Private Information Retrieval

Sujaya Maiyya
Slides partially acquired from Ishtiyague Ahmed

The problem of protecting private data repositories stored remotely is
well-studied

Private Files Encrypted files G

e
<, Dropbox

> amazon * S3
webservices

Remote file
storage

Encryption hides file contents from an attacker.

ORAM (STOC ‘87) hides data access patterns for private files

Private Files m

2 4
. <@ Dropbox
Oblivious RAM @ P
(Goldreich STOC ‘87, Path ORAM JACM ‘18, i)
SCORAM CCS ‘14, ...) .
Remote file amazon * S3
Encryption + storage web services
User randomized data accesses

Hidden:
=> Which file is being accessed?
—=> Whether the access is a read or write
=> When was the file accessed last

We can extend protection to private relational
databases stored remotely

CryptDB, Arx, ObliDB, SMCQL ...

Encrypted DB

| Query Trusted Encrypted Query = | .‘1
| Proxy | nr’
\ 7 -

User

Hidden:
—> Database content
=> Query parameters

What is common to all of these cases?

Private Files

Securely outsource storage
User
Private database g

The user owns the data!

v

But, much of the content on the Internet is in public
data repositories

G | want to stream “The Godfather” l'

User

NETFLIX

(11| Tube;

Remote server

Show me the latest post by Elon Musk l' I@l
i 1 facebook

User

Remote server

But, much of the content on the Internet is in public
data repositories

History of pride parade

;z/yf ‘52&1\‘@?3@
ﬂ History of pride parade 3 Q(,D\‘ﬁf)\
» £ "'77/,/‘/L/ ‘/‘ /
€ 0B ot
Sl
N "\?7;4/_2
User Remote server
Cannot use:
® Encryption
e ORAM

e CryptDB-like solution

How can we hide access patterns (queries) over public data repositories?

Both users and service providers want to hide access
patterns over public repositories

History of **** event

n History of **** event

v

User Remote server
User may: Server can be:
e Consider queries private e Hacked by an outsider
e Belong to a vulnerable population or a e Compromised by an insider
minority group e (Coerced by a nation state [1, 2]

1. Brian Fung. Analysis: There is now some public evidence that China viewed TikTok data. CNN, 2023.
2. Sapna Maheshwari and Ryan Mac. Driver’s Licenses, Addresses, Photos: Inside How TikTok Shares User Data. New York Times, 2023

This lecture: Private information retrieval (PIR)

Discuss a cryptographic method to privately retrieve data from public data repositories, thus making
server opaque to data access patterns

Private retrieval from public databases can be abstracted into the key-value store model

il -
k

Client retrieves: k, v,
e v, if (k,v) at Server

e (, otherwise Kng Vo1

Untrusted Server

Two types of PIR

e Computationally secure — CPIR
e Information-theoretically secure — IT-PIR

We will discuss two types of CPIR

Part 1: Retrieval by location

key | location
kn-l n'l

il

Has (key, location)
mapping

Give me the i-th value

\ 4

Vo

1 2

2 v,
n'l Vn-l

Untrusted Server

Part 1: How can the client privately retrieve the value corresponding to a given
location?

We will discuss two types of CPIR

Part 2: Retrieval by key

Ko Vo
k Ky V1

Give me value for key k K, Vs

\ 4

Client retrieves:
e v, if (k,v)at Server

e (, otherwise Untrusted Server

Part 2: How can the client privately retrieve the value corresponding to a given key?

Part 1: Retrieval by location

key |location 0 Vo
ko O 1 V1
Give me the j-th value 2 Vv,

K, 1

\ 4

Has (key, location)

mapping iy "

K. -1 n-1

Untrusted Server

Part 1: How can the client privately retrieve the value corresponding to a given
location?

This problem can be solved using Private Information
Retrieval (PIR) (choretal. Focs ‘o5)

PIR: Query, Answer, Decode

db
0 | 0101100101010100101010
1 0111000101010100101010
i I Step 1: 9 2 1001100101010100101010 Step 2:
q = Query(/) . 1101100101010100101010 ans = Answer(db, q)
User
« : 0101101101010100101110
Step 3: < ans
db[i] = Decode(ans) n-1/| 0110100111010110101010

Untrusted Server

PIR has two key requirements

Correctness
Query for dbl[i] returns dbJi] to the user
Decode(Answer(db, Query(i))) = dbli]

Privacy
Server learns “nothing” about the location i

For all locations i, j,
{View of the server in answering Query(i)} =

{View of the server in answering Query(j)}

One solution to private information retrieval in Trivial PIR
db

0 | 0101100101010100101010
1| 0111000101010100101010

4 i q = Give me the entire db 2 | 1001100101010100101010
. 1101100101010100101010

User <) 0101101101010100101110
ans =db

Y

n-1| 0110100111010110101010

Query(i): A single bit Untrusted Server

Answer(db, q): db

Decode(i, ans): select the i-th item from ans

Warmup for (non-trivial) PIR

Assume that we do not care about privacy yet; only correctness

Query(1) =

User

Retrieval is equivalent to computing a dot product

Query(1)

\4

Query(1)

A

ans=5

Untrusted Server

Dot
product

Warmup for (non-trivial) PIR in more detail

Multiply component-wise

Query(1) db
0 0 8
1 1 5
0 2 | 0 | =
0 n-1 2

Dot product requires two types of operations:

=> Multiplications (8 x 0, 5 x 1, etc.)
=> Additions (e.qg., 0 +5 +...)

Add

components

Recall: Homomorphic Encryption

A form of encryption which allows computations over encrypted data

Two classes of homomorphic encryption

Fully Homomorphic Encryption [Gentry’09]
* Supports computations for any arbitrary function
e Challenge: Can be quite inefficient

Partially Homomorphic Encryption
e Supports a particular type of operation

/\

Additive Homomorphic encryption Multiplicative Homomorphic encryption

Enc(4) @ Enc(8) = Enc(4 + 8) = Enc(12) Enc(4) ® Enc(8) = Enc(4 x 8) = Enc(32)

The warmup for (non-trivial) PIR

Multiply component-wise

Query(1) db
0 0 8 0
1 1 5)
0 2 | 0 | = 0 - -
Add
components
0 n-11 2 0

Dot product requires two types of operations:
=> Multiplications (8 x 0, 5 x 1, etc.)
=> Additions (e.qg., 0 +5 +...)

Recall the warmup for (non-trivial) PIR

Multiply component-wise

Query(1) db
Enc| 0 0 8 0
Enc| 1 1 o) 5
Enc| 0 2| 0 | = 0 — -
Enc . Add
components
Enc| 0 n-1 2 0

Dot product requires two types of operations:
=> Multiplications (8 x 0, 5 x 1, etc.)
=> Additions (e.qg., 0 +5 +...)

Recall the warmup for (non-trivial) PIR

Homomorphically multiply component-wise

Query(1)
Enc| 0O 0
Enc| 1 1
Enc| 0 2
Enc
Enc| 0 n-1

db

Enc(m)k = Enc(m * k)

8

5

I
o

0
5 1
Add

components

Dot product requires two types of operations:
=> Multiplications (8 x 0, 5 x 1, etc.)

=> Additions (e.qg., 0 +5 +...)

Recall the warmup for (non-trivial) PIR

Homomorphically multiply component-wise

Query(1)
Enc| 0O 0
Enc| 1 1
Enc| 0 2
Enc
Enc| 0 n-1

Enc(m)k = Enc(m * k)

db
8 Encf O
5 Enc, S5
0 = Enc O = -
Enc Add
components
2 Encf O

Dot product requires two types of operations:
=> Multiplications (8 x 0, 5 x 1, etc.)

=> Additions (e.qg., 0 +5 +...)

Recall the warmup for (non-trivial) PIR

Homomorphically multiply component-wise Enc(m)k = Enc(m * k)

Query(1) db
Enc| 0 0 8 Enc
Enc| 1 1 5 Enc
Enc| 0 2 0 = Enc
Enc : Enc
Enc| 0 n-1 2 Enc

Dot product requires two types of operations:
=> Multiplications (8 x 0, 5 x 1, etc.)
=> Additions (e.qg., 0 +5 +...)

|- m

Homomorphically
add components

Enc(m;) x Enc(m,) = Enc(m+ m,)

Recall the warmup for (non-trivial) PIR

Homomorphically multiply component-wise Enc(m)k = Enc(m * k)

Query(1) db
Enc| 0 0 8 Enc
Enc| 1 1 5 Enc
Enc| 0 2 0 = Enc
Enc : Enc
Enc| 0 n-1 2 Enc

Dot product requires two types of operations:
=> Multiplications (8 x 0, 5 x 1, etc.)
=> Additions (e.qg., 0 +5 +...)

- .

Homomorphically add
components

Enc(m;) x Enc(m,) = Enc(m+ m,)

Putting it all together: A PIR protocol

Step 1: Query(1) =

Enc
Enc
‘:I ! Enc

Enc

User
Enc

Step 3:

g = Query(1)

A

\4

ans = Enc(5)

db[1] = Decode(ans) = Decrypt(ans)

Enc

Enc

Enc

Enc

Enc

Query(1)

0

1

db
0 8
1 5

n-1 2

Step 2:
Answer(db, q) is a
secure dot product

Untrusted Server

Retrieval is equivalent to computing a secure dot product

Can we reduce query size? How?

0 a Instead of 1 dim database, view it in 2 dims.
0 b Instead of 1 query, use 2 queries.
0 C
0 d 0| 0 | 1 0
0 e

0 a b C d
0 f

1 e f g h
1 g

0 i j k |
0 h

0 m n 0 p

Two-stage query execution

0 a b c d 0 0 0
1 e f g h e f g
k =
0 [j Kk I 0 0 0
0 m n o] p 0 0 0
Add rows
e f g

In first pass, extract the row of interest

Two-stage query execution

e f g h
*

0 0 1 0

0 0 g 0

Add columns

g

So, query size is down from n to 2vn.

Part 2: Retrieval by key

Ko Vo
k Ky V1

Give me value for key k K, Vs

\ 4

Client retrieves:
e v, if (k,v)at Server

e @, otherwise Untrusted Server

Part 2: How can the client privately retrieve the value corresponding to a given key?

This area originated as Private retrieval by keywords in
1998 (chor et al. TOC “98)

Private Keyword retrieval can be performed by two stages:
Stage 1: Retrieve the key location

Ko Vo

K4 Vi

‘I I k Give me the |ocation for key k K, Vs
I kn-1 Vn-1

Stage 2: Perform PIR with location

0 Vo
1 Vv,

Give me the j-th value 2 Vv,

Has (key, location)
mapping

\ 4

n-1 V1

This area originated as Private retrieval by keywords in
1998 (chor et al. TOC “98)

Private Keyword retrieval can be performed by two stages:
Stage 1: Retrieve the key location

Ko Vo

K4 Vi

‘I I k Give me the |ocation for key k K, Vs
I kn-1 Vn-1

il

Key location can be retrieved using PIR-by-index

(Chor et al. TOC “98) Assume keys are integers and arranged in a BST

What is the

location of 17? K={1,5,6, 10, 17, 19, 20}

ﬂ e <« |level 1l
“—> |evel 2
User

Untrusted Server

Key location can be retrieved using PIR-by-index

(Chor et al. TOC “98) Assume keys are integers and arranged in a BST

What is the
location of 177

K={1,5,6, 10,17, 19, 20}

Level 1: Retrieve element at

<+«—> levell
‘:I I index O (trivial) @ eve
o <+ Level 2
User Go right
D @) D)

Untrusted Server

Key location can be retrieved using PIR-by-index

(Chor et al. TOC “98) Assume keys are integers and arranged in a BST

Wha’F is the K={1,5,6,10,17, 19, 20}
location of 177

ﬂ +«— level 1
Level 2: Retrieve element at <« |evel| 2
User index 1 using PIR-by-index

17 <19
Go left <—> Level 3

Untrusted Server

Key location can be retrieved using PIR-by-index

(Chor et al. TOC “98) Assume keys are integers and arranged in a BST

What is the

location of 17? K={1,5,6, 10, 17, 19, 20}

ﬂ @ <« |level 1l
“—> |evel 2
User

Level 3: Retrieve element at 20
index 2 using PIR-by-index «—— Level 3

17 =17 (found it!)

Path from root to leaf is
index of k in keyset K Untrusted Server

This area originated as Private retrieval by keywords in
1998 (chor et al. TOC ‘98)

Private Keyword retrieval can be performed by two stages:

il

Stage 2: Perform PIR by index

0 Vo
1 \Z
Give me the j-th value 2 Vv,

Has (key, location)
mapping
n'1 Vn_1

\ 4

Information Theoretic-PIR (IT-PPIR)

® Need k >= 2 servers with at most t colluding servers
® Ex:k=2andt=1

1 00 1 00
2 10 2 10
3 01 - - 3 01
4 110 4 10

Wants to

retrieve
index 2

Information Theoretic-PIR (IT-PPIR)

® Generate an n-bit array, S, with randomly picked 0’s and 1’s

® (Create S’ > Same as S except at index i = S’[i] = S[i] complement such that S xor S’ has 1 only index i
® SendStoserver1andS’ toserver 2

1 00 1 00
2 10 2 10
3 01 i i 3 01
4 10 4 10

SI

wn
O | = 1O | -
O | = ==

Information Theoretic-PIR (IT-PPIR)

e Each server xors all values with index value 1 and sends to the client
e Client xors the two values to find the value at index i

1 1 100 1100 1

0 2 110 2 10 1

1 3 |01 3 | 01 1

0 4 |10 4 |10 0
OO0 xor 01 =01 00 xor 10 xor 01 =11

‘ 01 xor 11 =10

Distributed point functions
Given 2 values a and b, a point function P, ,(x) is given by:

p . b forz = a It’s 0 everywhere except at
a,b(CU) — 0 for x ?é a a, where the value is b

A distributed point function distributes the function into function shares, and
allows different parties to compute functions of their shared information,
without revealing the information itself to either process

A DPF consists of a family of functions f,, parameterized by key k, and a way to
derive two keys k, and k; such that

Py p(x) = fro(x) + fra(x)

Function Secret Sharing

e A generalization of DPF such that a function fis split into p functions
(split between p parties) s.t.
f(x) = X fi:(x) where jgoes from 1top

e Any strict subset of f; s do not reveal anything about f

e Main difference b/w DPF and FSS is that in DPF f(x) = 1, whereas in FSS
f(x) can be any value

DPF/FSS for PIR

e ADPF:f, :(x) =1 when x=a and 0 otherwise. a is our db key to find
e Letthe domainof x be 5 (i.e., 1,2,3,4,5). These are keys of a kv-store
e Client wants to retrieve key 2 from the server without revealing 2

10

20
15

10

10
20
15
10

AW N -
O W N =

DPF/FSS for PIR

e Generate two keys kyand k; over the entire domain of x
such that at input=2, the k,[2]+ k;[2] = 1 and k,[i]+ k;[i] = 0 everywhere else
e Send k,to server 1 and k; to server 2

10

1

2 |20
B
5

10

10
20
15
10

O W N | =

w o o ||+
Wlo O W | N

DPF/FSS for PIR

e Derive two functions f,,(x) and f,;(x)
e Each server evaluates its own function, f,,(x) where b={0,1} for each stored db key and
sends summed result

e Client computes f(x) = fio(x) + fe1(x)

4 key | val key | val -4
2 1 10 1 10 3k,
9 3 |15 3 |15 -9
3 5 10 5 10 3
frol(x): -120+140=20! fra(x):
return ky[x]*val[x] return k;[x]*val[x]
4*10+(-2)*20+ (-6)*15+(-3)*10 & -4*104+3*20+ 6*15+3*10

=-120 =140

Above slides only gives you an intuition
Main benefit of DPF/FSS is that key size is not the entire domain (i.e., 2!xI)
They are compressed to be of polynomial length

Seminal papers:

o DPF: https://www.iacr.org/archive/eurocrypt2014/84410245/84410245.pdf
o FSS: https://www.iacr.org/archive/eurocrypt2015/90560300/90560300.pdf

https://www.iacr.org/archive/eurocrypt2014/84410245/84410245.pdf
https://www.iacr.org/archive/eurocrypt2015/90560300/90560300.pdf

Summary

PIR: Retrieve a value from an external database without revealing to the
db owner the object retrieved

Computation and information theoretic PIR

DPF/FSS can be used to generate PIR schemes

