
MPC + TEEs
Sujaya Maiyya

Slides partially acquired from Shantanu Sharma and Sajin Sasy

Secure Multi-Party Computation (MPC)

• MPC enables multiple parties – each holding their own private data –
to evaluate a computation without revealing any of the private data
held by each party

• Each party can only learn any info based on what they can learn from
the output and their own input

• Two families: Garbles circuits (2 party) and secret sharing (multi party)

Garbled circuits

Oblivious transfer

• Two parties: Alice and Bob

• Alice has two messages m1 & m2 and Bob wants to fetch either
m1 or m2

• Alice cannot know if Bob picked m1 or m2
• If Bob picked m1, he does not know anything about m2

• Want to learn more? Wiki link

https://en.wikipedia.org/wiki/Oblivious_transfer

Garbled circuit

1. An underlying function is translated to a Boolean circuit with 2 inputs
(can be done by a third party)

2. Alice garbles (i.e., encrypts) the circuit
3. Alice sends the garbled circuit along with her encrypted input to Bob
4. Bob needs to garble his own input and only the garbler (Alice) knows

how to garble/encrypt it
1. Alice and Bob use oblivious transfer

5. Bob evaluates the circuit and obtains encrypted output and shares
with Alice

Alice replaces 0 and 1 with
randomly generated labels for
0 and 1 in each circuit

Alice encrypts the
output column using
the 2 input labels

Output can be decrypted only using two correct input labels

Alice permutes the 4 entries and sends it to Bob
along with her labeled input

If Alice’s input is , she sends

Bob needs the labels for his input that he obtains using Oblivious Transfer

If Bob’s input is Bob first asks for b0=0 between Alice’s labels

After the data transfer, Bob evaluates the circuit one gate at a time and tries to decrypt the
rows in the garbled circuit, where he can decrypt only one row

Complexity

1. Take any function and transform it into a Boolean circuit

2. Have the garbler garble the entire circuit – every possible input and
output combination per gate in the circuit

3. Communicate between the two parties using OT to transfer labels
per bit of plaintext, per gate

4. Evaluate and decrypt the output

Secret sharing

• Encryption techniques are computationally secure
• A powerful adversary can break the encryption technique

• Google, with sufficient computational capabilities, broke SHA-1 (https://shattered.io/)

• Information-theoretical security
• Secure regardless of the computational power of an adversary
• Quantum secure

Why Secret-Sharing?

10The following slides are from Shantanu Sharma

Additive Secret-Sharing

11

Secret s = 5

Bob knows 3

Carl knows 2

Assumption: of S servers, at most S-1 servers collude with each other

Split a secret into S shares, store Si on server i
Reconstruct by fetching shares from all and adding them

Easy to add (or subtract) secret shared
data

𝑎 + 𝑏 = 	Σ𝑎𝑖 + Σ𝑏𝑖 = Σ(𝑎𝑖 + 𝑏𝑖)

Cons: Even if one party is down, secret
cannot be reconstructed

Shamir’s Secret-Sharing (SSS) [Shamir79] – Key Idea

Re
fe
re
nc
e:

 A
di

 S
ha

m
ir.

 “
Ho

w
 to

 sh
ar

e
a

se
cr

et
.”

 C
om

m
un

ic
at

io
ns

 o
f t

he
 A

CM
 2

2,
 n

o.
 1

1
(1

97
9)

: 6
12

-6
13

.

12

• Need at least 2 non-colluding servers
• One point Þ Infinite number of lines
• Two points Þ Only one line

• Where f(0) is the secret

• Alice wants to share her secret value 5 to Bob and Carl
• Bob and Carl do not communicate with each other

Shamir’s Secret-Sharing (SSS) [Shamir79] – Key Idea
• One point Þ Infinite number of lines
• Two points Þ Only one line

• Where f(0) is the secret

• Alice wants to share her secret value 5 to Bob and Carl
• Bob and Carl do not communicate with each other

• Impact of degree of the polynomial vs security
• 𝑓 servers collude Þ polynomial degree should be 𝑓 + 1

• Servers do not collude Þ a polynomial of the degree 1

• Fault tolerant
• Due to creating multiple shares

13

Shamir’s Secret-Sharing (SSS)

Secret
S

Secret Owner Non-Communicating Public Servers

Share 2 (s2)

Share 1 (s1)

Share 3 (s3)
Share 4 (s4)

s1

s2

s3

s4

Mathematical operations
f(x) = S + ax

Each server
cannot learn
the secret S

Secret-Share Creation:
e.g., under the assumption that
no server will collude

Reference: Adi Shamir. “How to share a secret.” Communications of the ACM 22, no. 11 (1979): 612-613. 14

Secret
S

Secret Owner Non-Communicating Public Servers

Share 2 (s2)

Share 1 (s1)

s1

s2

s3

s4

Lagrange Interpolation

Secret Reconstruction
e.g., under the assumption that
no server will collude

Reference: Adi Shamir. “How to share a secret.” Communications of the ACM 22, no. 11 (1979): 612-613. 15

Shamir’s Secret-Sharing (SSS)

Secret
S

Secret Owner Non-Communicating Public Servers

Share 2 (s2)

Share 4 (s4)

s1

s2

s3

s4

Secret Reconstruction
e.g., under the assumption that
no server will collude

Lagrange Interpolation

Reference: Adi Shamir. “How to share a secret.” Communications of the ACM 22, no. 11 (1979): 612-613. 16

Shamir’s Secret-Sharing (SSS)

MPC conclusion marks

• SSS can be used to also support multiplication (how?)
• SSS supports both addition and multiplication

• Conceptually, GC and SSS can execute most programs
• However, both have large communication overheads
• Many solutions to minimize ‘online’ rounds

• Both techniques are used in developing secure dbs
• Primarily differs from ORAM dbs in supporting computations over columns
• MPC-based dbs don’t always hide access patterns

https://medium.com/partisia-blockchain/beavers-trick-e275e79839cc

Trusted Execution Environments (TEEs)

Trusted Execution Environments - Intel SGX
• A secure enclave is an isolated unit of data and code execution that cannot be accessed

even by privileged code (e.g., the operating system or hypervisor)

• Memory encryption: only enclave process can access a program’s memory

• Remote attestation: proof that the code running in the enclave is the one intended, and
that it is running on a genuine Intel SGX platform

• Sealing: encrypt and authentical the enclave’s data to allow stopping and restarting an
enclave process w/o losing state

• Developers must partition code as sensitive and non-sensitive. Sensitive code run in the
enclave, non-sensitive in host space

• Learn more here

https://blog.quarkslab.com/overview-of-intel-sgx-part-1-sgx-internals.html

Processor

Memory

PRM

Rest of
Memory

P

2

Trusted Execution Environments (TEEs)

●Processor fused with secret keys at manufacture time

●Enables the processor to set aside Processor Reserved
Memory (PRM) at boot time

●Able to instantiate secure virtual containers called
enclaves

●Enclaves can load programs with confidentiality,
integrity and freshness guarantees

The following slides are from Sajin Sasy

Processor

Memory

PRM

Rest of
Memory

P

P

● All data within PRM remain encrypted at
all times

2

Trusted Execution Environments (TEEs)

Processor

Memory

PRM

Rest of
Memory

P

P

● All data within PRM remain encrypted at
all times

2

Trusted Execution Environments (TEEs)

Processor

Memory

PRM

Rest of
Memory

P

P

● All data within PRM remain encrypted at
all times

● P can have its own key pair enabling users
to send private data to P, that only P can
decrypt.

2

Trusted Execution Environments (TEEs)

Processor

Memory

PRM

Rest of
Memory

P

P

● All data within PRM remain encrypted at
all times

● P can have its own key pair enabling users
to send private data to P, that only P can
decrypt.

2

Trusted Execution Environments (TEEs)

25

SGX is vulnerable to side channel attacks

Processor

Memory

PRM Rest of memory

Side-channels
Software

if (secret==1):
 Branch A
else:
 Branch B

(1) Control Flow

26

Processor

Memory

PRM Rest of memory

Side-channels
Software

(1) Control Flow (2) Memory Access Patterns

if (secret==1):
 Branch A
else:
 Branch B

X = A[secret]

Attacks exploit input dependent
access behavior on CPU caches,

registers, and page faults to
uncover plaintext data

Learn more about attacks: link

SGX is vulnerable to side channel attacks

We need obliviousness

https://opaque.co/how-to-defend-against-side-channel-attacks-on-sgx/

Levels of Obliviousness

Processor

P
Rest of Memory

PRM

6

Processor

P
Rest of Memory

6

PRM

Levels of Obliviousness

Processor

P
Rest of Memory

1) External-Memory

External-Memory Oblivious: Access to data outside of the PRM are
independent of any secret data.

PRM

6

Levels of Obliviousness

Processor

P

PRM
Rest of Memory

Protected-Memory Oblivious: Access to data within the PRM are
independent of any secret data.

1) External-Memory

6

Levels of Obliviousness

Processor

P
Rest of Memory

1) External-Memory

2) Protected-Memory

Protected-Memory Oblivious: Access to data within the PRM are
independent of any secret data.

PRM

6

Levels of Obliviousness

Processor

P
Rest of Memory

1) External-Memory

2) Protected-Memory
i. Page
ii. Caches

OS is responsible for page table management; Page-granular attacks induce
page faults to extract memory locations accessed by the program.

Adversary can observe timing info on caches in the Processor to also launch attacks

PRM

6

Levels of Obliviousness

Processor

P
Rest of Memory

Control-Flow oblivious: Secret-dependent control flow branches leak
information about the underlying secret; ensure that the program has no
secret-dependent control-flow branches.

PRM

if (secret-dep clause)

6

Levels of Obliviousness

1) External-Memory

2) Protected-Memory
i. Page
ii. Caches

Processor

P
Rest of Memory

PRM

if (secret-dep clause)

Fully Oblivious: A program is fully oblivious if it satisfies all above
definitions of obliviousness

Responsibility of the app developer to design oblivious code 6

Levels of Obliviousness

1) External-Memory

2) Protected-Memory
i. Page
ii. Caches

3) Control flow

35

Privacy-Preserving Computations

Homomorphic
Cryptography

Distributed Trust /
Multi-Party Computation

Trusted Execution
Environments (TEEs)

Impractical overheads Incurs large bandwidth overheads Vulnerable to side channel attacks

Non-collusion of
computation parties

Compute directly on encrypted
data

Data is secret shared and
computed upon by servers

Data computations inside
secure containers

Well-understood
hardness assumptions

Assumes trustworthy
hardware

