Geometric Algebra for Computer Science

# Geometric Algebra for Computer Science 

# An Object-oriented Approach to Geometry 

LEO DORST

DANIEL FONTIJNE
STEPHEN MANN

| Publishing Director | Denise Penrose |
| :--- | :--- |
| Senior Acquisitions Editor | Tim Cox |
| Publishing Services Manager | George Morrison |
| Senior Project Manager | Brandy Lilly |
| Editorial Assistant | Michelle Ward |
| Text Design | Multiscience Press, Inc. |
| Composition | diacriTech |
| Technical Illustration | diacriTech |
| Copyeditor | Multiscience Press, Inc. |
| Proofreader | Multiscience Press, Inc. |
| Indexer | Multiscience Press, Inc. |
| Interior printer | Hing Yip Printing Co., Ltd. |
| Cover printer | Hing Yip Printing Co., Ltd. |

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111
This book is printed on acid-free paper.
(c) 2007 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the product names appear in initial capital or all capital letters. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means-electronic, mechanical, photocopying, scanning, or otherwise-without prior written permission of the publisher.

Permissions may be sought directly from Elsevier's Science \& Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting "Support \& Contact" then "Copyright and Permission" and then "Obtaining Permissions."

## Library of Congress Cataloging-in-Publication Data

Application submitted
ISBN 13: 978-0-12-369465-2
ISBN10: 0-12-369465-5
For information on all Morgan Kaufmann publications, visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in China
$07 \quad 08 \quad 09 \quad 10 \quad 11 \quad \begin{array}{lllll}5 & 4 & 3 & 2 & 1\end{array}$

## Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

## ELSEVIER <br> BOOK AID Internationa

## Contents

LIST OF FIGURES ..... xX
LIST OF TABLES ..... xxvi
LIST OF PROGRAMMING EXAMPLES ..... xxviii
PREFACE ..... xxxi
CHAPTER 1. WHY GEOMETRIC ALGEBRA? ..... 1
1.1 An Example in Geometric Algebra ..... 1
1.2 How It Works and How It's Different ..... 7
1.2.1 Vector Spaces as Modeling Tools ..... 8
1.2.2 Subspaces as Elements of Computation ..... 9
1.2.3 Linear Transformations Extended ..... 12
1.2.4 Universal Orthogonal Transformations ..... 12
1.2.5 Objects are Operators ..... 14
1.2.6 Closed-Form Interpolation and Perturbation ..... 15
1.3 Programming Geometry ..... 15
1.3.1 You Can Only Gain ..... 15
1.3.2 Software Implementation ..... 16
1.4 The Structure of This Book ..... 17
1.4.1 Part I: Geometric Algebra ..... 18
1.4.2 Part II: Models of Geometry ..... 18
1.4.3 Part III: Implementation of Geometric Algebra ..... 18
1.5 The Structure of the Chapters ..... 19
PART I GEOMETRIC ALGEBRA
CHAPTER 2. SPANNING ORIENTED SUBSPACES ..... 23
2.1 Vector Spaces ..... 24
2.2 Oriented Line Elements ..... 25
2.2.1 Properties of Homogeneous Lines ..... 25
2.2.2 Visualizing Vectors ..... 26
2.3 Oriented Area Elements ..... 27
2.3.1 Properties of Planes ..... 27
2.3.2 Introducing the Outer Product ..... 28
2.3.3 Visualizing Bivectors ..... 31
2.3.4 Visualizing Bivector Addition ..... 32
$2.4 \quad$ Oriented Volume Elements ..... 33
2.4.1 Properties of Volumes ..... 33
2.4.2 Associativity of the Outer Product ..... 35
2.4.3 Visualization of Trivectors ..... 36
2.5 Quadvectors in 3-D Are Zero ..... 37
2.6 Scalars Interpreted Geometrically ..... 37
2.7 Applications ..... 39
2.7.1 Solving Linear Equations ..... 39
2.7.2 Intersecting Planar Lines ..... 41
2.8 Homogeneous Subspace Representation ..... 42
2.8.1 Parallelness ..... 42
2.8.2 Direct Representation of Oriented Weighted Subspaces ..... 43
2.8.3 Nonmetric Lengths, Areas, and Volumes ..... 43
2.9 The Graded Algebra of Subspaces ..... 44
2.9.1 Blades and Grades ..... 44
2.9.2 The Ladder of Subspaces ..... 45
2.9.3 $k$-Blades Versus $k$-Vectors ..... 46
2.9.4 The Grassmann Algebra of Multivectors ..... 47
2.9.5 Reversion and Grade Involution ..... 49
2.10 Summary of Outer Product Properties ..... 50
2.11 Further Reading ..... 51
2.12 Exercises ..... 51
2.12.1 Drills ..... 51
2.12.2 Structural Exercises ..... 52
2.13 Programming Examples and Exercises ..... 53
2.13.1 Drawing Bivectors ..... 57
2.13.2 Exercise: Hidden Surface Removal ..... 57
2.13.3 Singularities in Vector Fields ..... 60
CHAPTER 3. METRIC PRODUCTS OF SUBSPACES ..... 65
3.1 Sizing Up Subspaces ..... 66
3.1.1 Metrics, Norms, and Angles ..... 66
3.1.2 Definition of the Scalar Product * ..... 67
3.1.3 The Squared Norm of a Subspace ..... 67
3.1.4 The Angle Between Subspaces ..... 68
3.2 From Scalar Product to Contraction ..... 71
3.2.1 Implicit Definition of Contraction 」 ..... 71
3.2.2 Computing the Contraction Explicitly ..... 73
3.2.3 Algebraic Subtleties ..... 74
3.3 Geometric Interpretation of the Contraction ..... 75
3.4 The Other Contraction L ..... 77
3.5 Orthogonality and Duality ..... 78
3.5.1 Nonassociativity of the Contraction ..... 78
3.5.2 The Inverse of a Blade ..... 79
3.5.3 Orthogonal Complement and Duality ..... 80
3.5.4 The Duality Relationships ..... 82
3.5.5 Dual Representation of Subspaces ..... 83
3.6 Orthogonal Projection of Subspaces ..... 83
3.7 The 3-D Cross Product ..... 86
3.7.1 Uses of the Cross Product ..... 86
3.7.2 The Cross Product Incorporated ..... 87
3.8 Application: Reciprocal Frames ..... 89
$3.9 \quad$ Further Reading ..... 91
3.10 Exercises ..... 91
3.10.1 Drills ..... 91
3.10.2 Structural Exercises ..... 91
3.11 Programming Examples and Exercises ..... 93
3.11.1 Orthonormalization ..... 93
3.11.2 Exercise: Implementing the Cross Product ..... 94
3.11.3 Reciprocal Frames ..... 95
3.11.4 Color Space Conversion ..... 95
CHAPTER 4. LINEAR TRANSFORMATIONS OF SUBSPACES ..... 99
4.1 Linear Transformations of Vectors ..... 100
4.2 Outermorphisms: Linear Transformations of Blades ..... 101
4.2.1 Motivation of the Outermorphism ..... 102
4.2.2 Examples of Outermorphisms ..... 103
4.2.3 The Determinant of a Linear Transformation ..... 106
4.3 Linear Transformation of the Metric Products ..... 108
4.3.1 Linear Transformation of the Scalar Product ..... 108
4.3.2 The Adjoint of a Linear Transformation ..... 108
4.3.3 Linear Transformation of the Contraction ..... 109
4.3.4 Orthogonal Transformations ..... 110
4.3.5 Transforming a Dual Representation ..... 111
4.3.6 Application: Linear Transformation of the Cross Product ..... 112
4.4 Inverses of Outermorphisms ..... 113
4.5 Matrix Representations ..... 114
4.5.1 Matrices for Vector Transformations ..... 114
4.5.2 Matrices for Outermorphisms ..... 115
4.6 Summary ..... 117
4.7 Suggestions for Further Reading ..... 117
$4.8 \quad$ Structural Exercises ..... 118
$4.9 \quad$ Programming Examples and Exercises ..... 120
4.9.1 Orthogonal Projection ..... 120
4.9.2 Orthogonal Projection, Matrix Representation ..... 120
4.9.3 Transforming Normal Vectors ..... 122
CHAPTER 5. INTERSECTION AND UNION OF SUBSPACES ..... 125
5.1 The Phenomenology of Intersection ..... 125
5.2 Intersection through Outer Factorization ..... 127
5.3 Relationships Between Meet and Join ..... 128
5.4 Using Meet and Join ..... 129
5.5 Join and Meet are Mostly Linear ..... 131
5.6 Quantitative Properties of the Meet ..... 132
5.7 Linear Transformation of Meet and Join ..... 133
$5.8 \quad$ Offset Subspaces ..... 136
$5.9 \quad$ Further Reading ..... 136
5.10 Exercises ..... 137
5.10.1 Drills ..... 137
5.10.2 Structural Exercises ..... 137
5.11 Programming Examples and Exercises ..... 138
5.11.1 The Meet and Join ..... 138
5.11.2 Efficiency ..... 140
5.11.3 Floating Point Issues ..... 140
CHAPTER 6. THE FUNDAMENTAL PRODUCT OF GEOMETRIC ALGEBRA ..... 141
6.1 The Geometric Product for Vectors ..... 142
6.1.1 An Invertible Product for Geometry ..... 142
6.1.2 Symmetry and Antisymmetry ..... 143
6.1.3 Properties of the Geometric Product ..... 143
6.1.4 The Geometric Product for Vectors on a Basis ..... 144
6.1.5 Dividing by a Vector ..... 145
6.1.6 Ratios of Vectors as Operators ..... 146
$6.2 \quad$ The Geometric Product of Multivectors ..... 147
6.2.1 Algebraic Definition of the Geometric Product ..... 148
6.2.2 Evaluating the Geometric Product ..... 149
6.2.3 Grades and the Geometric Product ..... 150
6.3 The Subspace Products Retrieved ..... 151
6.3.1 The Subspace Products from Symmetry ..... 152
6.3.2 The Subspace Products as Selected Grades ..... 154
6.4 Geometric Division ..... 154
6.4.1 Inverses of Blades ..... 155
6.4.2 Decomposition: Projection to Subspaces ..... 155
6.4.3 The Other Division: Reflection ..... 158
$6.5 \quad$ Further Reading ..... 159
6.6 Exercises ..... 159
6.6.1 Drills ..... 159
6.6.2 Structural Exercises ..... 160
6.7 Programming Examples and Exercises ..... 161
6.7.1 Exercise: Subspace Products Retrieved ..... 161
6.7.2 Gram-Schmidt Orthogonalization ..... 162
CHAPTER 7. ORTHOGONAL TRANSFORMATIONS AS VERSORS ..... 167
7.1 Reflections of Subspaces ..... 168
7.2 Rotations of Subspaces ..... 169
7.2.1 3-D Rotors as Double Reflectors ..... 170
7.2.2 Rotors Perform Rotations ..... 172
7.2.3 A Sense of Rotation ..... 174
7.3 Composition of Rotations ..... 176
7.3.1 $\quad$ Multiple Rotations in 2-D ..... 177
7.3.2 Real 2-D Rotors Subsume Complex Numbers ..... 177
7.3.3 Multiple Rotations in 3-D ..... 179
7.3.4 Visualizing 3-D Rotations ..... 179
7.3.5 Unit Quaternions Subsumed ..... 181
7.4 The Exponential Representation of Rotors ..... 182
7.4.1 Pure Rotors as Exponentials of 2-Blades ..... 183
7.4.2 Trigonometric and Hyperbolic Functions ..... 184
7.4.3 Rotors as Exponentials of Bivectors ..... 185
7.4.4 Logarithms ..... 187
7.5 Subspaces as Operators ..... 188
7.5.1 Reflection by Subspaces ..... 188
7.5.2 Subspace Projection as Sandwiching ..... 190
7.5.3 Transformations as Objects ..... 190
7.6 Versors Generate Orthogonal Transformations ..... 191
7.6.1 The Versor Product ..... 192
7.6.2 Even and Odd Versors ..... 193
7.6.3 Orthogonal Transformations are Versor Products ..... 193
7.6.4 Versors, Blades, Rotors, and Spinors ..... 195
7.7 The Product Structure of Geometric Algebra ..... 196
7.7.1 The Products Summarized ..... 196
7.7.2 Geometric Algebra versus Clifford Algebra ..... 198
7.7.3 But—is it Efficient? ..... 199
$7.8 \quad$ Further Reading ..... 201
7.9 Exercises ..... 202
7.9.1 Drills ..... 202
7.9.2 Structural Exercises ..... 202
7.10 Programming Examples and Exercises ..... 204
7.10.1 Reflecting in Vectors ..... 204
7.10.2 Two Reflections Equal One Rotation ..... 204
7.10.3 Matrix-Rotor Conversion 1 ..... 204
7.10.4 Exercise: Matrix-Rotor Conversion 2 ..... 206
7.10.5 Julia Fractals ..... 208
7.10. Extra Example: Rotations Used for Example User Interface ..... 210
CHAPTER 8. GEOMETRIC DIFFERENTIATION ..... 213
8.1 Geometrical Changes by Orthogonal Transformations ..... 214
8.2 Transformational Changes ..... 215
8.2.1 The Commutator Product ..... 215
8.2.2 Rotor-Induced Changes ..... 217
8.2.3 Multiple Rotor-Induced Changes ..... 218
8.2.4 Transformation of a Change ..... 219
8.2.5 Change of a Transformation ..... 220
8.3 Parametric Differentiation ..... 221
$8.4 \quad$ Scalar Differentiation ..... 221
8.4.1 Application: Radius of Curvature of a Planar Curve ..... 223
8.5 Directional Differentiation ..... 224
8.5.1 Table of Elementary Results ..... 225
8.5.2 Application: Tilting a Mirror ..... 228
8.6 Vector Differentiation ..... 230
8.6.1 Elementary Results of Vector Differentiation ..... 232
8.6.2 Properties of Vector Differentiation ..... 234
8.7 Multivector Differentiation ..... 235
8.7.1 Definition ..... 236
8.7.2 Application: Estimating Rotors Optimally ..... 236
$8.8 \quad$ Further Reading ..... 239
8.9 Exercises ..... 240
8.9.1 Drills ..... 240
8.9.2 Structural Exercises ..... 240
PART II MODELS OF GEOMETRIES
CHAPTER 9. MODELING GEOMETRIES ..... 245
CHAPTER 10. THE VECTOR SPACE MODEL: THE ALGEBRA OF DIRECTIONS ..... 247
10.1 The Natural Model for Directions ..... 248
10.2 Angular Relationships ..... 248
10.2.1 The Geometry of Planar Triangles ..... 249
10.2.2 Angular Relationships in 3-D ..... 251
10.2.3 Rotation Groups and Crystallography ..... 254
10.3 Computing with 3-D Rotors ..... 256
10.3.1 Determining a Rotor from Rotation Plane and Angle ..... 256
10.3.2 Determining a Rotor from a Frame Rotation in 3-D ..... 257
10.3.3 The Logarithm of a 3-D Rotor ..... 258
10.3.4 Rotation Interpolation ..... 259
10.4 Application: Estimation in the Vector Space Model ..... 260
10.4.1 Noisy Rotor Estimation ..... 260
10.4.2 External Camera Calibration ..... 260
10.5 Convenient Abuse: Locations as Directions ..... 263
10.6 Further Reading ..... 264
10.7 Programming Examples and Exercises ..... 265
10.7.1 Interpolating Rotations ..... 265
10.7.2 Crystallography Implementation ..... 267
10.7.3 External Camera Calibration ..... 268
CHAPTER 11. THE HOMOGENEOUS MODEL ..... 271
11.1 Homogeneous Representation Space ..... 272
11.2 All Points Are Vectors ..... 274
11.2.1 Finite Points ..... 274
11.2.2 Infinite Points and Attitudes ..... 275
11.2.3 Addition of Points ..... 276
11.2.4 Terminology: from Precise to Convenient ..... 278
11.3 All Lines Are 2-Blades ..... 278
11.3.1 Finite Lines ..... 278
11.3.2 Lines at Infinity ..... 282
11.3.3 Don't Add Lines ..... 282
11.4 All Planes Are 3-Blades ..... 283
$11.5 \quad k$-Flats as $(k+1)$-Blades ..... 285
11.5.1 Finite $k$-Flats ..... 285
11.5.2 Infinite $k$-Flats ..... 285
11.5.3 Parameters of $k$-Flats ..... 285
11.5.4 The Number of Parameters of an Offset Flat ..... 286
11.6 Direct and Dual Representations of Flats ..... 286
11.6. $\quad$ Direct Representation ..... 286
11.6.2 Dual Representation ..... 288
11.7 Incidence Relationships ..... 292
11.7.1 Examples of Incidence Computations ..... 292
11.7.2 Relative Orientation ..... 296
11.7.3 Relative Lengths: Distance Ratio and Cross Ratio ..... 298
11.8 Linear Transformations: Motions, and More ..... 302
11.8.1 Linear Transformations on Blades ..... 302
11.8.2 Translations ..... 303
11.8.3 Rotation Around the Origin ..... 304
11.8.4 General Rotation ..... 305
11.8.5 Rigid Body Motion ..... 305
11.8.6 Constructing Elements Through Motions ..... 305
11.8.7 Rigid Body Motion Outermorphisms as Matrices ..... 306
11.8.8 Affine Transformations ..... 306
11.8.9 Projective Transformations ..... 308
11.9 Coordinate-Free Parameterized Constructions ..... 309
11.10 Metric Products in the Homogeneous Model ..... 312
1.10.1 Non-Euclidean Results ..... 312
11.10.2 Nonmetric Orthogonal Projection ..... 314
11.11 Further Reading ..... 315
11.12 Exercises ..... 316
11.12.1 Drills ..... 316
11.12.2 Structural Exercises ..... 316
11.13 Programming Examples and Exercises ..... 320
11.13.1 Working with Points ..... 320
11.13.2 Intersecting Primitives ..... 322
11.13.3 Don’t Add Lines ..... 324
11.13.4 Perspective Projection ..... 325
CHAPTER 12. APPLICATIONS OF THE HOMOGENEOUS MODEL ..... 327
12.1 Homogeneous Plücker Coordinates in 3-D ..... 328
12.1.1 Line Representation ..... 328
2.1.2 The Elements in Coordinate Form ..... 330
12.1.3 Combining Elements ..... 332
12.1.4 Matrices of Motions in Plücker Coordinates ..... 334
12.1.5 Sparse Usage of the $2^{4}$ Dimensions ..... 336
12.2 Imaging by Multiple Cameras ..... 336
12.2.1 The Pinhole Camera ..... 337
12.2.2 Homogeneous Coordinates as Imaging ..... 339
12.2.3 Cameras and Stereo Vision ..... 340
12.2.4 Line-based Stereo Vision ..... 342
12.3 Further Reading ..... 346
12.4 Exercises ..... 347
12.4.1 Structural Exercises ..... 347
12.5 Programming Examples and Exercises ..... 348
12.5.1 Loading Transformations into OpenGL ..... 348
12.5.2 Transforming Primitives with OpenGL Matrices ..... 349
12.5.3 Marker Reconstruction in Optical Motion Capture ..... 351
CHAPTER 13. THE CONFORMAL MODEL: OPERATIONAL EUCLIDEAN GEOMETRY ..... 355
13.1 The Conformal Model ..... 356
13.1.1 Representational Space and Metric ..... 356
13.1.2 Points as Null Vectors ..... 359
13.1.3 General Vectors Represent Dual Planes and Spheres ..... 361
13.2 Euclidean Transformations as Versors ..... 364
13.2.1 Euclidean Versors ..... 364
13.2.2 Proper Euclidean Motions as Even Versors ..... 365
13.2.3 Covariant Preservation of Structure ..... 367
13.2.4 The Invariance of Properties ..... 369
13.3 Flats and Directions ..... 370
13.3.1 The Direct Representation of Flats ..... 370
13.3.2 Correspondence with the Homogeneous Model ..... 372
13.3.3 Dual Representation of Flats ..... 374
13.3.4 Directions ..... 376
13.4 Application: General Planar Reflection ..... 377
13.5 Rigid Body Motions ..... 379
13.5.1 Algebraic Properties of Translations and Rotations ..... 380
13.5.2 Screw Motions ..... 381
13.5.3 Logarithm of a Rigid Body Motion ..... 383
13.6 Application: Interpolation of Rigid Body Motions ..... 385
13.7 Application: Differential Planar Reflections ..... 386
$13.8 \quad$ Further Reading ..... 388
13.9 Exercises ..... 388
13.9.1 Drills ..... 388
13.9.2 Structural Exercises ..... 389
13.10 Programming Examples and Exercises ..... 390
13.10.1 Metric Matters ..... 390
13.10.2 Exercise: The Distance Between Points ..... 392
13.10.3 Loading Transformations into OpenGL, Again ..... 393
13.10.4 Interpolation of Rigid Body Motions ..... 395
CHAPTER 14. NEW PRIMITIVES FOR EUCLIDEAN GEOMETRY ..... 397
14.1 Rounds ..... 398
14.1.1 Dual Rounds ..... 398
14.1.2 Direct Rounds ..... 400
14.1.3 Oriented Rounds ..... 402
14.2 Tangents as Intersections of Touching Rounds ..... 404
14.2.1 Euclid's Elements ..... 406
14.2.2 From Blades to Parameters ..... 408
14.3 A Visual Explanation of Rounds as Blades ..... 410
14.3.1 Point Representation ..... 410
14.3.2 Circle Representation ..... 412
14.3.3 Euclidean Circles Intersect as Planes ..... 414
14.4 Application: Voronoi Diagrams ..... 415
14.5 Application: Fitting a Sphere to Points ..... 417
14.5.1 The Inner Product Distance of Spheres ..... 417
14.5.2 Fitting a Sphere to Points ..... 419
14.6 Application: Kinematics ..... 420
14.6.1 Forward Kinematics ..... 420
14.6.2 Inverse Kinematics ..... 423
$14.7 \quad$ Further Reading ..... 426
14.8 Exercises ..... 427
14.8.1 Drills ..... 427
14.8.2 Structural Exercises ..... 427
14.9 Programming Examples and Exercises ..... 428
14.9.1 Voronoi Diagrams and Delaunay Triangulations ..... 428
14.9.2 Exercise: Drawing Euclid's Elements ..... 431
14.9.3 Conformal Primitives and Intersections ..... 432
14.9.4 Fitting a Sphere to a Set of Points ..... 434
CHAPTER 15. CONSTRUCTIONS IN EUCLIDEAN GEOMETRY ..... 437
15.1 Euclidean Incidence and Coincidence ..... 438
15.1.1 Incidence Revisited ..... 438
15.1.2 Co-Incidence ..... 438
15.1.3 Real Meet or Plunge ..... 440
15.1.4 The Plunge of Flats ..... 442
15.2 Euclidean Nuggets ..... 444
15.2.1 Tangents Without Differentiating ..... 445
15.2.2 Carriers, Tangent Flat ..... 445
15.2.3 Surrounds, Factorization of Rounds ..... 446
15.2.4 Affine Combinations ..... 447
15.3 Euclidean Projections ..... 449
15.4 Application: All Kinds of Vectors ..... 451
15.5 Application: Analysis of a Voronoi Cell ..... 455
15.5.1 Edge Lines ..... 455
15.5.2 Edge Point ..... 456
15.5.3 Edge Length ..... 457
15.5.4 Conversion to Classical Formulas ..... 458
15.6 Further Reading ..... 460
15.7 Exercises ..... 460
15.7.1 Drills ..... 460
15.7.2 Structural Exercises ..... 461
15.8 Programming Examples and Exercises ..... 462
15.8.1 The Plunge ..... 462
15.8.2 Affine Combinations of Points ..... 463
15.8.3 Euclidean Projections ..... 464
CHAPTER 16. CONFORMAL OPERATORS ..... 465
16.1 Spherical Inversion ..... 465
16.2 Applications of Inversion ..... 468
16.2.1 The Center of a Round ..... 468
16.2.2 Reflection in Spheres and Circles ..... 468
16.3 Scaling ..... 469
16.3.1 The Positive Scaling Rotor ..... 469
16.3.2 Reflection in the Origin: Negative Scaling ..... 471
16.3.3 Positively Scaled Rigid Body Motions ..... 472
16.3.4 Logarithm of a Scaled Rigid Body Motion ..... 473
6.4 Transversions ..... 475
16.5 Transformations of the Standard Blades ..... 477
$16.6 \quad$ General Conformal Transformations ..... 477
16.6.1 Loxodromes ..... 477
16.6.2 Circular Rotations ..... 479
16.6.3 Möbius Transformations ..... 479
16.7 Non-Euclidean Geometries ..... 480
16.7.1 Hyperbolic Geometry ..... 480
16.7.2 Spherical Geometry ..... 482
16.8 Further Reading ..... 483
16.9 Exercises ..... 483
16.9.1 Drills ..... 483
16.9.2 Structural Exercises ..... 484
16.10 Programming Examples and Exercises ..... 486
16.10.1 Homogeneous $4 \times 4$ Matrices to Conformal Versors ..... 486
16.10.2 Logarithm of Scaled Rigid Body Motion ..... 493
16.10.3 Interpolation of Scaled Rigid Body Motions ..... 493
16.10.4 The Seashell ..... 494
CHAPTER 17. OPERATIONAL MODELS FOR GEOMETRIES ..... 497
17.1 Algebras for Geometries ..... 497
PART III IMPLEMENTING GEOMETRIC ALGEBRA
CHAPTER 18. IMPLEMENTATIONISSUES ..... 503
18.1 The Levels of Geometric Algebra Implementation ..... 504
18.2 Who Should Read What ..... 506
18.3 Alternative Implementation Approaches ..... 506
18.3.1 Isomorphic Matrix Algebras ..... 506
18.3.2 Irreducible Matrix Implementations ..... 507
18.3.3 Factored Representations ..... 508
18.4 Structural Exercises ..... 509
CHAPTER 19. BASIS BLADES AND OPERATIONS ..... 511
19.1 Representing Unit Basis Blades with Bitmaps ..... 512
19.2 The Outer Product of Basis Blades ..... 513
19.3 The Geometric Product of Basis Blades in an Orthogonal Metric ..... 515
19.4 The Geometric Product of Basis Blades in Nonorthogonal Metrics ..... 516
19.5 The Inner Products of Basis Blades ..... 518
19.6 Commutator Product of Basis Blades ..... 518
19.7 Grade-Dependent Signs on Basis Blades ..... 518
CHAPTER 20. THE LINEAR PRODUCTS AND OPERATIONS ..... 521
20.1 A Linear Algebra Approach ..... 522
20.1.1 Implementing the Linear Operations ..... 522
20.1.2 Implementing the Linear Products ..... 523
20.2 The List of Basis Blades Approach ..... 526
20.3 Structural Exercises ..... 527
CHAPTER 21. FUNDAMENTAL ALGORITHMS FOR NONLINEAR PRODUCTS ..... 529
21.1 Inverse of Versors (and Blades) ..... 529
21.2 Inverse of Multivectors ..... 530
21.3 Exponential, Sine, and Cosine of Multivectors ..... 531
21.4 Logarithm of Versors ..... 532
21.5 Multivector Classification ..... 532
21.6 Blade Factorization ..... 533
21.7 The Meet and Join of Blades ..... 536
21.8 Structural Exercises ..... 540
CHAPTER 22. SPECIALIZING THE STRUCTURE FOR EFFICIENCY ..... 541
22.1 Issues in Efficient Implementation ..... 541
22.2 Generative Programming ..... 543
22.3 Resolving the Issues ..... 544
22.3.1 The Approach ..... 545
22.4 Implementation ..... 546
22.4.1 Algebra Specification ..... 546
22.4.2 Implementation of the General Multivector Class ..... 547
22.4.3 Implementation of the Specialized Multivector Classes ..... 549
22.4.4 Optimizing Functions Over the Algebra ..... 550
22.4.5 Outermorphisms ..... 552
22.4.6 Optimizing the Nonlinear Functions ..... 553
22.5 Benchmarks ..... 554
22.6 A Small Price to Pay ..... 556
22.7 Exercises ..... 556
CHAPTER 23. USING THE GEOMETRY IN A RAY-TRACING APPLICATION ..... 557
23.1 Ray-Tracing Basics ..... 558
23.2 The Ray-Tracing Algorithm ..... 559
23.3 Representing Meshes ..... 560
23.4 Modeling the Scene ..... 566
23.4.1 Scene Transformations ..... 566
23.5 Tracing the Rays ..... 573
23.5.1 The Representation of Rays ..... 573
23.5.2 Spawning Rays ..... 575
23.5.3 Ray-Model Intersection ..... 577
23.5.4 Reflection ..... 579
23.5.5 Refraction ..... 580
23.6 Shading ..... 580
23.7 Evaluation ..... 581
PART IV APPENDICES
A METRICS AND NULL VECTORS ..... 585
A. 1 The Bilinear Form ..... 585
A. 2 Diagonalization to Orthonormal Basis ..... 586
A. 3 General Metrics ..... 586
A. 4 Null Vectors and Null Blades ..... 587
A. 5 Rotors in General Metrics ..... 587
B CONTRACTIONS AND OTHERINNER PRODUCTS ..... 589
B. $1 \quad$ Other Inner Products ..... 589
B.1.1 The Dot Product ..... 589
B.1.2 Hestenes' Inner Product ..... 590
B.1.3 Near Equivalence of Inner Products ..... 590
B.1.4 Geometric Interpretation and Usage ..... 591
B. 2 Equivalence of the Implicit and Explicit Contraction Definitions ..... 591
B. 3 Proof of the Second Duality ..... 594
B. 4 Projection and the Norm of the Contraction ..... 595
C SUBSPACE PRODUCTS RETRIEVED ..... 597
C. 1 Outer Product from Peometric Product ..... 597
C. 2 Contractions from Geometric Product ..... 598
C. 3 Proof of the Grade Approach ..... 599
D COMMONEQUATIONS ..... 603
BIBLIOGRAPHY ..... 609
INDEX ..... 613

## List of Figures

1.1 Example of the use of geometric algebra ..... 2
1.2 Code to generate Figure 1.1 ..... 5
1.3 Example of the use of geometric algebra ..... 6
1.4 The outer product and its interpretations ..... 11
2.1 Spanning homogeneous subspaces in a 3-D vector space ..... 25
2.2 Imagining vector addition ..... 27
2.3 Bivector representations ..... 32
2.4 Imagining bivector addition in 2-D space ..... 33
2.5 Bivector addition in 3-D space ..... 34
2.6 The associativity of the outer product ..... 35
2.7 Solving linear equations with bivectors ..... 40
2.8 Intersecting lines in the plane ..... 41
$2.9 \quad$ Code for drawing bivectors ..... 58
$2.10 \quad$ Drawing bivectors screenshot (Example 1) ..... 59
2.11 The orientation of front- and back-facing polygons ..... 59
2.12 A wire-frame torus with and without backface culling ..... 60
2.13 The code that renders a model from its 2-D vertices (Exercise 2) ..... 61
2.14 Sampling a vector field and summing trivectors ..... 62
2.15 Code to test for singularity (Example 3) ..... 63
2.16 A helix-shaped singularity, as detected by Example 3 ..... 64
3.1 Computing the scalar product of 2-blades ..... 70
3.2 From scalar product to contraction ..... 72
3.3 The contraction of a vector onto a 2 ..... 76
3.4 Duality of vectors in 2-D ..... 81
LIST OF FIGURES ..... xxi
3.5
Duality of vectors and bivectors in 3-D ..... 82
3.6 Projection onto a subspace ..... 84
3.7 Three uses of the cross product ..... 87
3.8 Duality and the cross product ..... 89
3.9 Orthonormalization code (Example 1) ..... 93
3.10 Orthonormalization ..... 94
3.11 Reciprocal frame code ..... 96
3.12 Color space conversion code (Example 4) ..... 97
3.13 Color space conversion screenshot ..... 98
4.1 The defining properties of a linear transformation ..... 100
4.2 Projection onto a line $\mathbf{a}$ in the $\mathbf{b}$-direction ..... 104
4.3 A rotation around the origin of unit vectors in the plane ..... 105
4.4 Projection of a vector onto a bivector ..... 121
4.5 Matrix representation of projection code ..... 122
4.6 Transforming normals vector ..... 123
5.1 The ambiguity of the magnitude of the intersection of two planes ..... 126
5.2 The meet of two oriented planes ..... 130
5.3 A line meeting a plane in the origin ..... 131
5.4 When the join of two (near-) parallel vectors becomes a 2-blade (Example 3) ..... 140
6.1 Invertibility of the subspace products ..... 142
6.2 Ratios of vectors ..... 146
6.3 Projection and rejection of a vector ..... 156
6.4 Reflecting a vector in a line ..... 158
6.5
Gram-Schmidt orthogonalization ..... 163
6.6
Gram-Schmidt orthogonalization code (Example 2) ..... 164
7.1 Line and plane reflection ..... 169
7.2 A rotation in a plane parallel to $\mathbf{I}$ is two reflections in vectors in that plane ..... 170
7.3 A rotor in action ..... 171
7.4 Sense of rotation ..... 175
7.5 The unique rotor-based rotations in the range $\phi=[0,4 \pi)$ ..... 176
7.6
(a) A spherical triangle. (b) Composition of rotations through concatenation of rotor arcs ..... 180
7.7 A reflector in action ..... 189
7.8 The rotor product in Euclidean spaces as a Taylor series ..... 197
$7.9 \quad$ Interactive version of Figure 7.2 ..... 205
7.10 Rotation matrix to rotor conversion ..... 207
$7.11 \quad$ 2-D Julia fractal code ..... 210
7.12 A 2-D Julia fractal, computed using the geometric product of real vectors ..... 211
7.13 3-D Julia fractal ..... 212
8.1 Directional differentiation of a vector inversion ..... 227
8.2 Changes in reflection of a rotating mirror ..... 229
8.3 The directional derivative of the spherical projection ..... 241
10.1 A triangle $\mathbf{a}+\mathbf{b}+\mathbf{c}=0$ in a directed plane $\mathbf{I}$ ..... 249
10.2 The angle between a vector and a bivector (see text) ..... 252
10.3 A spherical triangle ..... 253
10.4 Interpolation of rotations ..... 259
10.5 Interpolation of rotations (Example 1) ..... 266
$10.6 \quad$ Crystallography (Example 2) ..... 267
10.7 External camera calibration (Example 3) ..... 268
11.1 The extra dimension of the homogeneous representation space ..... 274
11.2 Representing offset subspaces in $\mathbb{R}^{n+1}$ ..... 280
11.3 Defining offset subspaces fully in the base space ..... 288
11.4 The dual hyperplane representation in $\mathbb{R}^{2}$ and $\mathbb{R}^{1}$ ..... 290
11.5 The intersection of two offset lines $L$ and $M$ to produce a point $p$ ..... 293
11.6 The meet of two skew lines ..... 295
11.7 The relative orientation of oriented flats ..... 296
11.8 The combinations of four points taken in the cross ratio ..... 300
11.9 The combinations of four lines taken in the cross ratio ..... 301
11.10 Conics in the homogeneous model ..... 308
11.11 Finding a line through a point, perpendicular to a given line ..... 310
11.12 The orthogonal projection in the homogeneous model (see text) ..... 315
11.13 The beginning of a row of equidistant telegraph poles ..... 319
11.14 Example 2 in action ..... 323
11.15 Perspective projection (Example 4) ..... 325
12.1 Plücker coordinates of a line in 3-D ..... 329
12.2 A pinhole camera ..... 337
12.3 The epipolar constraint ..... 342
12.4
The plane of rays generated by a line observation $L$ ..... 343
12.5 The projection of the optical center onto all rays generates an eyeball ..... 348
12.6 Reconstruction of motion capture data ..... 351
12.7 Reconstruction of markers ..... 352
12.8 Crossing lines code ..... 354
13.1 Euclidean transformations as multiple reflections in planes ..... 366
13.2 Flat elements in the conformal model ..... 373
13.3 Planar reflection in the conformal model ..... 377
13.4 Chasles' screw ..... 382
13.5 Computation of the logarithm of a rigid body motion ..... 384
13.6 Rigid body motion interpolation ..... 385
13.7 Reflection in a rotating mirror ..... 387
13.8 The output of the solution to Example 2 ..... 393
13.9 Example 4 in action: the interpolation of rigid body motions ..... 394
14.1 Dual rounds in the conformal model ..... 398
14.2 Intersection of two spheres of decreasing radii ..... 405
14.3 Visualization of a 2-D Euclidean point on the representative paraboloid ..... 411
14.4 The representation of a circle on the representative paraboloid ..... 412
14.5 Cross section of the parabola of null vectors ..... 413
14.6 Visualization of the intersection of circles on the representative paraboloid ..... 414
14.7 A Voronoi diagram in the conformal model ..... 416
14.8 Inner product as distance measure ..... 418
$14.9 \quad$ Forward kinematics of a robot arm ..... 421
14.10 Inverse kinematics of a robot arm ..... 422
14.11 A Voronoi diagram of a set of points, as computed by Example 1 ..... 429
14.12 Euclid's elements (Example 2) ..... 432
14.13 Example 3 in action ..... 433
14.14 Fitting-a-sphere code ..... 435
15.1 The meet and plunge of three spheres ..... 439
15.2 The plunge of diverse elements ..... 441
15.3 The meet and plunge of two spheres at decreasing distances ..... 442
15.4 Visualization of flats as plunge ..... 443
15.5 Orbits of a dual line versor ..... 444
15.6 Tangents of elements ..... 445
15.7 Factorization of rounds ..... 447
15.8 Affine combination of conformal points ..... 448
15.9 Affine combination of circles and point pairs ..... 449
15.10 Orthogonal projections in the conformal model of Euclidean geometry ..... 450
15.11 Various kinds of vectors in the conformal model ..... 452
15.12 Definition of symbols for the Voronoi derivations ..... 456
15.13 Construction of a contour circle ..... 462
15.14 Screenshot of Example 2 ..... 463
15.15 Screenshot of Example 3 on projection and pl unge ..... 464
16.1 Inversion in a sphere ..... 467
16.2 Reflection in a sphere ..... 469
16.3 Generation of a snail shell ..... 472
16.4 Swapping scaling and translation ..... 473
16.5 Computation of the logarithm of a positively scaled rigid body motion ..... 475
16.6 Loxodromes ..... 478
16.7 Conformal orbits ..... 479
16.8 Hyperbolic geometry ..... 481
16.9 Spherical geometry ..... 482
16.10 Imaging by the eye ..... 484
16.11 Reflection in a point pair ..... 485
16.12 Dupin cycloid as the inversion of a torus into a sphere ..... 486
16.13 Metrical Mystery Tour ..... 487
16.14 Function matri $\times 4 \times 4$ ToVersor() ..... 489
16.15 Function 10 (const TRSversor \& $V$ ) ..... 493
16.16 Screenshot of Example 4 ..... 495
19.1 Function canonical ReorderingSign(int a, int b) ..... 514
19.2 Function gp_op (BasisBlade a, BasisBlade b) ..... 515
20.1 Matrices for geometric product, outer product, and left contraction ..... 525
20.2 Implementation of the outer product of multivectors ..... 527
21.1 Venn diagrams illustrating union, intersection, and the delta product of two sets ..... 536
21.2 Venn diagrams illustrating meet, join, and the delta product of two blades ..... 537
22.1 Basic tool-chain from source code to running application ..... 544
22.2 Code generated by Gaigen 2 ..... 551
22.3 Generated matrix-point multiplication code ..... 553
LIST OF FIGURES ..... xxv
23.1 Teapot polygonal mesh ..... 560
23.2 Screenshot of the user interface of the modeler ..... 567
23.3 Rotating an object ..... 570
23.4 The spaceball interface ..... 571

## List of Tables

2.1 Geometrical properties of a subspace ..... 43
2.2 Pascal's triangle of the number of basis $k$-blades in $n$-dimensional space ..... 45
2.3 Notational conventions for blades and multivectors for Part I of this book ..... 47
2.4 C++ Operator bindings ..... 55
5.1 The order of the arguments for a meet may affect the sign of the result ..... 134
7.1 Reflection of an oriented subspace $\mathbf{X}$ in a subspace $\mathbf{A}$ ..... 190
8.1 Directional differentiation and vector derivatives ..... 226
8.2 Elementary results of multivector differentiation ..... 237
10.1 The point group $2 \mathrm{H}_{4}$ ..... 255
11.1 The geometric algebra of the homogeneous model of 3-D Euclidean space ..... 273
11.2 The number of blades representing subspaces and directions ..... 287
11.3 Nonzero blades in the homogeneous model of Euclidean geometry ..... 291
11.4 Specialized multivector types in the h3ga ..... 320
12.1 Common Plücker coordinate computations ..... 330
12.2 Transformation of the flats in the homogeneous model ..... 335
13.1 Multiplication table for the inner product of the conformal model of 3-D Euclidean geometry $\mathbb{E}^{3}$, for two choices of basis ..... 361
13.2 The interpretation of vectors in the conformal model ..... 363
13.3 A list of the most important specialized multivector types in c3ga ..... 391
13.4 Constants in c3ga ..... 392
14.1 Nonzero blades in the conformal model of Euclidean geometry ..... 407
16.1 Basic operations in the conformal model and their versors ..... 476
16.2 Common proper transformations of some of the standard elements of the conformal model ..... 477
18.1 Matrix representations of Clifford algebras of signatures $(p, q)$ ..... 507
19.1 The bitmap representation of basis blades ..... 512
19.2 Bitwise boolean operators used in Java code examples ..... 513
19.3 Reversion, grade involution, and Clifford Conjugate for basis blades ..... 519
22.1 Performance benchmarks for the ray tracer ..... 555

## List of Programming Examples

| Section | Title | Model |  |
| :--- | :--- | :--- | ---: |
| 1.1 | An Example in Geometric Algebra | 3-D conformal | 5 |
| 2.13 .1 | Drawing Bivectors | 2-D vector space | 58 |
| 2.13 .2 | Exercise: Hidden Surface Removal | 3-D vector space | 61 |
| 2.13 .3 | Singularities in Vector Fields | 3-D vector space | 63 |
| 3.11 .1 | Orthonormalization | 3-D vector space | 93 |
| 3.11 .2 | Exercise: Implementing the Cross Product | 3-D vector space | 96 |
| 3.11 .3 | Reciprocal Frames | 3-D vector space | 97 |
| 3.11 .4 | Color Space Conversion | 3-D vector space | 98 |
| 4.9 .1 | Orthogonal Projection | 3-D vector space | 122 |
| 4.9 .2 | Orthogonal Projection, Matrix |  |  |
|  | Representation | 3-D vector space | 122 |
| 4.9 .3 | Transforming Normal Vectors | 3-D vector space | 123 |
| 5.11 .1 | The Meet and Jo in | 3-D vector space | 138 |
| 5.11 .2 | Efficiency | 3-D vector space | 139 |
| 5.11 .3 | Floating Point Issues | 3-D vector space | 139 |
| 6.7 .1 | Exercise: Subspace Products Retrieved | 3-D vector space | 161 |
| 6.7 .2 | Gram-Schmidt Orthogonalization | 3-D vector space | 162 |
| 7.10 .1 | Reflecting in Vectors | 3-D vector space | 204 |
| 7.10 .2 | Two Reflections Equals One Rotation | 3-D vector space | 204 |
| 7.10 .3 | Matrix-Rotor Conversion 1 | 3-D vector space | 204 |
| 7.10 .4 | Exercise: Matrix-Rotor Conversion 2 | 3-D vector space | 206 |
| 7.10 .5 | Julia Fractals | 2-D vector space | 208 |
| 10.7 .1 | Interpolating Rotations | 3-D vector space | 265 |
| 10.7 .2 | Crystallography | 3-D vector space | 267 |


| Section | Title | Model |  |
| :---: | :---: | :---: | :---: |
| 10.7.3 | External Camera Calibration | 3-D vector space | 269 |
| 11.13 .1 | Working with Points | 3-D homogeneous | 321 |
| 11.13.2 | Intersecting Primitives | 3-D homogeneous | 322 |
| 11.13 .3 | Don't Add Lines | 3-D homogeneous | 324 |
| 11.13.4 | Perspective Projection | 3-D homogeneous | 326 |
| 12.5.1 | Loading Transformations into OpenGL | 3-D homogeneous | 349 |
| 12.5.2 | Transforming Primitives with OpenGL Matrices | 3-D homogeneous | 350 |
| 12.5.3 | Marker Reconstruction in Optical Motion Capture | 3-D homogeneous | 352 |
| 13.10.1 | Metric Matters | 3-D conformal | 390 |
| 13.10.2 | Exercise: The Distance Between Points | 3-D conformal | 393 |
| 13.10.3 | Loading Transformations into OpenGL, Again | 3-D conformal | 394 |
| 13.10.4 | Interpolation of Rigid Body Motions | 3-D conformal | 395 |
| 14.9.1 | Voronoi Diagrams and Delaunay |  |  |
|  | Triangulations | 2-D conformal | 430 |
| 14.9.2 | Exercise: Drawing Euclid's Elements | 3-D conformal | 431 |
| 14.9.3 | Conformal Primitives and Intersections | 3-D conformal | 433 |
| 14.9.4 | Fitting a Sphere to a Set of Points | 3-D conformal | 435 |
| 15.8.1 | The Plunge | 3-D conformal | 462 |
| 15.8.2 | Affine Combinations of Points | 2-D conformal | 463 |
| 15.8.3 | Euclidean Projections | 3-D conformal | 464 |
| 16.10.1 | Homogeneous $4 \times 4$ Matrices to Conformal Versors | 3-D conformal | 488 |
| 16.10.2 | Logarithm of Scaled Rigid Body Motion | 3-D conformal | 493 |
| 16.10.3 | Interpolation of Scaled Rigid Body Motions | 3-D conformal | 493 |
| 16.10.4 | The Seashell | 3-D conformal | 494 |

## Preface

Geometric algebra is a powerful and practical framework for the representation and solution of geometrical problems. We believe it to be eminently suitable to those subfields of computer science in which such issues occur: computer graphics, robotics, and computer vision. We wrote this book to explain the basic structure of geometric algebra, and to help the reader become a practical user. We employ various tools to get there:

- Explanations that are not more mathematical than we deem necessary, connecting algebra and geometry at every step
- A large number of interactive illustrations to get the "object-oriented" feeling of constructions that are dependent only on the geometric elements in them (rather than on coordinates)
- Drills and structural exercises for almost every chapter
- Detailed programming examples on elements of practical applications
- An extensive section on the implementational aspects of geometric algebra (Part III of this book)

This is the first book on geometric algebra that has been written especially for the computer science audience. When reading it, you should remember that geometric algebra is fundamentally simple, and fundamentally simplifying. That simplicity will not always be clear; precisely because it is so fundamental, it does basic things in a slightly different way and in a different notation. This requires your full attention, notably in the beginning, when we only seem to go over familiar things in a perhaps irritatingly different manner. The patterns we uncover, and the coordinate-free way in which we encode them, will all pay off in the end in generally applicable quantitative geometrical operators and constructions.

We emphasize that this is not primarily a book on programming, and that the subtitle "An Object-oriented Approach to Geometry" should not be interpreted too literally. It is intended to convey that we finally achieve clean computational "objects" (in the sense of object-oriented programming) to correspond to the oriented elements and operators of geometry by identifying them with "oriented objects" of the algebra.

## AUDIENCE

The book is aimed at a graduate level; we only assume basic linear algebra (and a bit of calculus in Chapter 8). No prior knowledge of the techniques of computer graphics or robotics is required, though if you are familiar with those fields you will appreciate how much easier things are in geometric algebra. The book should also be well suited for selfstudy at the post-graduate level; in fact, we tried to write the book that we would have wanted ourselves for this purpose. Depending on your level of interest, you may want to read it in different ways.

- If you are a seasoned user of geometry and well-versed in the techniques of casting geometry in linear algebra, but don't have much time, you will still find this book worthwhile. In a comfortable reading, you can absorb what is different in geometric algebra, and its structure will help you understand all those old tricks in your library. In our experience, it makes many arcane techniques comprehensible, and it helped us to learn from useful math books that we would otherwise never have dared to read. You may never actually use geometric algebra, but you will find it enlightening all the same. And who knows-you may come back for more.
- If you are currently writing code using the coordinate-based linear algebra, a background study of the techniques in this book will be helpful and constructive. The advantages for the previous category will apply to you as well. Moreover, you may find yourself doing derivations of formulas you need to program in the compact geometric algebra manner, and this will clarify and improve your implementations, even if you continue writing those in the old linear algebra vocabulary. In particular, the thinking behind your code will be more geometrical, less coordinate-based, and this will make it more transparent, more flexibly applicable (for instance, in higher dimensions), and ready to be translated into geometric algebra after the revolution.
- If you are starting out in geometric programming, take the time to absorb this book thoroughly. This geometric algebra way of thinking is quite natural, and we are rather envious that you can learn it from scratch, without having to unlearn old methods. With study and practice you will be able to write programs in geometric algebra rather fluently, and eventually contribute actively to its development.

Our style in this book is factual. We give you the necessary mathematics, but always relate the algebra to the geometry, so that you get the complete picture. Occasionally, there is a need for more extensive proofs to convince you of the consistency of aspects of the framework. When such a proof became too lengthy and did not further the arguments, it was relegated to an appendix. The derivations that remain in the text should be worth your time, since they are good practice in developing your skills. We have attempted to avoid the "pitfall of imprecision" in this somewhat narrative presentation style by providing the fundamental chapters with a summary of the essential results, for easy consultation via the index.

## HISTORY

We do not constantly attribute all results, but that does not mean that we think that we developed all this ourselves. By its very nature, geometric algebra collates many partial results in a single framework, and the original sources become hard to trace in their original context. It is part of the pleasure of geometric algebra that it empowers the user; by mastering just a few techniques, you can usually easily rediscover the result you need.

Once you grasp its essence, geometric algebra will become so natural that you will wonder why we have not done geometry this way all along. The reason is a history of geometric (mis)representation, for almost all elements of geometric algebra are not new-in hindsight. Elements of the quantitative characterization of geometric constructions directly in terms of its elements are already present in the work of René Descartes (1595-1650); however, his followers thought it was easier to reduce his techniques to coordinate systems not related to the elements (nevertheless calling them Cartesian, in his honor). This gave us the mixed blessing of coordinates, and the tiresome custom of specifying geometry at the coordinate level (whereas coordinates should be relegated to the lowest implementational level, reserved for the actual computations). To have a more direct means of expression, Hermann Grassmann (1809-1877) developed a theory of extended quantities, allowing geometry to be based on more than points and vectors. Unfortunately, his ideas were ahead of their time, and his very compact notation made his work more obscure than it should have been. William Rowan Hamilton (1805-1865) developed quaternions for the algebra of rotations in 3D, and William Kingdon Clifford (1845-1879) defined a more general product between vectors that could incorporate general rigid body motions.

All these individual contributions pointed toward a geometric algebra, and at the end of the 19th century, there were various potentially useful systems to represent aspects of geometry. Gibbs (1839-1903) made a special selection of useful techniques for the 3D geometry of engineering, and this limited framework is basically what we have been using ever since in the geometrical applications of linear algebra. In a typical quote from his biography "using ideas of Grassmann, Gibbs produced a system much more easily applied to physics than that of Hamilton." In the process, we lost geometric algebra. Linear algebra and matrices, with their coordinate representations, became the mainstay of doing geometry, both in practice and in mathematical development. Matrices work, but in their usual form they only work on vectors, and this ignores Grassmann's insight that extended qualities can be elements of computation. (Tensors partially fix this, but in a cumbersome coordinate-based notation.)

With the arrival of quantum physics, convenient alternative representations for spatial motions were developed (notably for rotations), using complex numbers in "spinors." The complex nature of spinors was mistaken for an essential aspect of quantum mechanics, and the representations were not reapplied to everyday geometry. David Hestenes (1933-present) was perhaps the first to realize that the representational techniques in relativity and quantum mechanics were essentially manifestations of a fundamental
"algebra of spatial relationships" that needed to be explored. He rescued the half-forgotten geometric algebra (by now called Clifford algebra and developed in nongeometric directions), developed it into an alternative to the classical linear algebra-based representations, and started advocating its universal use. In the 1990s, his voice was heard, and with the implementation of geometric algebra into interactive computer programs its practical applicability is becoming more apparent.

We can now finally begin to pick up the thread of geometrical representation where it was left around 1900. Gibbs was wrong in assuming that computing with the geometry of 3D space requires only representations of 3D points, although he did give us a powerful system to compute with those. This book will demonstrate that allowing more extended quantities in higher-dimensional representational spaces provides a more convenient executable language for geometry. Maybe we could have had this all along; but perhaps we indeed needed to wait for the arrival of computers to appreciate the effectiveness of this approach.

## SOFTWARE

There are three main software packages associated with this book, each written with a different goal in mind (interaction, efficiency and illustration of algorithms, respectively). All three were developed by us, and can be found on the web site:

## http://www.geometricalgebra.net

for free downloading.

- GAViewer is an interactive program that we used to generate the majority of the figures in this book. It was originally developed as a teaching tool, and a web tutorial is available, using GAV i ewer to explain the basics of geometric algebra. You can use GAV i ewer when reading the book to type in algebraic formulas and have them act on geometrical elements interactively. This interaction should aid your understanding of the correspondence between geometry and algebra considerably. The (simplified) code of the figures provides a starting point for your own experimentation.
- Gaigen 2 is geometric algebra implementation in C++ (and Java), intended for applications requiring more speed and efficiency than a simple tutorial. The GA sandbox source code package used for the programming examples and exercises in this book is built on top of Gaigen 2. To compile and run the programming examples in Part I and Part II, you only have to download the sandbox package from the web site.
- Our simplistic but educational "reference implementation" implements all algorithms and techniques discussed in Part III. It is written in Java and intended to show only the essential structure; we do not deem it usable for anything that is computationally intensive, since it can easily be 10 to 100 times slower than Gaigen 2.

If you are serious about implementing further applications, you can start with the GA sandbox package, or other available implementations of geometric algebra, or even write your own package.

## ACKNOWLEDGEMENTS

Of those who have helped us develop this work, we especially thank David Hestenes, not only for reinvigorating geometric algebra, but also for giving Leo an early introduction to the conformal model at a half-year sabbatical at Arizona State University. We are grateful to Joan Lasenby of Cambridge University for her detailed comments on the early chapters, and for providing some of the applied examples. We are also indebted to Timaeus Bouma for his keen insights that allowed our software to be well-founded in mathematical fact.

We gratefully acknowledge the support of the University of Amsterdam, especially professor Frans Groen; NWO (Netherlands Organization for Scientific Research) in project 612.012.006; and NSERC (Natural Sciences and Engineering Research Council of Canada).

Ultimately, though, this book would have been impossible without the home front:
Leo Dorst's parents and his wife Phyllis have always utterly supported him in his quest to understand new aspects of math and life; he dedicates this book to them.

Daniel Fontijne owes many thanks to Yvonne for providing the fun and artistic reasons to study geometric algebra, and to Femke and Tijmen for the many refreshing breaks while working at home.

Stephen Mann would like to thank Mei and Lilly for their support during the writing of this book.

Geometric Algebra for Computer Science

