) 493

16.16 Screenshot of Example 4 495

19.1 Function canonical ReorderingSign(int a, int b) 514

19.2 Function gp op (BasisBlade a, BasisBlade b) 515

20.1 Matrices for geometric product, outer product, and left contraction 525

20.2 Implementation of the outer product of multivectors 527

21.1 Venn diagrams illustrating union, intersection, and the delta product of
two sets 536

21.2 Venn diagrams illustrating meet, join, and the delta product of two blades 537

22.1 Basic tool-chain from source code to running application 544

22.2 Code generated by Gaigen 2 551

22.3 Generated matrix-point multiplication code 553



L I S T O F F I G U R E S xxv

23.1 Teapot polygonal mesh 560

23.2 Screenshot of the user interface of the modeler 567

23.3 Rotating an object 570

23.4 The spaceball interface 571



List of Tables

2.1 Geometrical properties of a subspace 43

2.2 Pascal’s triangle of the number of basis k-blades in n-dimensional space 45

2.3 Notational conventions for blades and multivectors for Part I of this book 47

2.4 C++ Operator bindings 55

5.1 The order of the arguments for a meet may affect the sign of the result 134

7.1 Reflection of an oriented subspace X in a subspace A 190

8.1 Directional differentiation and vector derivatives 226

8.2 Elementary results of multivector differentiation 237

10.1 The point group 2H4 255

11.1 The geometric algebra of the homogeneous model of 3-D Euclidean space 273

11.2 The number of blades representing subspaces and directions 287

11.3 Nonzero blades in the homogeneous model of Euclidean geometry 291

11.4 Specialized multivector types in the h3ga 320

12.1 Common Plücker coordinate computations 330

12.2 Transformation of the flats in the homogeneous model 335

13.1 Multiplication table for the inner product of the conformal model of 3-D
Euclidean geometry E3, for two choices of basis 361

13.2 The interpretation of vectors in the conformal model 363

13.3 A list of the most important specialized multivector types in c3ga 391

13.4 Constants in c3ga 392

14.1 Nonzero blades in the conformal model of Euclidean geometry 407

16.1 Basic operations in the conformal model and their versors 476

16.2 Common proper transformations of some of the standard elements of the
conformal model 477

xxvi



L I S T O F T A B L E S xxvii

18.1 Matrix representations of Clifford algebras of signatures (p, q) 507

19.1 The bitmap representation of basis blades 512

19.2 Bitwise boolean operators used in Java code examples 513

19.3 Reversion, grade involution, and Clifford Conjugate for basis blades 519

22.1 Performance benchmarks for the ray tracer 555



List of Programming
Examples

Section Title Model

1.1 An Example in Geometric Algebra 3-D conformal 5

2.13.1 Drawing Bivectors 2-D vector space 58

2.13.2 Exercise: Hidden Surface Removal 3-D vector space 61

2.13.3 Singularities in Vector Fields 3-D vector space 63

3.11.1 Orthonormalization 3-D vector space 93

3.11.2 Exercise: Implementing the Cross Product 3-D vector space 96

3.11.3 Reciprocal Frames 3-D vector space 97

3.11.4 Color Space Conversion 3-D vector space 98

4.9.1 Orthogonal Projection 3-D vector space 122

4.9.2 Orthogonal Projection, Matrix
Representation 3-D vector space 122

4.9.3 Transforming Normal Vectors 3-D vector space 123

5.11.1 The Meet and Join 3-D vector space 138

5.11.2 Efficiency 3-D vector space 139

5.11.3 Floating Point Issues 3-D vector space 139

6.7.1 Exercise: Subspace Products Retrieved 3-D vector space 161

6.7.2 Gram-Schmidt Orthogonalization 3-D vector space 162

7.10.1 Reflecting in Vectors 3-D vector space 204

7.10.2 Two Reflections Equals One Rotation 3-D vector space 204

7.10.3 Matrix-Rotor Conversion 1 3-D vector space 204

7.10.4 Exercise: Matrix-Rotor Conversion 2 3-D vector space 206

7.10.5 Julia Fractals 2-D vector space 208

10.7.1 Interpolating Rotations 3-D vector space 265

10.7.2 Crystallography 3-D vector space 267

xxviii



L I S T O F P R O G R A M M I N G E X A M P L E S xxix

Section Title Model

10.7.3 External Camera Calibration 3-D vector space 269

11.13.1 Working with Points 3-D homogeneous 321

11.13.2 Intersecting Primitives 3-D homogeneous 322

11.13.3 Don’t Add Lines 3-D homogeneous 324

11.13.4 Perspective Projection 3-D homogeneous 326

12.5.1 Loading Transformations into OpenGL 3-D homogeneous 349

12.5.2 Transforming Primitives with OpenGL
Matrices 3-D homogeneous 350

12.5.3 Marker Reconstruction in Optical
Motion Capture 3-D homogeneous 352

13.10.1 Metric Matters 3-D conformal 390

13.10.2 Exercise: The Distance Between Points 3-D conformal 393

13.10.3 Loading Transformations into
OpenGL, Again 3-D conformal 394

13.10.4 Interpolation of Rigid Body Motions 3-D conformal 395

14.9.1 Voronoi Diagrams and Delaunay

Triangulations 2-D conformal 430

14.9.2 Exercise: Drawing Euclid’s Elements 3-D conformal 431

14.9.3 Conformal Primitives and Intersections 3-D conformal 433

14.9.4 Fitting a Sphere to a Set of Points 3-D conformal 435

15.8.1 The Plunge 3-D conformal 462

15.8.2 Affine Combinations of Points 2-D conformal 463

15.8.3 Euclidean Projections 3-D conformal 464

16.10.1 Homogeneous 4 × 4 Matrices to
Conformal Versors 3-D conformal 488

16.10.2 Logarithm of Scaled Rigid Body Motion 3-D conformal 493

16.10.3 Interpolation of Scaled Rigid Body
Motions 3-D conformal 493

16.10.4 The Seashell 3-D conformal 494





Preface

Geometric algebra is a powerful and practical framework for the representation and
solution of geometrical problems. We believe it to be eminently suitable to those sub-
fields of computer science in which such issues occur: computer graphics, robotics, and
computer vision. We wrote this book to explain the basic structure of geometric algebra,
and to help the reader become a practical user. We employ various tools to get there:

• Explanations that are not more mathematical than we deem necessary, connecting
algebra and geometry at every step

• A large number of interactive illustrations to get the “object-oriented” feeling of
constructions that are dependent only on the geometric elements in them (rather
than on coordinates)

• Drills and structural exercises for almost every chapter

• Detailed programming examples on elements of practical applications

• An extensive section on the implementational aspects of geometric algebra (Part III
of this book)

This is the first book on geometric algebra that has been written especially for the com-
puter science audience. When reading it, you should remember that geometric algebra
is fundamentally simple, and fundamentally simplifying. That simplicity will not always
be clear; precisely because it is so fundamental, it does basic things in a slightly different
way and in a different notation. This requires your full attention, notably in the begin-
ning, when we only seem to go over familiar things in a perhaps irritatingly different
manner. The patterns we uncover, and the coordinate-free way in which we encode them,
will all pay off in the end in generally applicable quantitative geometrical operators and
constructions.

We emphasize that this is not primarily a book on programming, and that the subtitle
“An Object-oriented Approach to Geometry” should not be interpreted too literally. It is
intended to convey that we finally achieve clean computational “objects” (in the sense of
object-oriented programming) to correspond to the oriented elements and operators of
geometry by identifying them with “oriented objects” of the algebra.

xxxi



xxxii P R E F A C E

AUDIENCE

The book is aimed at a graduate level; we only assume basic linear algebra (and a bit of
calculus in Chapter 8). No prior knowledge of the techniques of computer graphics or
robotics is required, though if you are familiar with those fields you will appreciate how
much easier things are in geometric algebra. The book should also be well suited for self-
study at the post-graduate level; in fact, we tried to write the book that we would have
wanted ourselves for this purpose. Depending on your level of interest, you may want to
read it in different ways.

• If you are a seasoned user of geometry and well-versed in the techniques of casting
geometry in linear algebra, but don’t have much time, you will still find this book
worthwhile. In a comfortable reading, you can absorb what is different in geometric
algebra, and its structure will help you understand all those old tricks in your library.
In our experience, it makes many arcane techniques comprehensible, and it helped
us to learn from useful math books that we would otherwise never have dared to
read. You may never actually use geometric algebra, but you will find it enlightening
all the same. And who knows—you may come back for more.

• If you are currently writing code using the coordinate-based linear algebra, a back-
ground study of the techniques in this book will be helpful and constructive. The
advantages for the previous category will apply to you as well. Moreover, you may
find yourself doing derivations of formulas you need to program in the compact
geometric algebra manner, and this will clarify and improve your implementations,
even if you continue writing those in the old linear algebra vocabulary. In particular,
the thinking behind your code will be more geometrical, less coordinate-based, and
this will make it more transparent, more flexibly applicable (for instance, in higher
dimensions), and ready to be translated into geometric algebra after the revolution.

• If you are starting out in geometric programming, take the time to absorb this book
thoroughly. This geometric algebra way of thinking is quite natural, and we are
rather envious that you can learn it from scratch, without having to unlearn old
methods. With study and practice you will be able to write programs in geometric
algebra rather fluently, and eventually contribute actively to its development.

Our style in this book is factual. We give you the necessary mathematics, but always relate
the algebra to the geometry, so that you get the complete picture. Occasionally, there is
a need for more extensive proofs to convince you of the consistency of aspects of the
framework. When such a proof became too lengthy and did not further the arguments, it
was relegated to an appendix. The derivations that remain in the text should be worth your
time, since they are good practice in developing your skills. We have attempted to avoid
the “pitfall of imprecision” in this somewhat narrative presentation style by providing the
fundamental chapters with a summary of the essential results, for easy consultation via
the index.



P R E F A C E xxxiii

HISTORY

We do not constantly attribute all results, but that does not mean that we think that we
developed all this ourselves. By its very nature, geometric algebra collates many partial
results in a single framework, and the original sources become hard to trace in their orig-
inal context. It is part of the pleasure of geometric algebra that it empowers the user; by
mastering just a few techniques, you can usually easily rediscover the result you need.

Once you grasp its essence, geometric algebra will become so natural that you will wonder
why we have not done geometry this way all along. The reason is a history of geometric
(mis)representation, for almost all elements of geometric algebra are not new—in hind-
sight. Elements of the quantitative characterization of geometric constructions directly in
terms of its elements are already present in the work of René Descartes (1595–1650); how-
ever, his followers thought it was easier to reduce his techniques to coordinate systems not
related to the elements (nevertheless calling them Cartesian, in his honor). This gave us
the mixed blessing of coordinates, and the tiresome custom of specifying geometry at the
coordinate level (whereas coordinates should be relegated to the lowest implementational
level, reserved for the actual computations). To have a more direct means of expression,
Hermann Grassmann (1809–1877) developed a theory of extended quantities, allowing
geometry to be based on more than points and vectors. Unfortunately, his ideas were
ahead of their time, and his very compact notation made his work more obscure than it
should have been. William Rowan Hamilton (1805–1865) developed quaternions for the
algebra of rotations in 3D, and William Kingdon Clifford (1845–1879) defined a more
general product between vectors that could incorporate general rigid body motions.

All these individual contributions pointed toward a geometric algebra, and at the end
of the 19th century, there were various potentially useful systems to represent aspects
of geometry. Gibbs (1839–1903) made a special selection of useful techniques for the 3D
geometry of engineering, and this limited framework is basically what we have been using
ever since in the geometrical applications of linear algebra. In a typical quote from his
biography “using ideas of Grassmann, Gibbs produced a system much more easily applied
to physics than that of Hamilton.” In the process, we lost geometric algebra. Linear alge-
bra and matrices, with their coordinate representations, became the mainstay of doing
geometry, both in practice and in mathematical development. Matrices work, but in their
usual form they only work on vectors, and this ignores Grassmann’s insight that extended
qualities can be elements of computation. (Tensors partially fix this, but in a cumbersome
coordinate-based notation.)

With the arrival of quantum physics, convenient alternative representations for spatial
motions were developed (notably for rotations), using complex numbers in “spinors.”
The complex nature of spinors was mistaken for an essential aspect of quantum mechanics,
and the representations were not reapplied to everyday geometry. David Hestenes
(1933–present) was perhaps the first to realize that the representational techniques in
relativity and quantum mechanics were essentially manifestations of a fundamental



xxxiv P R E F A C E

“algebra of spatial relationships” that needed to be explored. He rescued the half-forgotten
geometric algebra (by now called Clifford algebra and developed in nongeometric direc-
tions), developed it into an alternative to the classical linear algebra–based representa-
tions, and started advocating its universal use. In the 1990s, his voice was heard, and with
the implementation of geometric algebra into interactive computer programs its practical
applicability is becoming more apparent.

We can now finally begin to pick up the thread of geometrical representation where it
was left around 1900. Gibbs was wrong in assuming that computing with the geometry of
3D space requires only representations of 3D points, although he did give us a powerful
system to compute with those. This book will demonstrate that allowing more extended
quantities in higher-dimensional representational spaces provides a more convenient exe-
cutable language for geometry. Maybe we could have had this all along; but perhaps we
indeed needed to wait for the arrival of computers to appreciate the effectiveness of this
approach.

SOFTWARE

There are three main software packages associated with this book, each written with a
different goal in mind (interaction, efficiency and illustration of algorithms, respectively).
All three were developed by us, and can be found on the web site:

http://www.geometricalgebra.net

for free downloading.

• GAViewer is an interactive program that we used to generate the majority of the
figures in this book. It was originally developed as a teaching tool, and a web tutorial
is available, using GAViewer to explain the basics of geometric algebra. You can use
GAViewerwhen reading the book to type in algebraic formulas and have them act on
geometrical elements interactively. This interaction should aid your understanding
of the correspondence between geometry and algebra considerably. The (simplified)
code of the figures provides a starting point for your own experimentation.

• Gaigen2 is geometric algebra implementation in C++ (and Java), intended for
applications requiring more speed and efficiency than a simple tutorial. The GA
sandbox source code package used for the programming examples and exercises in
this book is built on top of Gaigen2. To compile and run the programming exam-
ples in Part I and Part II, you only have to download the sandbox package from the
web site.

• Our simplistic but educational “reference implementation” implements all algo-
rithms and techniques discussed in Part III. It is written in Java and intended to
show only the essential structure; we do not deem it usable for anything that is com-
putationally intensive, since it can easily be 10 to 100 times slower than Gaigen2.



P R E F A C E xxxv

If you are serious about implementing further applications, you can start with the GA
sandbox package, or other available implementations of geometric algebra, or even write
your own package.

ACKNOWLEDGEMENTS

Of those who have helped us develop this work, we especially thank David Hestenes, not
only for reinvigorating geometric algebra, but also for giving Leo an early introduction to
the conformal model at a half-year sabbatical at Arizona State University. We are grateful
to Joan Lasenby of Cambridge University for her detailed comments on the early chapters,
and for providing some of the applied examples. We are also indebted to Timaeus Bouma
for his keen insights that allowed our software to be well-founded in mathematical fact.

We gratefully acknowledge the support of the University of Amsterdam, especially pro-
fessor Frans Groen; NWO (Netherlands Organization for Scientific Research) in project
612.012.006; and NSERC (Natural Sciences and Engineering Research Council of Canada).

Ultimately, though, this book would have been impossible without the home front:

Leo Dorst’s parents and his wife Phyllis have always utterly supported him in his quest to
understand new aspects of math and life; he dedicates this book to them.

Daniel Fontijne owes many thanks to Yvonne for providing the fun and artistic reasons to
study geometric algebra, and to Femke and Tijmen for the many refreshing breaks while
working at home.

Stephen Mann would like to thank Mei and Lilly for their support during the writing of
this book.





Geometric Algebra for
Computer Science




