Review lecture - 2

CS348 Spring 2023
Instructor: Sujaya Maiyya
Sections: 002 & 004 only
Announcements

• **Milestone 2**
 • Due Tuesday, June 11th
 • Late policy: 25% penalty per 24 hrs

• **Assignment 3 - released**
 • Due July 20th
 • Late policy: 15% penalty per 24 hrs

• Expect delays in grading due to a change in TA
 • We will announce on Piazza when grades are ready
Topics covered so far

- Relational model (lecture 2)
- SQL (lectures 3-6)
- Database design (lectures 7-10)
- Storage management & indexing (lectures 11-12)
- Query processing & optimizations (lectures 13-14)

Conceptual/Logical level

Review these topics
Storage hierarchy

- Registers
- Cache
- Memory
- Disk

Secondary storage
- Tapes

Tertiary storage

Non-volatile
A typical hard drive

“Moving parts” are slow
Top view

“Zoning”: more sectors/data on outer tracks

A block is a logical unit of transfer consisting of one sector
Disk access time

Disk access time: time from when a read or write request is issued to when data transfer begins

Sum of:

- **Seek time**: time for disk heads to move to the correct cylinder
- **Rotational delay**: time for the desired block to rotate under the disk head

- **Transfer time**: time to read/write data in the block (= time for disk to rotate over the block)

- Total data access time = seek time + rotational delay + transfer time
Random disk access

→ Successive requests are for blocks that are randomly located on disk

Delay = Seek time + rotational delay + transfer time

• Average seek time
 • Seek the right cylinder for each access
 • “Typical” value: 5 ms

• Average rotational delay
 • Rotate for the right block for each access
 • “Typical” value: 4.2 ms (7200 RPM)
Sequential disk access

→ Successive requests are for successive block numbers, which are on the same track, or on adjacent tracks

Delay = Seek time + rotational delay + transfer time

• Seek time
 • 1 time delay: seek the right cylinder once

• Rotational delay
 • 1 time delay: rotate to the right block once

• Easily an order of magnitude faster than random disk access!
Record layout

Record = row in a table

• Variable-format records
 • Rare in DBMS—table schema dictates the format
 • Relevant for semi-structured data such as XML

• Focus on fixed-format records
 • With fixed-length fields only, or
 • With possible variable-length fields
Fixed-length fields

• All field lengths and offsets are constant
 • Computed from schema, stored in the system catalog

• Example: CREATE TABLE User(uid INT, name CHAR(20), age INT, pop FLOAT);

<table>
<thead>
<tr>
<th>0</th>
<th>4</th>
<th>24</th>
<th>28</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>142</td>
<td>Bart (padded with space)</td>
<td>10</td>
<td>0.9</td>
<td></td>
</tr>
</tbody>
</table>

• If block size != 36, one row maybe split across multiple blocks or move to next block & leave the remaining space empty

• What about NULL?
 • Add a bitmap at the beginning of the record
Variable-length records

- Example: `CREATE TABLE User(uid INT, name VARCHAR(20), age INT, pop FLOAT, comment VARCHAR(100));`
- Put all variable-length fields at the end
- Approach 1: use field delimiters (‘\0’ okay?)

```
 0   4   8  16
142 10 0.9 Bart\0 Weird kid!\0
```

- Approach 2: use an offset array

```
 0   4   8  16  18  22  32
142 10 0.9 Bart         Weird kid!
```

- Scheme update is messy if it changes the length of a field
Block layout

How do you organize records in a block?

• **NSM** (N-ary Storage Model)
 • Most commercial DBMS

• **PAX** (Partition Attributes Across)
 • Ailamaki et al., VLDB 2001
NSM

• Store records from the beginning of each block
• Use a directory at the end of each block
 • To locate records and manage free space
 • Necessary for variable-length records

Why store data and directory at two different ends?
So both can grow easily!
Cache behavior of NSM

- **Query:** `SELECT uid FROM User WHERE pop > 0.8;`
- **Assumptions:** no index, and cache line size < record size
- **Lots of cache misses & wasted prefetching**

```
142          Bart           10       0.9
123       Milhouse        10    0.2
456.       Ralph            8.   0.3
857            Lisa             8.    0.7
```

```
Cache
```

```plaintext
142  Bart  10
0.9  123  Milhouse
10  0.2  857  Lisa
8  0.7
456  Ralph  8
0.3
```
PAX

• Most queries only access a few columns
• Cluster values of the same columns in each block
• Better sequential reads for queries that read a single column

Reorganize after every update (for variable-length records only) and delete to keep fields together

(number of records)

(IS NOT NULL bitmap)
Column vs. row oriented db

User:

<table>
<thead>
<tr>
<th></th>
<th>uid</th>
<th>name</th>
<th>pop</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Bart</td>
<td>.6</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Lisa</td>
<td>.9</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Abe</td>
<td>.3</td>
<td>65</td>
</tr>
</tbody>
</table>

Row oriented

1. Bart, .6, 12
2. Lisa, .9, 10
3. Abe, .3, 65

Column oriented

1. Bart, Lisa, Abe
2. .6, .9, .3
3. 12, 10, 65
Indexes
Dense v.s. sparse indexes

- **Dense**: one index entry for each search key value
 - One entry may “point” to multiple records (e.g., two users named Jessica)
- **Sparse**: one index entry for each block
 - Records must be clustered according to the search key on disk
Dense v.s. sparse indexes

- **Dense**: one index entry for each search key value
 - One entry may “point” to multiple records (e.g., two users named Jessica)
- **Sparse**: one index entry for each block
 - Records must be **clustered** according to the search key

Dense index on name

<table>
<thead>
<tr>
<th>Name</th>
<th>UID</th>
<th>Size</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bart</td>
<td>123</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>Jessica</td>
<td>456</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>Lisa</td>
<td>279</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>Martin</td>
<td>345</td>
<td>8</td>
<td>2.3</td>
</tr>
<tr>
<td>Ralph</td>
<td>456</td>
<td>8</td>
<td>0.3</td>
</tr>
<tr>
<td>Nelson</td>
<td>512</td>
<td>10</td>
<td>0.4</td>
</tr>
<tr>
<td>Sherri</td>
<td>679</td>
<td>10</td>
<td>0.6</td>
</tr>
<tr>
<td>Terri</td>
<td>697</td>
<td>10</td>
<td>0.6</td>
</tr>
<tr>
<td>Lisa</td>
<td>857</td>
<td>8</td>
<td>0.7</td>
</tr>
<tr>
<td>Windel</td>
<td>912</td>
<td>8</td>
<td>0.5</td>
</tr>
<tr>
<td>Jessica</td>
<td>997</td>
<td>8</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Sparse index on uid

- Smaller size
- Easier to update
- Must be clustered

Can tell directly if a record exists

May not fit into memory
Clustering v.s. non-clustering indexes

- An index on attribute A is a clustering index if tuples in the relation with similar values for A are stored together in the same block.
- Other indices are non-clustering (or secondary) indices.
- Note: A relation may have at most one clustering index, and any number of non-clustering indices.
B$^+$-tree

- A hierarchy of nodes with intervals
- Balanced: good performance guarantee
- Disk-based: one node per block; large fan-out

Max fan-out: 4
Sample B\(^+\)-tree nodes

Max fan-out: 4

Non-leaf

- to keys: 100 ≤ k
- to keys: 100 ≤ k < 120
- to keys: 120 ≤ k < 150
- to keys: 150 ≤ k < 180
- to keys: 180 ≤ k

Leaf

- to keys: 120
- to keys: 130

- to next leaf node in sequence
- to records with these k values;
or, store records directly in leaves
Lookups

- SELECT * FROM R WHERE $k = 179$;
- SELECT * FROM R WHERE $k = 32$;
Range query

- SELECT * FROM R WHERE $k > 32$ AND $k < 179$;

And follow next-leaf pointers until you hit upper bound

Max fan-out: 4
Insertion

- Insert a record with search key value 32

Max fan-out: 4

Look up where the inserted key should go...

And insert it right there
Another insertion example

• Insert a record with search key value 152

Oops, node is already full!
Node splitting

Max fan-out: 4

Oops, that node becomes full!

Need to add to parent node a pointer to the newly created node
More node splitting

• In the worst case, node splitting can “propagate” all the way up to the root of the tree (not illustrated here)
 • Splitting the root introduces a new root of fan-out 2 and causes the tree to grow “up” by one level

Max fan-out: 4

Need to add to parent node a pointer to the newly created node
Index-only plan

• For example:
 • SELECT firstname, pop FROM User WHERE pop > ‘0.8’ AND firstname = ‘Bob’;
 • non-clustering index on (firstname, pop)

• A (non-clustered) index contains all the columns needed to answer the query without having to access the tuples in the base relation.
 • Avoid one disk I/O per tuple
 • The index is much smaller than the base relation
Query processing
Notation

• Relations: R, S
• Tuples: r, s
• Number of tuples: $|R|, |S|$
• Number of disk blocks: $B(R), B(S)$
• Number of memory blocks available: M
• Cost metric
 • Number of I/O’s
 • Memory requirement
Table scan

- Scan table R and process the query
 - Selection over R
 - Projection of R without duplicate elimination

- I/O's: $B(R)$
 - Trick for selection:
 - stop early if it is a lookup by key

- Memory requirement: 2 (blocks)
 - 1 for input, 1 for buffer output
 - Increase memory does not improve I/O

- Not counting the cost of writing the result out
 - Same for any algorithm!
Basic nested-loop join

\[R \bowtie_p S \]

- For each \(r \) in a block \(B_R \) of \(R \):
 - For each \(s \) in a block \(B_S \) of \(S \):
 - Output \(rs \) if \(p \) is true over \(r \) and \(s \)

- \(R \) is called the outer table; \(S \) is called the inner table
- I/O’s: \(B(R) + |R| \cdot B(S) \)

- Memory requirement: \(3 \)
Improvement: block nested-loop join

\[R \bowtie_p S \]

- For each block \(B_R \) of \(R \):
 - For each block \(B_S \) of \(S \):
 - For each \(r \) in \(B_R \):
 - For each \(s \) in \(B_S \):
 - Output \(rs \) if \(p \) is true over \(r \) and \(s \)

- I/O's: \(B(R) + B(R) \cdot B(S) \)

 - Blocks of \(R \) are moved into memory only once
 - Blocks of \(S \) are moved into memory \(B(R) \) number of times

- Memory requirement: 3
More improvements

• Stop early if the key of the inner table is being matched

• Make use of available memory
 • Stuff memory with as much of R as possible, stream S by, and join every S tuple with all R tuples in memory

 • I/O’s: $B(R) + \left\lfloor \frac{B(R)}{M-2} \right\rfloor \cdot B(S)$
 • Or, roughly: $B(R) \cdot B(S)/M$
 • Memory requirement: M (as much as possible)

• Which table would you pick as the outer? (exercise)
Indexes: Selection using index

• Equality predicate: $\sigma_{A=v}(R)$
 • Use an ISAM, B⁺-tree, or hash index on R(A)

• Range predicate: $\sigma_{A>v}(R)$
 • Use an ordered index (e.g., ISAM or B⁺-tree) on R(A)
 • Hash index is not applicable

• Indexes other than those on R(A) may be useful
 • Example: B⁺-tree index on R(A, B)
 • How about B⁺-tree index on R(B, A)?
Index nested-loop join

\[R \bowtie_{R.A=S.B} S \]

- Idea: use a value of \(R.A \) to probe the index on \(S(B) \)
- For each block of \(R \), and for each \(r \) in the block:
 - Use the index on \(S(B) \) to retrieve \(s \) with \(s.B = r.A \)
 - Output \(rs \)

- I/O’s: \(B(R) + |R| \cdot \text{(index lookup)} + \text{I/O for record fetch} \)
 - Typically, the cost of an index lookup is 2-4 I/O’s (depending on the index tree height if B+ tree)
 - Beats other join methods if \(|R| \) is not too big
 - Better pick \(R \) to be the smaller relation

- Memory requirement: \(3 \) (extra memory can be used to cache index, e.g. root of B+ tree)
External merge sort

Recall in-memory merge sort: Sort progressively larger runs, 2, 4, 8, ..., |R|, by merging consecutive “runs”

Problem: sort \(R \), but \(R \) does not fit in memory

1. **Phase 0**: read \(M \) blocks of \(R \) at a time, sort them, and write out a level-0 run
2. **Phase 1**: merge \((M - 1) \) level-0 runs at a time, and write out a level-1 run
3. **Phase 2**: merge \((M - 1) \) level-1 runs at a time, and write out a level-2 run

...

• Final phase produces one sorted run
Example

- 3 memory blocks available; each holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Phase 0

Arrows indicate the blocks in memory
Example

- 3 memory blocks available; each holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Phase 0

Arrows indicate the blocks in memory
Example

- 3 memory blocks available; each holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Phase 0

Arrows indicate the blocks in memory
Example

- 3 memory blocks available; each holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Phase 0

Arrows indicate the blocks in memory
Example

- 3 memory blocks available; each holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Phase 0

Arrows indicate the blocks in memory
Example

- 3 memory blocks available; each holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Phase 0

Arrows indicate the blocks in memory
Example

- 3 memory blocks available; each holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Phase 0
- Phase 1

Disk

Arrows indicate the blocks in memory

R: 1 7 4 5 2 8 9 6 3

1 4 7 2 5 8 3 6 9
Example

- 3 memory blocks available; each holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Phase 0
- Phase 1

Arrows indicate the blocks in memory
Example

- 3 memory blocks available; each holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Phase 0
- Phase 1

Arrows indicate the blocks in memory
Example

- 3 memory blocks available; each holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Phase 0
- Phase 1
Example

- 3 memory blocks available; each holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Phase 0
- Phase 1
Example

- 3 memory blocks available; each holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Phase 0
- Phase 1

Arrows indicate the blocks in memory
Example

- 3 memory blocks available; each holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Phase 0
- Phase 1

Arrows indicate the blocks in memory
Example

- 3 memory blocks available; each holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Phase 0
- Phase 1
Example

- 3 memory blocks available; each holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Phase 0
- Phase 1

Arrows indicate the blocks in memory
Example

- 3 memory blocks available; each holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Phase 0
- Phase 1

Arrows indicate the blocks in memory
Example

- 3 memory blocks available; each holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Phase 0
- Phase 1
- Phase 2 (final)
Example

- 3 memory blocks available; each holds one number
- Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Phase 0
- Phase 1
- Phase 2 (final)
Sort-merge join

$R \bowtie_{R.A=S.B} S$

• Sort R and S by their join attributes; then merge
 • $r, s =$ the first tuples in sorted R and S
 • Repeat until one of R and S is exhausted:
 If $r.A > s.B$
 then $s =$ next tuple in S
 else if $r.A < s.B$
 then $r =$ next tuple in R
 else output all matching tuples, and
 $r, s =$ next in R and S

• I/O’s: sorting + $O(B(R) + B(S))$
 • In most cases (e.g., join of key and foreign key)
 • Worst case is $B(R) \cdot B(S)$: everything joins
Query optimization
A query’s trip through the DBMS

SQL query

Parser

Parse tree

Validator

Logical plan

Optimizer

Physical plan

Executor

Result

SELECT name, uid
FROM Member, Group
WHERE Member.gid = Group.gid;

\[
\pi_{\text{name, uid}} \\
\sigma_{\text{Member.gid} = \text{Group.gid}}
\]
Logical plan

- Nodes are **logical** operators (often relational algebra operators)
- There are many equivalent logical plans

\[
\pi_{\text{Group.name}} \\
\sigma_{\text{User.name}="Bart" \land \text{User.uid} = \text{Member.uid} \land \text{Member.gid} = \text{Group.gid}}
\times
\pi_{\text{Group.name}} \\
\Join_{\text{Member.gid} = \text{Group.gid}}
\times
\sigma_{\text{User.name}="Bart"}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{User.uid} = \text{Member.uid}}
\times
\pi_{\text{Group.name}} \\
\Join_{\text{Member.gid} = \text{Group.gid}}
\times
\sigma_{\text{name} = "Bart"}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{User.uid} = \text{Member.uid}}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{name} = "Bart"}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{User.uid} = \text{Member.uid}}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{name} = "Bart"}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{User.uid} = \text{Member.uid}}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{name} = "Bart"}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{User.uid} = \text{Member.uid}}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{name} = "Bart"}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{User.uid} = \text{Member.uid}}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{name} = "Bart"}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{User.uid} = \text{Member.uid}}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{name} = "Bart"}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{User.uid} = \text{Member.uid}}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{name} = "Bart"}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{User.uid} = \text{Member.uid}}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{name} = "Bart"}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{User.uid} = \text{Member.uid}}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{name} = "Bart"}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{User.uid} = \text{Member.uid}}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{name} = "Bart"}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{User.uid} = \text{Member.uid}}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{name} = "Bart"}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{User.uid} = \text{Member.uid}}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{name} = "Bart"}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{User.uid} = \text{Member.uid}}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{name} = "Bart"}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{User.uid} = \text{Member.uid}}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{name} = "Bart"}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{User.uid} = \text{Member.uid}}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{name} = "Bart"}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{User.uid} = \text{Member.uid}}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{name} = "Bart"}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{User.uid} = \text{Member.uid}}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{name} = "Bart"}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{User.uid} = \text{Member.uid}}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{name} = "Bart"}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{User.uid} = \text{Member.uid}}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{name} = "Bart"}
\times
\pi_{\text{Group.name}} \\
\sigma_{\text{User.uid} = \text{Member.uid}}
Physical (execution) plan

• A complex query may involve multiple tables and various query processing algorithms
 • E.g., table scan, basic & block nested-loop join, index nested-loop join, sort-merge join, ... (Lecture 13)

• A **physical plan** for a query tells the DBMS query processor how to execute the query
 • A tree of **physical plan operators**
 • Each operator implements a query processing algorithm
 • Each operator accepts a number of input tables/streams and produces a single output table/stream
Examples of physical plans

SELECT Group.name
FROM User, Member, Group
WHERE User.name = 'Bart'
AND User.uid = Member.uid AND Member.gid = Group.gid;

- Many physical plans for a single query
 - Equivalent results, but different costs and assumptions!
 ✨ DBMS query optimizer picks the “best” possible physical plan
Cost estimation

Physical plan example:

- We have: cost estimation for each operator
 - Example: INDEX-NESTED-LOOP-JOIN(uid) takes \(O(B(R) + |R| \cdot (\text{index lookup} + \text{record fetch})) \)

- We need: size of intermediate results
Cardinality estimation

Cardinality estimation for:

- Equality predicates
- Range predicates
- Joins
- Textbook has more operators
Selections with equality predicates

- $Q: \sigma_{A=v} R$
- DBMSs typically store the following in the catalog
 - Size of R: $|R|$
 - Number of distinct A values in R: $|\pi_A R|$
- Assumptions
 - Values of A are uniformly distributed in R
- $|Q| \approx \frac{|R|}{|\pi_A R|}$
 - Selectivity factor of $(A = v)$ is $\frac{1}{|\pi_A R|}$
Example

Physical plan example:

- \(|User|=1000, \pi_{name}(User)| = 50 \Rightarrow \sigma_{name="Bart"}(User)| = ?\)
- Assumptions:
 - Values of name are uniformly distributed in User
 - \(|\sigma_{name="Bart"}(User)| = \frac{1000}{50} = 20\)
Range predicates

• $Q: \sigma_{A > v} R$
• Not enough information!
 • Just pick, say, $|Q| \approx |R| \cdot \frac{1}{3}$

• With more information
 • Largest R.A value: high($R.A$)
 • Smallest R.A value: low($R.A$)
 • $|Q| \approx |R| \cdot \frac{\text{high}(R.A) - v}{\text{high}(R.A) - \text{low}(R.A)}$
Two-way equi-join

- Q: $R(A, B) \bowtie S(A, C)$

- Assumption: containment of value sets
 - Every tuple in the “smaller” relation (one with fewer distinct values for the join attribute) joins with some tuple in the other relation
 - That is, if $|\pi_A R| \leq |\pi_A S|$ then $\pi_A R \subseteq \pi_A S$
 - Certainly not true in general
 - But holds in the common case of foreign key joins

- $|Q| \approx \frac{|R| \cdot |S|}{\max(|\pi_A R|, |\pi_A S|)}$
 - Selectivity factor of $R.A = S.A$ is $\frac{1}{\max(|\pi_A R|, |\pi_A S|)}$
Example

• Database:
 • User(uid, name, age, pop), Member(gid, uid, date), Group(gid, gname)
 • |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows
 • $|\pi_{name}(User)| = 50$
 • $|\pi_{uid}(Member)| = 500$

• Estimate size $|User \bowtie Member| = ?$
 • $|\pi_{uid}(User)| = 1000$
 • $|\pi_{uid}(Member)| = 500$
 • $1000*50000/\max(500,1000)=50000$
Search space is huge

• Characterized by “equivalent” logical query plans

```
SELECT Group.name FROM User, Member, Group WHERE
User.name = 'Bart'
AND User.uid = Member.uid AND Member.gid = Group.gid;
```

An equivalent plan:

Do we need to exam all the logical plans?
No. We can apply heuristic transformation rules to find a cheaper logical plan
Transformation rules (a sample)

• Convert \(\sigma_p \times \) to/from \(\bowtie_p \): \(\sigma_p (R \times S) = R \bowtie_p S \)
 - Example: \(\sigma_{User.uid=Member.uid} (User \times Member) = User \bowtie Member \)

• Merge/split \(\sigma \)'s: \(\sigma_{p_1} (\sigma_{p_2} R) = \sigma_{p_1 \land p_2} R \)
 - Example: \(\sigma_{age>20} (\sigma_{pop=0.8 User}) = \sigma_{age>20 \land pop=0.8 User} \)

• Merge/split \(\pi \)'s: \(\pi_{L_1} (\pi_{L_2} R) = \pi_{L_1} R \), if \(L_1 \subseteq L_2 \)
 - Example: \(\pi_{age} (\pi_{age, pop} User) = \pi_{age} User \)
Transformation rules (a sample)

• Push down/pull up σ:

$$\sigma_{p \land p_r \land p_s}(R \bowtie_{p'} S) = (\sigma_{p_r} R) \bowtie_{p \land p'} (\sigma_{p_s} S),$$

where

- p_r is a predicate involving only R columns
- p_s is a predicate involving only S columns
- p and p' are predicates involving both R and S columns
- Example:

$$\sigma_{U1.name=U2.name \land U1.pop>0.8 \land U2.pop>0.8}(\rho_{User} \bowtie_{U1.uid \neq U2.uid} \rho_{User})$$

$$= \sigma_{pop>0.8}(\rho_{User}) \bowtie_{U1.uid \neq U2.uid \land U1.name=U2.name}(\sigma_{pop>0.8}(\rho_{User}))$$
Transformation rules (a sample)

• Push down π: $\pi_L(\sigma_p R) = \pi_L \left(\sigma_p \left(\pi_{L,L'} R \right) \right)$, where
 • L' is the set of columns referenced by p that are not in L
 • Example:
 $\pi_{\text{age}}(\sigma_{\text{pop}>0.8 User}) = \pi_{\text{age}}(\sigma_{\text{pop}>0.8}(\pi_{\text{age, pop User}}))$

• Many more (seemingly trivial) equivalences...
 • Can be systematically used to transform a plan to new ones
Relational query rewrite example

\[\pi_{\text{Group.name}} \sigma_{\text{User.name}=“Bart” \land \text{User.uid} = \text{Member.uid} \land \text{Member.gid} = \text{Group.gid}} \times \text{Group} \times \text{User} \]

Push down \(\sigma \)

Convert \(\sigma_p \times \) to \(\bowtie_p \)
Heuristics-based query optimization

• Start with a logical plan

• Push selections/projections down as much as possible
 • Why? Reduce the size of intermediate results

• Join smaller relations first, and avoid cross product
 • Why? Joins are more optimized and have alternate implementations

• Convert the transformed logical plan to a physical plan (by choosing appropriate physical operators)