
Private Information Retrieval

Sujaya Maiyya
Slides partially acquired from Ishtiyaque Ahmed

The problem of protecting private data repositories stored remotely is
well-studied

User

Remote file
storage

Private Files Encrypted files

Encryption hides file contents from an attacker.

ORAM (STOC ‘87) hides data access patterns for private files

User

Remote file
storage

Private Files

Oblivious RAM

Hidden:
➔ Which file is being accessed?
➔ Whether the access is a read or write
➔ When was the file accessed last

…

(Goldreich STOC ‘87, Path ORAM JACM ‘18,
SCORAM CCS ‘14, …)

Encryption +
randomized data accesses

We can extend protection to private relational
databases stored remotely
CryptDB, Arx, ObliDB, SMCQL …

Trusted
Proxy

Encrypted DB

User

Query Encrypted Query

Hidden:
➔ Database content
➔ Query parameters

What is common to all of these cases?

User

Private Files

Securely outsource storage

The user owns the data!

Private database

But, much of the content on the Internet is in public
data repositories

User Remote server

I want to stream “The Godfather”

User Remote server

Show me the latest post by Elon Musk

User Remote server

History of pride parade

History of pride parade

Cannot use:
● Encryption
● ORAM
● CryptDB-like solution

How can we hide access patterns (queries) over public data repositories?

But, much of the content on the Internet is in public
data repositories

Both users and service providers want to hide access
patterns over public repositories

User Remote server

History of **** event
History of **** event

Server can be:
● Hacked by an outsider
● Compromised by an insider
● Coerced by a nation state [1, 2]

User may:
● Consider queries private
● Belong to a vulnerable population or a

minority group

1. Brian Fung. Analysis: There is now some public evidence that China viewed TikTok data. CNN, 2023.
2. Sapna Maheshwari and Ryan Mac. Driver’s Licenses, Addresses, Photos: Inside How TikTok Shares User Data. New York Times, 2023

This lecture: Private information retrieval (PIR)
Discuss a cryptographic method to privately retrieve data from public data repositories, thus making
server opaque to data access patterns

k0 v0
k1 v1
k2 v2
… …

kn-1 vn-1

Private retrieval from public databases can be abstracted into the key-value store model

Untrusted Server

k

Client retrieves:
● v, if (k,v) at Server
● ∅, otherwise

Two types of PIR

● Computationally secure – CPIR
● Information-theoretically secure – IT-PIR

We will discuss two types of CPIR

Untrusted Server

Has (key, location)
mapping

Part 1: How can the client privately retrieve the value corresponding to a given
location?

Part 1: Retrieval by location

key location
k0 0
k1 1

… …

kn-1 n-1

Give me the i-th value

0 v0
1 v1
2 v2
… …

n-1 vn-1

We will discuss two types of CPIR

k0 v0
k1 v1
k2 v2
… …
kn-1 vn-1

Untrusted Server

k

Part 2: How can the client privately retrieve the value corresponding to a given key?

Part 2: Retrieval by key

Client retrieves:
● v, if (k,v) at Server
● ∅, otherwise

Give me value for key k

key location
k0 0
k1 1
… …
kn-1 n-1

0 v0
1 v1
2 v2
… …
n-1 vn-1

Untrusted Server

Has (key, location)
mapping

Part 1: How can the client privately retrieve the value corresponding to a given
location?

Give me the i-th value

key location
k0 0
k1 1
… …
kn-1 n-1

Part 1: Retrieval by location

This problem can be solved using Private Information
Retrieval (PIR) (Chor et al. FOCS ‘95)

0101100101010100101010

0111000101010100101010

1001100101010100101010

1101100101010100101010

0101101101010100101110

0110100111010110101010

0

1

2

.

.

n - 1

db

Step 1:
q = Query(i)

Step 3:
db[i] = Decode(ans)

Step 2:
ans = Answer(db, q)

Untrusted Server

User

I want db[i]

q

ans

PIR: Query, Answer, Decode

PIR has two key requirements

Correctness

Query for db[i] returns db[i] to the user

Decode(Answer(db, Query(i))) = db[i]

For all locations i, j,

{View of the server in answering Query(i)} ≈

{View of the server in answering Query(j)}

Privacy

Server learns “nothing” about the location i

One solution to private information retrieval in Trivial PIR

0101100101010100101010

0111000101010100101010

1001100101010100101010

1101100101010100101010

0101101101010100101110

0110100111010110101010

0

1

2

.

.

n - 1

db

Query(i): A single bit

Answer(db, q): db

Decode(i, ans): select the i-th item from ans

q = Give me the entire db

ans = db

Untrusted Server

User

I want db[i]

Assume that we do not care about privacy yet; only correctness

Warmup for (non-trivial) PIR

0

1

2

.

n - 1

db

Untrusted Server

User

I want db[1]
8

5

0

2

0

1

0

0

Query(1)

ans = 5

⨷

Query(1) = 0

1

0

.

0

Query(1)

Retrieval is equivalent to computing a dot product

Dot
product

=

Warmup for (non-trivial) PIR in more detail

0

1

2

.

n - 1

db

8

5

0

2

0

1

0

0

Query(1)

⨷

Dot product requires two types of operations:
➔ Multiplications (8 x 0, 5 x 1, etc.)
➔ Additions (e.g., 0 + 5 + …)

0

5

0

0

= 5

Add
components

Multiply component-wise

Recall: Homomorphic Encryption

A form of encryption which allows computations over encrypted data

Partially Homomorphic Encryption
• Supports a particular type of operation

Two classes of homomorphic encryption

Fully Homomorphic Encryption [Gentry’09]
• Supports computations for any arbitrary function
• Challenge: Can be quite inefficient

Additive Homomorphic encryption

Enc(4) ⊕ Enc(8) = Enc(4 + 8) = Enc(12)

Multiplicative Homomorphic encryption

Enc(4) Ⓧ Enc(8) = Enc(4 x 8) = Enc(32)

=

The warmup for (non-trivial) PIR

0

1

2

.

n - 1

db

8

5

0

2

0

1

0

0

Query(1)

⨷

Dot product requires two types of operations:
➔ Multiplications (8 x 0, 5 x 1, etc.)
➔ Additions (e.g., 0 + 5 + …)

0

5

0

0

= 5

Add
components

Multiply component-wise

=

Recall the warmup for (non-trivial) PIR

0

1

2

.

n - 1

db

8

5

0

2

0

1

0

0

Query(1)

⨷

Dot product requires two types of operations:
➔ Multiplications (8 x 0, 5 x 1, etc.)
➔ Additions (e.g., 0 + 5 + …)

0

5

0

0

= 5

Add
components

Enc

Enc

Enc

Enc

Enc

Multiply component-wise

=

Recall the warmup for (non-trivial) PIR

0

1

2

.

n - 1

db

8

5

0

2

0

1

0

0

Query(1)

⨷

Dot product requires two types of operations:
➔ Multiplications (8 x 0, 5 x 1, etc.)
➔ Additions (e.g., 0 + 5 + …)

0

5

0

0

= 5

Add
components

Enc

Enc

Enc

Enc

Enc

Homomorphically multiply component-wise Enc(m)k = Enc(m * k)

=

Recall the warmup for (non-trivial) PIR

0

1

2

.

n - 1

db

8

5

0

2

0

1

0

0

Query(1)

⨷

Dot product requires two types of operations:
➔ Multiplications (8 x 0, 5 x 1, etc.)
➔ Additions (e.g., 0 + 5 + …)

0

5

0

0

= 5

Add
components

Enc

Enc

Enc

Enc

Enc

Homomorphically multiply component-wise Enc(m)k = Enc(m * k)

Enc

Enc

Enc

Enc

Enc

=

Recall the warmup for (non-trivial) PIR

0

1

2

.

n - 1

db

8

5

0

2

0

1

0

0

Query(1)

⨷

Dot product requires two types of operations:
➔ Multiplications (8 x 0, 5 x 1, etc.)
➔ Additions (e.g., 0 + 5 + …)

0

5

0

0

= 5

Homomorphically
add components

Enc

Enc

Enc

Enc

Enc

Homomorphically multiply component-wise Enc(m)k = Enc(m * k)

Enc

Enc

Enc

Enc

Enc

Enc(m1) x Enc(m2) = Enc(m1+ m2)

=

Recall the warmup for (non-trivial) PIR

0

1

2

.

n - 1

db

8

5

0

2

0

1

0

0

Query(1)

⨷

Dot product requires two types of operations:
➔ Multiplications (8 x 0, 5 x 1, etc.)
➔ Additions (e.g., 0 + 5 + …)

0

5

0

0

= 5

Homomorphically add
components

Enc

Enc

Enc

Enc

Enc

Homomorphically multiply component-wise Enc(m)k = Enc(m * k)

Enc

Enc

Enc

Enc

Enc

Enc(m1) x Enc(m2) = Enc(m1+ m2)

Enc

Putting it all together: A PIR protocol

0

1

2

.

n - 1

db

Untrusted Server

User

I want db[1]
8

5

0

2

0

1

0

0

Query(1)

ans = Enc(5)

Step 1: Query(1) =

0

1

0

.

0

q = Query(1)

Retrieval is equivalent to computing a secure dot product

Enc

Enc

Enc

Enc

Enc

Enc

Enc

Enc

Enc

Enc

Step 2:
Answer(db, q) is a
secure dot product

Step 3:
db[1] = Decode(ans) = Decrypt(ans)

⨷

Can we reduce query size? How?
0

0

0

0

0

0

1

0

…

0

a

b

c

d

e

f

g

h

…

p

Instead of 1 dim database, view it in 2 dims.

Instead of 1 query, use 2 queries.

0

1

0

0

a b c d

e f g h

i j k l

m n o p

0 0 1 0

Two-stage query execution

Add rows

0

1

0

0

a b c d

e f g h

i j k l

m n o p

∗

0 0 0 0

e f g h

0 0 0 0

0 0 0 0

=

e f g h

In first pass, extract the row of interest

Two-stage query execution

Add columns

∗

=

e f g h

So, query size is down from n to 2√n.0 0 1 0

0 0 g 0

g

Part 2: Retrieval by key

k0 v0
k1 v1
k2 v2
… …
kn-1 vn-1

Untrusted Server

k

Part 2: How can the client privately retrieve the value corresponding to a given key?

k1 1
k2 2
k3 3
… …
kn n

Client retrieves:
● v, if (k,v) at Server
● ∅, otherwise

Give me value for key k

This area originated as Private retrieval by keywords in
1998 (Chor et al. TOC ‘98)

Private Keyword retrieval can be performed by two stages:

k0 v0
k1 v1
k2 v2
… …
kn-1 vn-1

k Give me the location for key k

i

0 v0
1 v1
2 v2
… …

n-1 vn-1

Has (key, location)
mapping

Give me the i-th value

Stage 1: Retrieve the key location

Stage 2: Perform PIR with location

This area originated as Private retrieval by keywords in
1998 (Chor et al. TOC ‘98)

Private Keyword retrieval can be performed by two stages:

k0 v0
k1 v1
k2 v2
… …
kn-1 vn-1

k Give me the location for key k

i

0 v0
1 v1
2 v2
… …

n-1 vn-1

Has (key, location)
mapping

Give me the i-th value

Stage 1: Retrieve the key location

Stage 2: Perform PIR by index

Key location can be retrieved using PIR-by-index
(Chor et al. TOC ‘98) Assume keys are integers and arranged in a BST

Untrusted Server

User

What is the
location of 17?

K = {1, 5, 6, 10, 17, 19, 20}

10

5 19

1 6 17 20

Level 1

Level 2

Level 3

Assume keys are integers and arranged in a BST

Untrusted Server

K = {1, 5, 6, 10, 17, 19, 20}

10

5 19

1 6 17 20

Level 1

Level 2

Level 3

Level 1: Retrieve element at
index 0 (trivial)

Key location can be retrieved using PIR-by-index
(Chor et al. TOC ‘98)

User
10 < 17
Go right

What is the
location of 17?

Assume keys are integers and arranged in a BST

Untrusted Server

K = {1, 5, 6, 10, 17, 19, 20}

10

5 19

1 6 17 20

Level 1

Level 2

Level 3

Key location can be retrieved using PIR-by-index
(Chor et al. TOC ‘98)

User
Level 2: Retrieve element at
index 1 using PIR-by-index

17 < 19
Go left

What is the
location of 17?

Assume keys are integers and arranged in a BST

Untrusted Server

K = {1, 5, 6, 10, 17, 19, 20}

10

5 19

1 6 17 20

Level 1

Level 2

Level 3

Key location can be retrieved using PIR-by-index
(Chor et al. TOC ‘98)

User

Level 3: Retrieve element at
index 2 using PIR-by-index

17 = 17 (found it!)

Path from root to leaf is
index of k in keyset K

What is the
location of 17?

This area originated as Private retrieval by keywords in
1998 (Chor et al. TOC ‘98)

Private Keyword retrieval can be performed by two stages:

k0 v0
k1 v1
k2 v2
… …
kn-1 vn-1

k Give me the location for key k

i

0 v0
1 v1
2 v2
… …

n-1 vn-1

Has (key, location)
mapping

Give me the i-th value

Stage 1: Retrieve the key location

Stage 2: Perform PIR by index

Information Theoretic-PIR (IT-PPIR)

● Need k >= 2 servers with at most t colluding servers
● Ex: k = 2 and t = 1

1 00

2 10

3 01

4 10

1 00

2 10

3 01

4 10

Wants to
retrieve
index 2

Information Theoretic-PIR (IT-PPIR)
● Generate an n-bit array, S, with randomly picked 0’s and 1’s
● Create S’ à Same as S except at index i à S’[i] = S[i] complement such that S xor S’ has 1 only index i
● Send S to server 1 and S’ to server 2

1 00

2 10

3 01

4 10

1 00

2 10

3 01

4 10

1

0

1

0

1

1

1

0

S S’

Information Theoretic-PIR (IT-PPIR)
● Each server xors all values with index value 1 and sends to the client
● Client xors the two values to find the value at index i

1 00

2 10

3 01

4 10

1 00

2 10

3 01

4 10

00 xor 01 = 01

1

0

1

0

1

1

1

0

00 xor 10 xor 01 = 11

01 xor 11 = 10

Distributed point functions

A distributed point function distributes the function into function shares, and
allows different parties to compute functions of their shared information,
without revealing the information itself to either process

Given 2 values a and b, a point function Pa,b(x) is given by:

It’s 0 everywhere except at
a, where the value is b

A DPF consists of a family of functions fk, parameterized by key k, and a way to
derive two keys k0 and k1 such that

𝑃𝑎, 𝑏 𝑥 = 𝑓𝑘0 𝑥 + 𝑓𝑘1(𝑥)

Function Secret Sharing

● A generalization of DPF such that a function f is split into p functions
(split between p parties) s.t.
 𝑓 𝑥 = 	∑𝑓𝑖 𝑥 	where i goes from 1 to p

● Any strict subset of fi s do not reveal anything about f

● Main difference b/w DPF and FSS is that in DPF f(x) = 1, whereas in FSS
f(x) can be any value

DPF/FSS for PIR

● A DPF: fa,1(x) = 1 when x=a and 0 otherwise. a is our db key to find
● Let the domain of x be 5 (i.e., 1,2,3,4,5). These are keys of a kv-store
● Client wants to retrieve key 2 from the server without revealing 2

1 10

2 20

3 15

5 10

1 10

2 20

3 15

5 10

DPF/FSS for PIR
● Generate two keys k0 and k1 over the entire domain of x
 such that at input=2, the k0[2]+ k1[2] = 1 and k0[i]+ k1[i] = 0 everywhere else
● Send k0 to server 1 and k1 to server 2

1 10

2 20

3 15

5 10

1 10

2 20

3 15

5 10

4

-2

-6

9

-3

-4

3

6

-9

3

k0 k1

DPF/FSS for PIR
● Derive two functions fk0(x) and fk1(x)
● Each server evaluates its own function, fkb(x) where b={0,1} for each stored db key and

sends summed result
● Client computes f(x) = fk0(x) + fk1(x)

key val

1 10

2 20

3 15

5 10

fk0(x):
 return k0[x]*val[x]

fk1(x):
 return k1[x]*val[x]

4

-2

-6

9

-3

k0

-4

3

6

-9

3

k1

4*10+(-2)*20+ (-6)*15+(-3)*10
= -120

key val

1 10

2 20

3 15

5 10

-4*10+3*20+ 6*15+3*10
= 140

-120+140=20!

● Above slides only gives you an intuition
● Main benefit of DPF/FSS is that key size is not the entire domain (i.e., 2|x|)
● They are compressed to be of polynomial length

● Seminal papers:
○ DPF: https://www.iacr.org/archive/eurocrypt2014/84410245/84410245.pdf
○ FSS: https://www.iacr.org/archive/eurocrypt2015/90560300/90560300.pdf

https://www.iacr.org/archive/eurocrypt2014/84410245/84410245.pdf
https://www.iacr.org/archive/eurocrypt2015/90560300/90560300.pdf

Summary

● PIR: Retrieve a value from an external database without revealing to the
db owner the object retrieved

● Computation and information theoretic PIR

● DPF/FSS can be used to generate PIR schemes

