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Data encryption to achieve privacy?

Id Medicine

1 Humira

2 Januvia

3 Tivicay

4 Herceptin

Id Medicine

X12 S6C…23

2SD 1NW…SJ

D45 3G8…SO

F4A DJW…O8

Honest-but-curious
adversary



Encryption is not sufficient for data privacy

[1] https://truecostofhealthcare.org/pharmas-50-best-sellers/
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Access Pattern Attacks
Many practical attacks: [IKK NDSS’12], [NKW CCS’15], [CGPR 
CCS’15], [KKNO CCS’16], [GLMP S&P’19], [KPT S&P’19], [OK 

Security’21], [OK Security’22]
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Attacks on electronic health records, encrypted 
emails, news articles, movie plots, and so on



Workload 
independence

to protect against 
these attacks by 

hiding…
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which data is being accessed

how old it is (when it was last accessed)

whether the same data is being accessed

access pattern (skewed vs. uniform)

whether the access is a read or a write



Random accesses ensures workload independence

Alice

Initially proposed by [Goldreich and Ostrovsky, JACM’96] 

Goal: Oblivious Access

OBLIVIOUS RAM (ORAM)

Translate each logical access 
to a sequence of random-looking accesses

ORAM
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ORAM provides workload independence

• Clients wish to outsource data to an untrusted cloud storage
• Honest-But-Curious cloud can control & observe network & cloud storage
• Keep the data and access pattern private

0 0 0 0A =

Client 2
Client 1



ORAM provides workload independence

• Clients wish to outsource data to an untrusted cloud storage
• Honest-But-Curious cloud can control & observe network & cloud storage
• Keep the data and access pattern private

0 v 0 0A =

Client 2
Client 1 A[1] = v v = A[1]

1. The cloud never learns 
about v 

2. The cloud never learns 
that clients accessed 
index 1



Typical (but not all) ORAM architecture
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values

Encryption 
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Tree-based ORAM Developments

• While other forms ORAM 
constructions exist, most 
are theoretical in nature

A practical and popular solution
◦ Path ORAM: an extremely simple oblivious RAM protocol 

[Stefanov et al. CCS’13]



1000 ft overview of ORAM (PathORAM[1])

11
[1] E. Stefanov, et al. "Path ORAM: an extremely simple oblivious RAM protocol." Proceedings of the 2013 ACM SIGSAC. 2013.

Proxy

Read or 
write id 3

Physical read 
entire path Proxy

Shuffle and 
physical write to 

random path

Step 1. Read path Step 2. Shuffle and Write path

Id Loc

1 ..

2 ..

3 P1

4 ..

Id Loc

1 ..

2 ..

3 P2

4 ..

Path id changes to 
another random 
path after each 

access to 3



Path ORAM [Stefanov et al. CCS’13]

Server Storage is organized as a binary tree

Every access to a random path
Items randomly re-assigned after every access

Leaf 1 Leaf 2 Leaf 3 Leaf 4

Stash

Pos Map

Proxy

a

Z blocks 

76



Path ORAM [Stefanov et al. CCS’13]

Server Storage is organized as a binary tree

Every access to a random path
Items randomly re-assigned after every access

Stores the assignment

Leaf 1 Leaf 2 Leaf 3 Leaf 4

Stash

Pos Map

Proxy

a→3

a

Z blocks 
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Stores overflown blocks



Path ORAM [Stefanov et al. CCS’13]

Server Storage is organized as a binary tree

Every access to a random path
Items randomly re-assigned after every access

Stores the assignment

Leaf 1 Leaf 2 Leaf 3 Leaf 4

Stash

Pos Map

Proxy

a→3

a

Z blocks 

Possible to outsource position map recursively
But need many rounds of communication

79

Stores overflown blocks



Path ORAM 
Server

1) Read path
• Fetch associated path
• Read/Modify block
• Assign block to a new random path in position map
• Move all read blocks to stash

Read/Write block a

Leaf 1 Leaf 2 Leaf 3 Leaf 4

Stash

Proxy

a→3

a

Pos Map 80



Path ORAM 
Server

1) Read path
• Fetch associated path
• Read/Modify block
• Assign block to a new random path in position map
• Move all read blocks to stash

Read/Write block a

Leaf 1 Leaf 2 Leaf 3 Leaf 4

Stash

Proxy

a→3

aa

Pos Map 81



Path ORAM 
Server

1) Read path
• Fetch associated path
• Read/Modify block
• Assign block to a new random path in position map
• Move all read blocks to stash

2) Flush
• Push every block to the lowest non-

full node that intersects with its 
assigned path (otherwiseàstash)

Read/Write block a

Leaf 1 Leaf 2 Leaf 3 Leaf 4

Stash

Proxy

a→3

a

a→1

a

Pos Map 83
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Path ORAM 
Server

1) Read path
• Fetch associated path
• Read/Modify block
• Assign block to a new random path in position map
• Move all read blocks to stash

2) Flush
• Push every block to the lowest non-

full node that intersects with its 
assigned path (otherwiseàstash)

Read/Write block a

Leaf 1 Leaf 2 Leaf 3 Leaf 4

Stash

Proxy

a→3

a

a→1

a

If root is full 
move to stash

Pos Map 85



Path ORAM 
Server

1) Read path
• Fetch associated path
• Read/Modify block
• Assign block to a new random path in position map
• Move all read blocks to stash

2) Flush
• Push every block to the lowest non-

full node that intersects with its 
assigned path (otherwiseàstash)

3) Write-back
• Re-encrypt w/ fresh randomness

Read/Write block a

Leaf 1 Leaf 2 Leaf 3 Leaf 4

Stash

Proxy

a→3

a

a→1

a

Pos Map 88



PathORAM

• Steps to access block B:
1.  Fetch path P containing block B from Server
2.  Update requested block B (if write)
3.  Answer Client Request
4.  Assign block B to random path
5.  Flush path P
6.  Writeback to server



Does PathORAM provide workload independence (informal)?

Say a client requested block b stored in path p. From an adversary’s perspective

• Which data is accessed? → One of the Z*logN objects accessed
• When was b last accessed? → Only knows when p was last accessed, not  

               when b was last accessed
• Did 2 subsequent requests access b? → Only knows two random paths p and  

                              p’ being accessed in subsequent requests
• Access pattern (uniform or skewed)? → Observes accesses to random paths
• Is b read or written? → Each path is read and then written with fresh encryption

Yes! PathORAM provides workload independence!



ORAM – Security (formal) 

• Let A = { op1, bid1, val1 , … (opm, bidm, valm)} represent a 
sequence of m accesses 𝑜𝑝𝑖 ∈ 𝑟𝑒𝑎𝑑, 𝑤𝑟𝑖𝑡𝑒 , bidi is the block 
identifier, and vali is either updated value writes or null for reads

• An ORAM scheme is secure if given two such sequences A0 and A1 
and the system executed Ai, the adversary cannot guess which 
sequence was executed with probability >> 1/2



ORAM - Security
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ORAM - Security
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i.e., adversary has negligible advantage is guessing bit b

A secure ORAM has



Two observations on PathORAM

• Bandwidth overhead: 2*Z*logN → Depends on Z

• The online rounds of communication b/w client and server: 2 rounds
• Even for read reqs, need an online write step

• Can these two limitations be improved?



RingORAM [Ren et al. Usenix Security’15]

Goals:
1. Eliminate the ORAM bandwidth’s dependence on Z
 How? 
 Read exactly one block per bucket along the path

2. Reduce online communication rounds to 1
 How? 
 Only read path for each client request, buffer writes, and 

write path back in an offline step



Ring ORAM
Server Each bucket stores at most Z real 

blocks and at least S dummy blocks

Leaf 1 Leaf 2 Leaf 3 Leaf 4

Stash

Pos Map

Proxy

a→3

a

Z + S blocks 
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Ring ORAM
Server Each bucket stores at most Z real 

blocks and at least S dummy blocks

Every access to a random path reads 
only one block per bucketLeaf 1 Leaf 2 Leaf 3 Leaf 4

Stash

Pos Map

Proxy

a→3

a

Z + S blocks 
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Ring ORAM
Server Each bucket stores at most Z real 

blocks and at least S dummy blocks

Every access to a random path reads 
only one block per bucketLeaf 1 Leaf 2 Leaf 3 Leaf 4

Stash

Pos Map

Proxy

a→3

a

Z + S blocks 

137

Stores meta data 
per bucket

Bucket 
metadata

Bucket metadata stores info on
1. count: how many times is this bucket accessed
2. valid: which of the Z+S blocks are not yet accessed
3. addr: ids of real blocks in a bucket

Note: Bucket metadata actually stored at server



Ring ORAM 
Server 1) Read path

For each bucket in path
• From valid and addr, either read real block or a 

valid dummy block
• Invalidate the read block in valid
• Increment count
Assign block to a new random path in position map

dummy
dummy

dummy

f
dummy

Leaf 1 Leaf 2 Leaf 3 Leaf 4

Stash

Proxy

a→3

a

Pos Map 140



Ring ORAM 
Server 1) Read path

For each bucket in path
• From valid and addr, either read real block or a 

valid dummy block
• Invalidate the read block in valid
• Increment count
Assign block to a new random path in position map

dummy
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dummy

f
dummy

Leaf 1 Leaf 2 Leaf 3 Leaf 4
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Proxy

a→3
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Ring ORAM 
Server 1) Read path

For each bucket in path
• From valid and addr, either read real block or a 

valid dummy block
• Invalidate the read block in valid
• Increment count
Assign block to a new random path in position map
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Ring ORAM 
Server 1) Read path

For each bucket in path
• From valid and addr, either read real block or a 

valid dummy block
• Invalidate the read block in valid
• Increment count
Assign block to a new random path in position map
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Ring ORAM 
Server 1) Read path

For each bucket in path
• From valid and addr, either read real block or a 
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Ring ORAM 
Server 1) Read path

For each bucket in path
• From valid and addr, either read real block or a 

valid dummy block
• Invalidate the read block in valid
• Increment count
Assign block to a new random path in position map
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Ring ORAM 
Server 1) Read path

For each bucket in path
• From valid and addr, either read real block or a 

valid dummy block
• Invalidate the read block in valid
• Increment count
• Assign block to a new random path in position map
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Ring ORAM 
Server 1) Read path

For each bucket in path
• From valid and addr, either read real block or a 

valid dummy block
• Invalidate the read block in valid
• Increment count
• Assign block to a new random path in position map

2) Evict
• After A read paths, in a deterministic order 

pick the next path to evict
• For each bucket, read all remaining valid real 

blocks (if < Z, read dummy) to stash
• Write each bucket from stash and reset all 

metadata

dummy
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dummy

d
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dummy

Leaf 1 Leaf 2 Leaf 3 Leaf 4

Stash

Proxy

a→3

a
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a

a→1
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Ring ORAM 
Server 1) Read path

For each bucket in path
• From valid and addr, either read real block or a 

valid dummy block
• Invalidate the read block in valid
• Increment count
• Assign block to a new random path in position map

2) Evict
• After A read paths, in a deterministic order 

pick the next path to evict
• For each bucket, read all remaining valid real 

blocks (if < Z, read dummy) to stash
• Write each bucket from stash and reset all 

metadata
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Ring ORAM 
Server 1) Read path

For each bucket in path
• From valid and addr, either read real block or a 

valid dummy block
• Invalidate the read block in valid
• Increment count
• Assign block to a new random path in position map

2) Evict
• After A read paths, in a deterministic order 

pick the next path to evict
• For each bucket, read all remaining valid real 

blocks (if < Z, read dummy) to stash
• Write each bucket from stash and reset all 

metadata
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a
dummy Real and 

dummy blocks 
will be shuffled



Ring ORAM 
Server 1) Read path

For each bucket in path
• From valid and addr, either read real block or a 

valid dummy block
• Invalidate the read block in valid
• Increment count
• Assign block to a new random path in position map

2) Evict
• After A read paths, in a deterministic order 

pick the next path to evict
• For each bucket, read all remaining valid real 

blocks (if < Z, read dummy) to stash
• Write each bucket from stash and reset all 

metadata
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3) Early reshuffle
• If a bucket is accessed s times, read all valid 

real blocks, permute, and write back
• Reset metadata for the bucket

d
dummy

e
dummy

a
dummy



Security arguments for Ring ORAM

1. Read path leaks no information
• For each access, a random path is read
• For each bucket, a random offset is read

2. Evict path leaks no information
• Every A accesses, a deterministically chosen path is read
• Each bucket reads Z blocks
• Path written back

3. Early shuffle leaks no information
• After S accesses to a bucket, Z blocks are read
• Bucket is written back



Limitations of Path and Ring ORAM
• Both are sequential

• Treebeard by Setayesh et al. USENIX Security’25 [Oct 1st]
• Obladi by Crooks et al. OSDI’18 [Oct 1st]

• They both require a proxy to be practical
• ConcurORAM by Chakraborti et al. NDSS’19 (not reading)
• Snoopy by Dauterman et al. SOSP’21 [Oct 29th]

• They do not support transactions or complex queries
• Obladi by Crooks et al. OSDI’18 [Oct 1st]
• SEAL by Demertzis et al. USENIX Security’20 [Oct 22nd]
• OasisDB by Ahmed et al. VLDB’25 [Oct 22nd]

• Neither is fault tolerant
• QuORAM by Maiyya et al. Usenix Security’22 (not reading)
• Treebeard by Setayesh et al. USENIX Security’25 [Oct 1st]

• Neither is scalable
• ObliviStore by Stefanova et al. S&P’13 (not reading)
• Treebeard by Setayesh et al. USENIX Security’25 [Oct 1st]
• Snoopy by Dauterman et al. SOSP’21 [Oct 29th]



ORAM Conclusion
• Access patterns leak information

• Need workload independence

• Databases using ORAM ensure workload independence

• PathORAM: a highly efficient tree-based ORAM
• Simple abstraction & easy to implement

• RingORAM: optimizes PathORAM by reducing online bandwidth cost



Trusted Execution Environments (TEEs)



Trusted Execution Environments – Intel SGX
• A secure enclave is an isolated unit of data and code execution that cannot be accessed 

even by privileged code (e.g., the operating system or hypervisor)

• Memory encryption: only enclave process can access a program’s memory

• Remote attestation: proof that the code running in the enclave is the one intended, and 
that it is running on a genuine TEE platform

• Sealing: encrypt and authentical the enclave’s data to allow stopping and restarting an 
enclave process w/o losing state

• Developers must partition code as sensitive and non-sensitive. Sensitive code run in the 
enclave, non-sensitive in host space

• Learn more here

https://blog.quarkslab.com/overview-of-intel-sgx-part-1-sgx-internals.html


Processor

Memory

PRM

Rest of
Memory

P

2

Trusted Execution Environments (TEEs)

●Processor fused with secret keys at manufacture time

●Enables the processor to set aside Processor Reserved 
Memory (PRM) at boot time

●Able to instantiate secure virtual containers called 
enclaves

●Enclaves can load programs with confidentiality, 
integrity and freshness guarantees
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● All data within PRM remain encrypted at all 
times
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● P can have its own key pair enabling users to 
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Trusted Execution Environments (TEEs)
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SGX is vulnerable to side channel attacks

Processor

Memory

PRM Rest of memory

Side-channels
Software

if (secret==1): 
 Branch A
else:
 Branch B

(1) Control Flow
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Processor

Memory

PRM Rest of memory

Side-channels
Software

(1) Control Flow (2) Memory Access Patterns

if (secret==1): 
 Branch A
else:
 Branch B

X = A[secret]

Attacks exploit input dependent 
access behavior on CPU caches, 

registers, and page faults to 
uncover plaintext data

Learn more about attacks: link

SGX is vulnerable to side channel attacks

We need obliviousness

https://opaque.co/how-to-defend-against-side-channel-attacks-on-sgx/


Levels of Obliviousness
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Processor

P
Rest of Memory

1) External-Memory

External-Memory Oblivious: Access to data outside of the PRM are
independent of any secret data.

PRM

Levels of Obliviousness
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PRM
Rest of Memory

Protected-Memory Oblivious: Access to data within the PRM are
independent of any secret data.

1) External-Memory

Levels of Obliviousness



Processor

P
Rest of Memory

1) External-Memory

2) Protected-Memory
 

Protected-Memory Oblivious: Access to data within the PRM are
independent of any secret data.

PRM

Levels of Obliviousness



Processor

P
Rest of Memory

1) External-Memory

2) Protected-Memory
i. Page
ii. Caches

OS is responsible for page table management; Page-granular attacks induce
page faults to extract memory locations accessed by the program.

Adversary can observe timing info on caches in the Processor to also launch attacks

PRM

Levels of Obliviousness



Processor

P
Rest of Memory

Control-Flow oblivious: Secret-dependent control flow branches leak
information about the underlying secret; ensure that the program has no 
secret-dependent control-flow branches.

PRM

if (secret-dep clause)

Levels of Obliviousness

1) External-Memory

2) Protected-Memory
i. Page
ii. Caches



Processor

P
Rest of Memory

PRM

if (secret-dep clause)

Fully Oblivious: A program is fully oblivious if it satisfies all above 
definitions of obliviousness

Responsibility of the app developer to design oblivious code

Levels of Obliviousness

1) External-Memory

2) Protected-Memory
i. Page
ii. Caches

3) Control flow



Levels of Obliviousness

1) External-Memory

2) Protected-Memory
i. Page
ii. Caches

3) Control flow

→  Single obliviousness (e.g., achieved by PathORAM)



Doubly or Fully Oblivious: A program is fully oblivious if it satisfies all above 
definitions of obliviousness

Responsibility of the app developer to design oblivious code

Levels of Obliviousness

1) External-Memory

2) Protected-Memory
i. Page
ii. Caches

3) Control flow

Doubly or fully obliviousness



TEEs: Protected memory vs protected VM

A protected VM TEE runs an entire vm with encrypted and integrity-protected memory, 
isolating it from the host OS and hypervisor while enabling remote attestation.



TEEs conclusion

• Gives confidentiality and integrity guarantees

• Allows an application verify the attestation to check if the correct 
code is running

• But enclave code should ensure obliviousness both to external 
and internal memory

• Requires enclave code developers to write doubly oblivious code


	Slide 1: CS848 Oblivious RAM 
	Slide 2: Data encryption to achieve privacy?
	Slide 3: Encryption is not sufficient for data privacy
	Slide 4: Encryption is not sufficient for data privacy
	Slide 5: Workload independence to protect against these attacks by hiding…
	Slide 6: Random accesses ensures workload independence
	Slide 7: ORAM provides workload independence
	Slide 8: ORAM provides workload independence
	Slide 9: Typical (but not all) ORAM architecture
	Slide 10: Tree-based ORAM Developments
	Slide 11: 1000 ft overview of ORAM (PathORAM[1])
	Slide 12: Path ORAM [Stefanov et al. CCS’13] 
	Slide 13: Path ORAM 
	Slide 14: PathORAM
	Slide 15: Does PathORAM provide workload independence (informal)?
	Slide 16: ORAM – Security (formal) 
	Slide 17
	Slide 18: Two observations on PathORAM
	Slide 19: RingORAM [Ren et al. Usenix Security’15]
	Slide 20: Ring ORAM
	Slide 21: Ring ORAM 
	Slide 22: Ring ORAM 
	Slide 23: Security arguments for Ring ORAM
	Slide 24: Limitations of Path and Ring ORAM
	Slide 25: ORAM Conclusion
	Slide 26: Trusted Execution Environments (TEEs)
	Slide 27: Trusted Execution Environments – Intel SGX
	Slide 28: Trusted Execution Environments (TEEs)
	Slide 29: Trusted Execution Environments (TEEs)
	Slide 30: Trusted Execution Environments (TEEs)
	Slide 31: Trusted Execution Environments (TEEs)
	Slide 32: Trusted Execution Environments (TEEs)
	Slide 33: SGX is vulnerable to side channel attacks
	Slide 34
	Slide 35: Levels of Obliviousness
	Slide 36: Levels of Obliviousness
	Slide 37: Levels of Obliviousness
	Slide 38: Levels of Obliviousness
	Slide 39: Levels of Obliviousness
	Slide 40: Levels of Obliviousness
	Slide 41: Levels of Obliviousness
	Slide 42: Levels of Obliviousness
	Slide 43: Levels of Obliviousness
	Slide 44: Levels of Obliviousness
	Slide 45: TEEs: Protected memory vs protected VM
	Slide 46: TEEs conclusion

