
CS848
Background: crypto and db basics

Sujaya Maiyya

One-time pad

• Let {0, 1} 𝜆 denote the set of 𝜆-bit binary strings

A ‘good’ encryption scheme
“an encryption scheme is a good one if its ciphertexts look like random junk to an attacker”

Let CTXT be a function callable by an adversary who can choose m and who sees c

Real vs
Random

“an encryption scheme is a good one if encryptions of mL look like encryptions of mR to an attacker”

Let EAVESDROP be a function callable by an adversary who chooses mL & mR and sees c

Left vs right

Basics of provable security: Interchangeability
Let L be a library of functions that make random choices and let A be a calling program

(callable by an adversary)

then

Basics of provable security: proving ‘insecurity’
For OTP (and A from last slide) ,

What about??

Just one calling
program enough

to prove insecurity

Indistinguishability
Two libraries Lleft and Lright are indistinguishable if for all polynomial-time calling

programs A,

è

Advantage or bias of an adversary:

Two libraries are indistinguishable if the adversary’s advantage is negligible
(some small number like 1/2128)

Pseudorandom generators

• A pseudorandom generator (PRG) is a deterministic function G whose
outputs are longer than its inputs

Pseudorandom Functions (PRFs)

• PRFs are functions of the form

Pseudorandom Permutations (PRPs)
or block ciphers

• Let 𝐾 be the keyspace, 𝑋 the message or input space and 𝑌 the output space.
• A PRF, 𝐹:

𝐹 : 𝐾 × 𝑋→𝑌
• A PRP, 𝐸 :

𝐸 : 𝐾 × 𝑋→𝑋
• A PRP is required to be bijective, and to have an efficient inversion function,

PRP−1.
• 𝐸 is also called block cipher: 𝐸 corresponds to encryption, 𝐸−1 corresponds to

decryption, and all outputs of 𝐸 look pseudorandom

Security Against Chosen Plaintext Attacks

Deterministic encryption like block ciphers are not CPA-secure!

One simple (nonce-based) randomized
encryption scheme using PRFs

This scheme is also ‘symmetric’: same secret key is used for encryption and decryption

Public-key or asymmetric encryption

• Goal: make encryption key public, so that anyone can send an
encryption to the owner of that key, even if the two users have never
spoken before and have no shared secrets.

• The decryption key is private, so that only the designated owner can
decrypt.

Public-key or asymmetric encryption

Example – ElGamal encryption

Let m be the message we want to encrypt

Encryption key: (s, p) such that p = gs

Encryption procedure:
 E(p, m):
 Pick a random number r

 Return (gr , m * pr)

Decryption procedure:
 D(sk, E(p,m)) = B (Ask)-1

 = D(s, (gr , m * pr))
 = (m*pr) * ((gr)s)-1

 = (m * (gs)r * (grs)-1

 = m

Call it A
Call it B

Homomorphic encryption

• Allows computing – addition and multiplication – on encrypted data
and result is also encrypted

ElGamal encryption is partially homomorphic – supports homomorphic multiplication

𝐸 𝑚1 ∗ 𝐸 𝑚2 = 𝑔𝑟1	, 𝑚1	 ∗ 𝑝𝑟1	 ∗ (𝑔𝑟2, 𝑚2	 ∗ 𝑝𝑟2)

 = 𝑔𝑟1 + 𝑟2	, 𝑚1 ∗ 𝑚2 	∗ 𝑝	𝑟1 + 𝑟2

 = 𝐸(𝑚1 ∗ 𝑚2)

𝑝 is public key

Homomorphic encryption (additive)

This version supports homomorphic additions

𝐸 𝑚1 ∗ 𝐸 𝑚2 = 𝑔𝑟1	, 𝑔𝑚1	 ∗ 𝑝𝑟1	 ∗ (𝑔𝑟2, 𝑔𝑚2	 ∗ 𝑝𝑟2)

 = 𝑔𝑟1 + 𝑟2	, 𝑔 𝑚1 + 𝑚2 	 ∗ 𝑝	𝑟1 + 𝑟2

 = 𝐸(𝑚1 +𝑚2)

𝑝 is public key

Modified El Gamal encryption procedure:
 E(p, m):
 Pick a random number r

 Return (gr , gm * pr)

Order preserving encryption (OPE)

• If in plaintext, 𝑥 < 𝑦, then encrypting these values using an OPE
ensures that for any secret key k,

𝑂𝑃𝐸𝑘 𝑥 < 𝑂𝑃𝐸𝑘(𝑦)

• OPEs help serve range queries on encrypted data but it leaks more
information than non-deterministic encryption schemes

Database basics

Basic db queries

• Simple key-value stores support single key GET and PUT queries
More complex queries

• Selection
SELECT * from T1 where age = 20

• Range
Select name, salary from T1 where age > 20 and age < 60

• Aggregates
• Select AVG(salary) from T1 where age > 20
• AVG, MIN, MAX, COUNT, SUM

• Join
• Select * from T1 JOIN T2 ON T1. <column_name> = T2.<column_name>

Indexes
data structures that help find records faster by pointing to loc. where a record is stores

20

B+ tree: most used
indexing data structure

5 11 30 35 10
0

10
1

11
0

12
0

13
0

15
0

15
6

17
9

18
0

20
0

30

10
0

12
0

15
0

18
0

Max fan-out: 4

Query processing
• 3 most common ways: scan based, index based, sort based.

• Example query: Select name from T1 where age < 40 and age > 20

• Scan: Assumes no indexes. Linearly scan T1 and check condition on each
row. If true, add to output

• Index: Assumes index on age. Use the index to fetch all primary keys (pk)
satisfying the condition. Then just query those pks from table

• Sort: Assumes data is stored in a sorted order on age. Scan only the
relevant blocks (stop when conditions are satisfied)

Transactions

• Encapsulates a number of operations – such as select, update, insert
– in a single logical unit

• Database systems must ensure ACID
• Atomicity: TX’s are either completely done or not done at all
• Consistency: TX’s should leave the database in a consistent state
• Isolation: TX’s must behave as if they are executed in isolation
• Durability: Effects of committed TX’s are resilient against failures

Scalability and fault tolerance
By sharding and replicating the data

Application Access Tier

… Datacenter ZDatacenter BDatacenter A

Conclusion

We looked at some basics of cryptography and database concepts

One or more of these techniques will be employed in each paper we will study

HotCRP
• You will receive an invitation to be a

Program Committee (PC) member

• Create an account (if you don’t
already have it) using your Waterloo
email id

• Can view papers

• Can submit reviews à

Questions?

