MPC

Sujaya Maiyya

Slides partially acquired from Shantanu Sharma

Secure Multi-Party Computation (MPC)

 MPC enables multiple parties – each holding their own private data – to evaluate a computation without revealing any of the private data held by each party

• Each party can only learn any info based on what they can learn from the output and their own input

Two families: Garbles circuits (2 party) and secret sharing (multi party)

Garbled circuits

Oblivious transfer

Two parties: Alice and Bob

- Alice has two messages m1 & m2 and Bob wants to fetch either m1 or m2
 - Alice cannot know if Bob picked m1 or m2
 - If Bob picked *m1*, he does not know anything about *m2*

Want to learn more? Wiki link

Garbled circuit

- 1. An underlying function is translated to a Boolean circuit with 2 inputs (can be done by a third party)
- 2. Alice *garbles* (i.e., encrypts) the circuit
- 3. Alice sends the garbled circuit along with her encrypted input to Bob
- 4. Bob needs to garble his own input and only the garbler (Alice) knows how to garble/encrypt it
 - 1. Alice and Bob use oblivious transfer
- 5. Bob evaluates the circuit and obtains encrypted output and shares with Alice

а	b	С
0	0	0
0	1	0
1	0	0
1	1	1

Alice replaces 0 and 1 with randomly generated *labels* for 0 and 1 in each circuit

а	b	С
X_0^a	X_0^b	X_0^c
X_0^a	X_1^b	X_0^c
X_1^a	X_0^b	X_0^c
X_1^a	X_1^b	X_1^c

Alice encrypts the output column using the 2 input labels

Garbled Table

$$Enc_{X_0^a,X_0^b}(X_0^c)$$

$$Enc_{X_0^a,X_1^b}(X_0^c)$$

$$Enc_{X_1^a,X_0^b}(X_0^c)$$

$$rac{Enc_{X_{1}^{a},X_{0}^{b}}(X_{0}^{c})}{Enc_{X_{1}^{a},X_{1}^{b}}(X_{1}^{c})}$$

Output can be decrypted only using two correct input labels

Alice permutes the 4 entries and sends it to Bob along with her labeled input

If Alice's input is $\ \mathbf{a}=a_4a_3a_2a_1a_0=01101$, she sends $\ X_0^{a_4}$, $\ X_1^{a_3}$, $\ X_1^{a_2}$, $\ X_0^{a_1}$, and $\ X_1^{a_0}$

Bob needs the labels for his input that he obtains using Oblivious Transfer

If Bob's input is $\mathbf{b}=b_4b_3b_2b_1b_0=10100$, Bob first asks for b_0 =0 between Alice's labels $X_0^{b_0}$ and $X_1^{b_0}$

After the data transfer, Bob evaluates the circuit one gate at a time and tries to decrypt the rows in the garbled circuit, where he can decrypt only one row

$$X^c = Dec_{X^a,X^b}(garbled_table[i])$$
, where $0 \leq i \leq 3$.

Recap

- 1. Take any function and transform it into a Boolean circuit
- 2. Have the garbler garble the entire circuit every possible input and output combination per gate in the circuit
- 3. Communicate between the two parties using OT to transfer labels per bit of plaintext, per gate
- 4. Evaluate and decrypt the output

Secret sharing

Why Secret-Sharing?

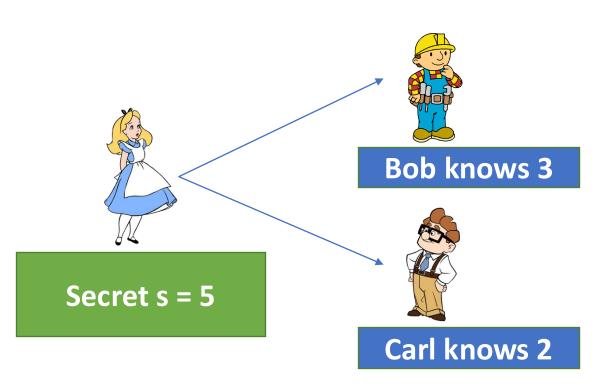
- Encryption techniques are computationally secure
 - A powerful adversary can break the encryption technique
 - Google, with sufficient computational capabilities, broke SHA-1 (https://shattered.io/)

- Information-theoretical security
 - Secure regardless of the computational power of an adversary
 - Quantum secure

Additive Secret-Sharing

Assumption: of S servers, at most S-1 servers collude with each other

Split a secret into S shares, store S_i on server *i* Reconstruct by fetching shares from all and adding them

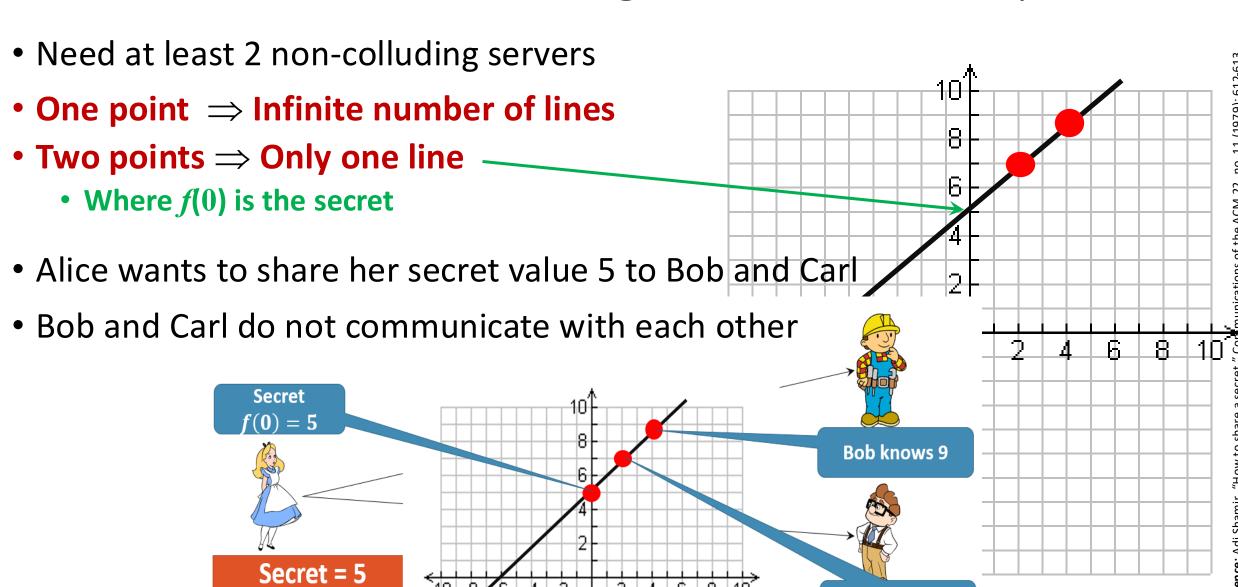


Easy to add (or subtract) secret shared data

$$a + b = \Sigma a_i + \Sigma b_i = \Sigma (a_i + bi)$$

Cons: Even if one party is down, secret cannot be reconstructed

Shamir's Secret-Sharing (SSS) [Shamir79] — Key Idea

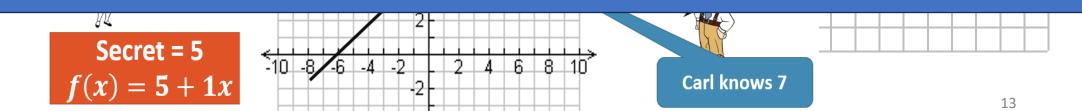


Carl knows 7

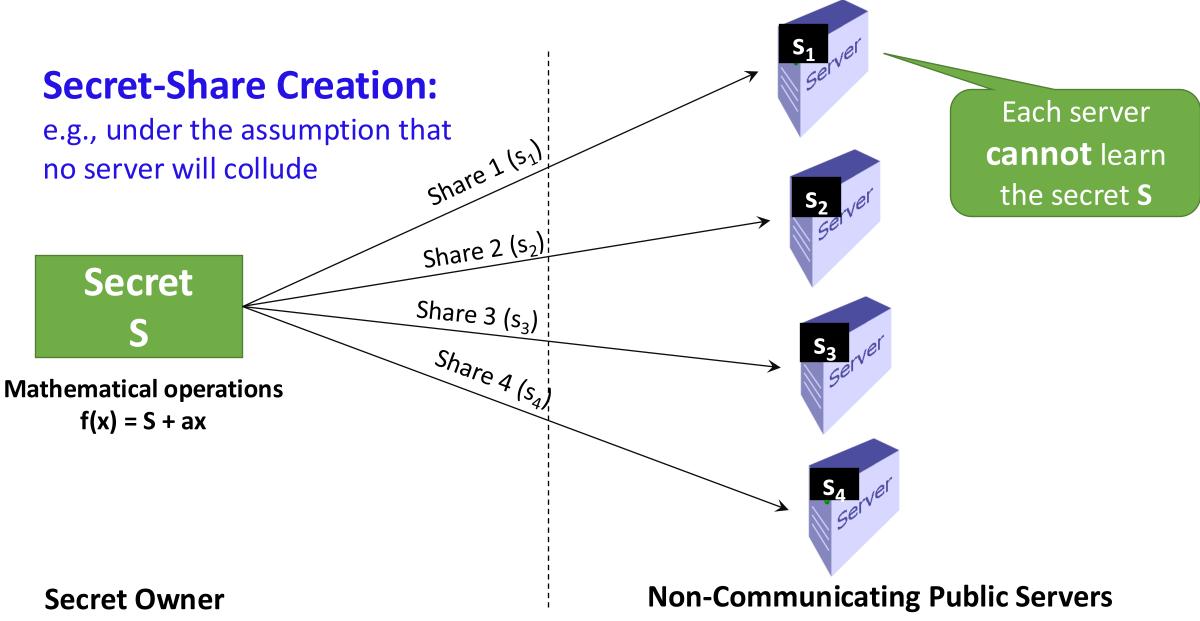
Shamir's Secret-Sharing (SSS) [Shamir79] — Key Idea

- One point ⇒ Infinite number of lines
- Two points ⇒ Only one line

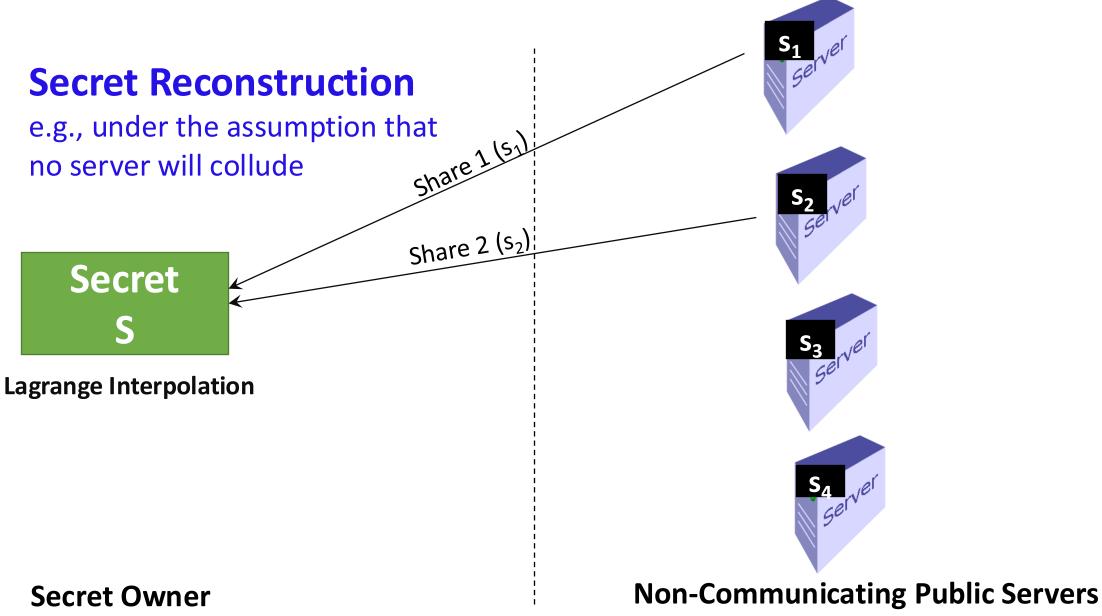
- Impact of degree of the polynomial vs security
 - f servers collude \Rightarrow polynomial degree should be f+1
 - Servers do not collude \Rightarrow a polynomial of the degree 1
- **Fault tolerant**
 - Due to creating multiple shares



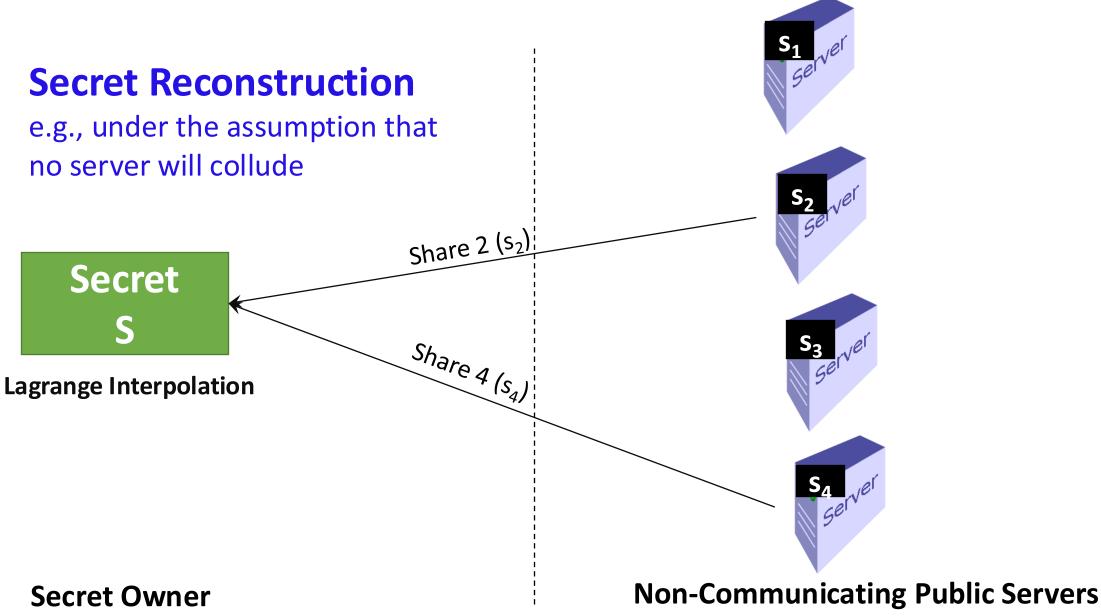
Shamir's Secret-Sharing (SSS)



Shamir's Secret-Sharing (SSS)



Shamir's Secret-Sharing (SSS)



MPC conclusion marks

- SSS can be used to also support multiplication (<u>how?</u>)
 - SSS supports both addition and multiplication
- Conceptually, GC and SSS can execute most programs
 - However, both have large communication overheads
 - Many solutions to minimize 'online' rounds
- Both techniques are used in developing secure dbs
 - Primarily differs from ORAM dbs in supporting computations over columns
 - MPC-based dbs don't always hide access patterns

Privacy-Preserving Computations

Homomorphic Cryptography	Distributed Trust / Multi-Party Computation	Trusted Execution Environments (TEEs)
Compute directly on encrypted data	Data is secret shared and computed upon by servers	Data computations inside secure containers
Well-understood hardness assumptions	Non-collusion of computation parties	Assumes trustworthy hardware
Impractical overheads	Incurs large bandwidth overheads	Vulnerable to side channel attacks