Transactions 2

CS348 Spring 2024
Instructor: Sujaya Maiyya
Sections: 002 & 003 only

Outline For Today

1. Motivation For Transactions Last lecture:
User’s Perspective

2. ACID Properties

\3. Different Levels of Isolation Beyond Serializability Y,

/Sgrializability: Today’s Iecture:\

System’s Perspective

» Execution Histories
» Conflict Equivalence

» Checking For Conflict Equivalence

anurrency control /

Goals of Execution History Model &
Conflict Equivalences

» Concurrency is achieved by interleaving operations across txns.

Txn1 Txn 2
r:(...,$20)
o r:(..., $20)
.g w:(...,$25)
wi(...,$30)

» Q: Does any interleaving correspond to a serializable execution?

» Execution history model and conflict equivalences is a formal method to

answer this question.

Representing Single Transactions

« Database is a set of data items (often will denote as x, y, z...)
* TxnT,;is atotal order of read/write & commit/abort operations on items
* ri(x)indicates T, reads item x
* w;(x) indicates T, writes item x
« ‘c’indicates commit (‘a’ indicates aborts)
* Suppose: T, does the following in this chronological order:
« Read(x), Read(y), x < x +y, Write(x), commit
o T={r(x) <r(y) <w(x)<c}orsimply as:
* Ti={r(x), r(y), wi(x), ¢;} or ri(x), ri(y), wi(x), ¢

* DAG representation

Execution histories (or schedules)

* An over a set of transactions T; ... T},
is an interleaving of the operations of T ... T, in which
the

* Two important assumptions:

* Transactions interact with each other only via reads and
writes of objects

* A database is a set of objects

* Example: Ty = {wy [x|,wy[y], c1}, Ty = {nplx], [yl ¢, }
* Hy = wylx]n[x]wyylr;lylcic,
* Hy = wylx]wy[yleim[x]n[yle,
* H. = wy[x|ny[x]|r;[y]wylylcsic,
* Hy = nrplx]nry[ylc; welx]wy[yle,

Examples for valid execution history

* Ty = {wylxl,wilyl, e}, To = {ralx], 2yl o }

T; | T, Iy ‘ I |1 | T1;
wi(X W1 (x* w1(x) r2(x)
1 r2(x) wi(y) r2(x) r2(y)
W1 (y) C1 I'Z()/) C2
r2(y) r2(x) wi(y) W1 (XJ
1 r2(y) wi(y
C2 C2 C2 C1
H a H b H c H d

Examples for invalid execution history

Ty = {wilxl,wilyl, e}, Ty = { o lx], vl o }

T, | T, T, ‘ T,
wi(y) W1(X*
\ rz(x) \ rz(y) Incorrect orders
w1(x) wi(y)
r2(y) r2(x)
C1 C1
c2 c2

Serial execution histories

* Ty = {milx] walyl c1}, To = {n2[x], 2l], 2 }
* Serial histories: no interleaving operations from different txns

Iy

I

w1(Xx

1

Hq

1 r2(x)
wi(y)

r2(y)

Cc2

no|T. Ti|T T, | T,
W1(X* wi1(x) r2(x)
wi(y) r2(x) r2(y)
C1 r2(y) c2
r2(x) wi(y) W1(X;
r2(y) c wi(y
c2 &
Hy, Hg Hg

Equivalent histories

* H, is “equivalent” to H,, (a serial execution)

T, | T, Iy ‘ I
T, sees all the updates made by T

W1 (X Wi (X* 2 * T, reads x written by Ty 1

FZ(X) W1 (Y) e T, readsy written by T
w1(y) 1

r2(y) r2(x)
C1 r2(y)

') Cc2

Ha Hb

Equivalent histories

* H_is not “equivalent” to H,, (a serial execution)

Iy

I,

w1(x)

wi(y)
C1

H

r2(x)
r2(y)

Cc2

T, reads differenty in
Hy asin H,

Outline For Today

Serializability:

2. Conflict Equivalence

Check equivalence

* Two operations if:
1. they belong to ,
2. they operate on the , and
3. atleast one of the operations is a

2 types of conflicts: (1) Read-Write (or write-read)
and (2) Write-Write

* Two histories are if
1. they are over the same set of transactions, and

2. the ordering of each pair of conflicting operations is
the same in each history

Example

e Consider
* Hy = wylx]ry[x]wy[ylralyleic,
* Hy = wyx]wylylrlx]r;[y]cic,

Step 1: check if they are over the same set of transactions
* Ty = {walx],wilyl}, To = {2lx], r2[y] }

Step 2: check if all the conflicting pairs have the same order

Conflicting pairs

wilx], rp[x] < <

wylyl, [yl < <

13

Motivation & Intuition For Conflict Equivalence

* If two histories H, and Hy are conflict equivalent then, we can make H,
exactly the same as H, by iteratively swapping two consecutive non-

conflicting operations in H, and/or H,.

o Hy= w [x|n[xlwi [yl [ylcic, => H'g = wy[x]w [y]r, [x]7 [y]es e

* Hp = wylx]wilylrlx]r[ylcic,
* Proof Sketch: Move all ops on item x to the beginning by swapping with

non-conflicting ops in both H, and H,

* End with the order imposed by the conflicts on x

* Thenrepeatfory, z, etc. and we will arrive at the same histories
* Therefore: Every read by each txn has the same value in H, & H,,

* Therefore:

More complicated example

Consider
* Hy: mylx]rslx]wylylrlulwylz]m [yl [ulr | zlw, | 2] [2] [2]ws [V]
* Hp: ry[xlwylylrslx]r [ulr [yl [ulr [z]w, [Z]lwa [2] [2] s 2]ws [V]

Step 1: check if they are over the same set of transactions

Step 2: check if all the conflicting pairs have the same order

More complicated example

Consider
* Hy: mylx]rslx]wylylrlulwylz]m [yl [ulr | zlw, | 2] [2] [2]ws [V]
* Hp: ry[xlwylylrslx]r [ulr [yl [ulr [z]w, [Z]lwa [2] [2] s 2]ws [V]

Step 1: check if they are over the same set of transactions
T {nlx] nlyl rlzl), T, {ralu] vl z]w, [2]},
Ts: {rslx] r3[u] rs[z]ws[y]}, T, waly] welz]}

Step 2: check if all the conflicting pairs have the same order

|dentify all the conflicting pairs

« Hy: mylx]rslx]wylylmlvdwylzlm [yl [l zlw, | 2] [2] [2]ws [V]

* Conflicting pairs:
* Related to x or u: no conflicting pairs, as all are reads

* Related toy: w4[y], r1[y], w3[y]
* Waly] <mly]
* wuly] <wsly]
* rily] <wsly]
* Related to z: w4[z], r2[z], w2[z], r3[z], r1[z]

WylZ] = 1214]
* WylZ) Wz_[_]
* WylZ| = T31Z
* WylZf =1l

e 1,[2], w,[~] are not, as they are from the same transactions
* wylz] <m3]7]
* wylz] <ryl7]

More complicated example

Consider
© Hy: rylx]rslx]wylylrlv]wyz]r [y][]l zlwa | 2] s [2] [2]ws Y]

* Hp: ri|x|wylylrslxlrlvdr ylrs[v]nzlwa zlwy [2] [2] 2]ws [V]

Step 1: check if they are over the same set of transactions
T {rlx] rilyl rlz]), Ty {ro[v] [2]wp [2]3,
T, {rsx] rs[u] r3[z]ws [V}, Tut {waly] wal2]}

Step 2: check if all the conflicting pairs have the same order

Conflicting pairs
wyly] i [y]
wyly], w3[y]

<
<
<
wylz], wo 7] <
<

AN \Y4 AN 7AN AN

Outline For Today

Serializability:

3. Checking For Serializability

Serializable

* A history H is said to be (conflict) if there exists
some serial history H' that is (conflict) equivalent to H.
T; | T, Iy |T; I; | T3
w1(x) w1(x)
r2(x) wi(y)
wi(y) 1
r2(y) r2(x)
C1 r2(y)
c2 Cc2

H, — H,

Serializable

* Does H,. have an equivalent serial execution?
* He = wyx]r;[x]ry[y]wylylesc,
* Only 2 serial execution to check:
* Hy: T; followed by T: wq [x]wq|y]lcir[x]r [y]cs
* 1,|y] reads different value as in H,

* Hi: T, followed by Ty: iy [x]r | y]cowq [x]wq | y]cy

* 1,[x] reads different value as in H,

Conflicting pairs
wi [x], o [x]

wy [yl [yl

* Do we need to check all the serial executions?

21

How to test for serializability?

* Serialization graph SGy (V, E) for history H:
 V ={T|T is a committed transaction in H}
* E={T; > T;ifo; € T; and 0; € T; and o; < oy}

* A history is iff its serialization graph is
acyclic.

Example

* Example: Hy, = wy [x]r, [x|wq[y]r;[y] cicy

wq|x] and r, | x| conflict, and w [x] < 7, | x]

T1 Tz wy ly] and 1, [y] conflict, and wy [y] < 1, [y]
w1(Xx
r2(x)
w(y :
. (I) G G

1
) Serialization graph: no cycles > serializable

Hq

23

Example

* Example: H, = wy [x]|r, [x]r, [y]wy [y]c ¢,

I | 13
wy [x] and r, [x] conflict, and w, [x] < 7, [x];
W1 ()q\ w [v] and 7, [y] conflict, and 7, [y] < wy [y]
r2(x)
r2(y)
wif
C1
Cc2
H, m Not serializable

24

More complicated example

* rilxlrslx]wylylrplulwyl z]m [yl [ulr [z]lw, [zl s 2] [z]ws [V]

* Conflicting pairs:

* Related to x or u: no conflicting pairs, as all are reads

* Related to y: w4[y], r1[y], w3[y]
* wuly] <mly] T4 > T1
© wyly] < wsly] T4 > T3 @ @
* iyl <wsly] T1>T3

* Related to z: w4[z], r2[z], w2[z], r3[z], r1[z]
* wylz] <mplz] T4 T2
Cwild<w,l] e T ()
© wylz] <r3l7] T4 > T3
* wylz] <my[7] T4 > T1

[z], w,[z] are not, as they are from the same transactions
2[7] < 737] T2>7T3

2|z] < r[7] T2>T1

S S

=

More complicated example

» rlxlrslx]wylylrplulwyl z]m [yl [ulr [z]lw, [2] s 2] [z]ws [V]

oA
)

* The history above is (conflict) equivalent to

* No cycles in this serialization graph
* Topological sort: T4 -> T2 -> T1->T3

* Note: we ignore the commits at the end for simplicity

Outline For Today

Concurrency control:

1. 2 phase locking

Concurrency control

* Goal: ensure the “I” (isolation) in ACID

T5:
r1(x);
wi1(x);
r1(y);
wi(y);

commit;

T>:
r2(x);
w2(x);
r2(z);
w2(2);
commit;

S

X

y

Z

I

r1(x)

wi(y)

w1(x
r1 (y)1

r2(x)
w2(X)

r2(z)

w2(z)

Good versus bad execution histories

Good versus bad execution histories

I | Ty
r1(x) .
1
How to avoid 1(x) 2(x)
P WL X
this:] w2(x) T,
Note: These are ‘valid’ 1 (Y)
histories but are ‘bad’: cannot rz(z)
be serialized
wi(y)

Concurrency control

Possible classification

— assume that and
take preventive action

* Two-phase locking (2PL)

— assume that and run
transactions and fix if there is a problem
* Timestamp ordering

* We will only review 2PL

Locking

* Rules

* If a transaction wants to read an object, it must first
request a shared lock (S mode) on that object

* If a transaction wants to modify an object, it must first
request an exclusive lock (X mode) on that object

* Allow one exclusive lock, or multiple shared locks

Mode of the lock requested

X
Yes No | Grant the lock?
No No

Mode of lock(s)
currently held
by other transactions

Compatibility matrix

32

Basic locking is not enough

Iy | Ty
lock-X(x)
r1(x)
W1(X1
unlock(x) 0k X(x)
Possible schedule FZ(X) Iy
under locking WZ(X)
unlock(x) T
But still not loc{-X(y) -
conflict-serializable! r2 Y)
w2(y)
unlock(y)
lock-X(y) .
r1(y)
Wiy}

unlock(y)

33

Basic locking is not enough

Add 1to both xandy Tl

Tz Multiply both x and y by 2

(preserve x=y)

lock-X(x)
Read 100 1 (X)
Write 100+1 W1(
unlock(x)
Possible schedule
under locking
But still not
conflict-serializable!
lock-X(y)
Read 200 r1(y
Write 200+1 W1 ()/)

unlock(y)

(preserves x=y)

ock-X(x)

rz(x) Read 101 @
WZ(X)\Nrite 101%2
unlock(x) @
lock-X(y)

rzfy) Read 100

WZ(y)Write 100%2
unlock(y)

X#y!

34

Two-phase locking (2PL)

* All lock requests precede all unlock requests
* Phase 1: obtain locks, phase 2: release locks

Iy P!
Iock—X(g%X)
w1(x)
lock-X(y)
unlock(x)
r2(x)
w2(x)
r2(y)
w2(y)
r(y)
wi(y)

unlock(y)

T T
r1(x)
wi1(x) \
! r2(x)
w2(x)
r1(y)
wi(y)
\r2(y)
w2(y)

Remaining problems of 2PL

Iy

i * T, has read uncommitted

r1(x)

w1(x)

r1(y)
wi(y)

data written by T}

* If T; aborts, then T, must
r2(x)

wa(x) abort as well
possible if
other transactions have
r2(y))
wa(y) read data written by T,

* Even worse, what if T, commits before T;?

* Schedule is if the system crashes right
after T, commits

Deadlocks

 Atransaction is deadlocked ifit is blocked and will remain
blocked until there is an intervention.

* Locking-based concurrency control algorithms may cause
deadlocks requiring abort of one of the transactions

T1 TZ

* Consider the partial history lock-X(x)

r1(x)

wi(x) lock-S(y)
r2(y)

lock-S(x)

* Neither Ty nor T, can make progress

lock-X(y)

r1(y)
wi(y)

unlock-X(x)4 "

unlock-S(y)

Strict 2PL

* Only release X-locks at commit/abort time

o A writer will block all other readers until the writer
commits or aborts

* Used in many commercial DBMS
* Avoids cascading aborts
* But deadlocks are still possible!

* Conservative 2PL: acquire all locks at the beginning
of a txn
* Avoids deadlocks but often not practical

Summary

Serializability:
1. Execution Histories
2. Conflict Equivalence

3. Checking For Serializability

Concurrency control:

1. 2 phase locking

