Query Processing

CS348
Instructor: Sujaya Maiyya



Announcements

e Midterm:

* Everything until lecture 12
* RA, SQL, DB Design (ER + design theory)
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Overview (cont.)

* Many different ways of processing the same query
e Scan? Sort? Hash? Use an index?

* All have different performance characteristics and/or
make different assumptions about data

* Best choice depends on the situation
* Implement all alternatives?

* Let the choose at run-time (next
lecture)



Outline

Number of memory
blocks available:

* Scan
select * from User where pop =0.8 ut, u2
Memory | U3,uq
e Ind select * from User, Member where
ndex User.uid = Member.uid;
— T
User Member
Disk
* Hash
Number of rows for a table -~

Number of disk blocks for a table



Notation

e Relations: 7,

* Tuples: 7,

* Number of tuples: |R|,

 Number of disk blocks: ,

* Number of memory blocks available:

* Cost metric
* Number of I/O’s
* Memory requirement



Scanning-based algorithms
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Table scan

Buffer output
* Scan table R and process the query Memory
over R 1 for input
of R without duplicate elimination /—i\
° I/O’S: . Disk O

* Trick for selection:
» stop early if it is a lookup by key
* Memory requirement: 2 (blocks)
* 1forinput, 1 for buffer output SN~— _
* Increase memory does not improve 1/O

* Not counting the cost of writing the result out
* Same for any algorithm!

R




Basic nested-loop join

* For each r in a block By of R:
For each s in a block Bgs of §:
Output rs 1f p 1s true over r and s

* Ris calledthe table; S is called the table

e |/O’s:
Blocks of R are moved Blocks of S are moved into memory
into memory only once |R| number of times

* Memory requirement:



Example for basic nested loop join

* 1block =2 tuples, 3 b

°(R

r1,r2

ocks of memory

r3,r4

51,52

r1,r2 r1,r2 r1,r2 r1,r2 r,r2 r,r2 H 3,r4 3,r4 3,r4
s1,52 || s3,54 |.| 5,6 | | s1,s2 || s3,54 |, S5,56 || s1,s2 || $3,54 |.| S5,56
® ™) ) » X R i .
output output output output output output output output output
\

53,54

S5,S6

Disk

* Number of 1/O:

Only compares (r1,s1), (r1,52)

B(R) + |R| * B(S) = 2 blocks + 4 * 3blocks = 14
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Improvement: block nested-loop join

* For each block By of R:
For each block Bg of §:
For each r in By :
For each s 1n Bg:
Output rs 1f p 1s true over r and s

e |/O’s:
Blocks of R are moved Blocks of S are moved into memory
into memory only once B(R) number of times

* Memory requirement:



Example for block-based nested loop
join

* 1block =2 tuples, 3 blocks of memory

*R nr r,r2 || rr2 || r,e2 ..{rs,r4 r3,r4 | | r3,r4
> 1,52 | 53,54 || 55,56 | | s1,52 || 53,54 || 55,56
S1,S S3,S S5,S S1,S S3,S S5,S
o0 O T gy
output output output output output output
e S |s,s2
S3,54
p Compares (r1,s1), (r2,s1),
S5,S
> (r1,s2),(r2,s2)

* Number of 1/O:
B(R) + B(R)* B(S) = 2 blocks + 2 * 3blocks = 8



More improvements

* Stop early if the key of the inner table is being
matched

* Make use of available memory

 Stuff memory with as much of R as possible, stream S
by, and join every S tuple with all R tuples in memory

* |/O’s:
* Or, roughly:
* Memory requirement: M/ (as much as possible)

* Which table would you pick as the outer? (exercise)



Example for block-based nested loop
join

* 1block =2 tuples, 4 blocks of memory
*R [nr r,r2 || rr2 || rr2
r3,r4
s1,52 |] S3,S s5,56
> 3,54 N 5
e S |s1s2 1
output\ output output
53,54
Time 1
S5,S6

Compares (r1,s1), (r2,s1), (r1,s2),(r2,s2),

(r3,51),(r3,52),(r4,51),(r4,52)

* Number of 1/O:
B(R) + B(R)/(M-2)* B(S) = 2 blocks + 1 * 3blocks =5

14



Case study:

System requirements:
* Each disk/memory block can hold up to 10 rows (from any table);
 All tables are stored compactly on disk (10 rows per block);
* 8 memory blocks are available for query processing:

Database:
* User(uid, age, pop), Member(gid,uid,date), Group(gid, gname)
* |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows
» #of blocks:

Q1: select * from User where pop =0.8
* /O cost using table scan?

Q2: select * from User, Member where User.uid = Member.uid;
* 1/O cost using blocked-based nested loop join



Outline

* Scan
* Selection, duplicate-preserving projection, nested-loop join

* Sort
* External merge sort, sort-merge-join

* Hash
* Hash join, point selection, group by and aggregations

* Index
* Selection, index nested-loop join



Sorting-based algorithms

17

http://en.wikipedia.org/wiki/Mail _sorter#mediaviewer/File:Mail_sorting,1951.jpg



External merge sort

Recall in-memory merge sort: Sort progressively larger
runs, 2, 4, 8, ..., |[R|, by merging consecutive “runs

T Dick TN
u
Problem: sort R, but R does not fit in memory | g
el :read M blo%ks | } R
of R at a time them
and write out’a ’ L
Level-0
e e e M H @
evel-0 runs at a time
and write out a ’ -:} Level-1
¥/

. : (M — 1) level-1 runs at a time, and
write out a

produces one sorted run



Example

» 3 memory blocks available; each holds one number

> Input:1,7,4,5,2,8,9,6,3 — N
> ——
Phase 0 1 1]
R: | 1| 7| 4| 5|28 9 6|3




Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 — T
/

7| 45| 2| 8| 9| 63

» Phase o I




Example

» 3 memory blocks available; each holds one number

> Input:1,7,4,5,2,8,9,6,3 —
\
> Phase o T 11
R: [ 1| 7] 4]5]2
1| 4|7




Example
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> Phase o 1
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Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —

» Phase 0

> Phase 1 Re [1]7]4]5]2
! !
11 4| 7| | 2|58
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Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —

» Phase o
> Phase 1 R [ 1171452
| !
11 4| 7| | 2|58
124|578




Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —

» Phase o
> Phase 1 R: [ 1]7]4]5]2
» Phase 2 (final) 114|7| 2|58
!
124|578




Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —

» Phase o
> Phase 1 R: [ 1]7]4]5]2
» Phase 2 (final) 114/ 7| |2|5|8
|
12 4 57 8
112345678




Analysis (optional)

: read M blocks of R at a time, sort them,

and write out a level-0 run

 There are [%\ level-0 sorted runs /O costis 2 - B(R)

: merge (M — 1) level-(i — 1) runs at a time,
and write out a level-i run
* (M — 1) memory blocks for input, 1 to buffer output

number of level—(i—1) runs‘
M-1

e The number of level-i runs = [

number of such phases
1/O costis 2 - B(R)
produces one sorted run times # of phases

Subtract B(R) for the final pass



Performance of external merge sort

¢ |/O’s
+ 2B(R) - (1 + [logM : [B(R)H) — B(R)

What we

will use in
class

* Roughly, thisis O(B(R) X 108MB(R)]

* Memory requirement: / (as much as possible)

38



Case study (optional):

e System requirements:
* Each disk/memory block can hold up to 10 rows (from any table);

 All tables are stored compactly on disk (10 rows per block);
* 8 memory blocks are available for query processing:

e Database:
* User(uid, age, pop), Member(gid,uid,date), Group(gid, gname)
* |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows
» #of blocks

* Q3:select * from User order by age asc;
* 1/O cost using external merge sort?



Case study (optional):

e System requirements:

* Each disk/memory block can hold up to 10 rows (from any table);
 All tables are stored compactly on disk (10 rows per block);
* 8 memory blocks are available for query processing:

e Database:
* User(uid, age, pop), Member(gid,uid,date), Group(gid, gname) —
* |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows
» #of blocks: ; B(Group)=100/10=10;

* Q3:select * from User order by age asc;
* 1/O cost using external merge sort? E Level-0
g

Phase o: read 8 blocks into memory at a time and sort it => ceil(100/8)=13 runs
Phase 1: merge 7 runs at a time => ceil(13/7)=2 runs

Phase 2: merge last 2 runs into a single run I_ } Leviel-1
|

Eobocs |
| IR
Level-2

w




Operators That Use Sorting

* Pure Sort: e.g., ORDER BY

« Set Union, Difference, Intersection, or Join on R and S (next slide): When
the join condition is an equality condition e.g., R.A=S.B,
* All can be implemented by walking relations “in tandem” as in the
merge step of merge sort.

* DISTINCT

* Group-By-and-Aggregate: Exercise: Think about how you can implement

group-by-and-aggregate with sorting?



Sort-merge join

* Sort R and S by their join attributes; then merge
* 1, s =the first tuplesin sorted R and §

* Repeat until one of R and S is exhausted:
Ifr.A>s.B
then s = next tuplein §
elseifr.A<s.B
then r = next tuplein R
else output all matching tuples, and
r,s=nextinRand S

¢ |/O’s:
* In most cases (e.g., join of key and foreign key)
* Worst caseis : everything joins



-« M < N <F 1N
O N N N

qp)]
OO O L L

— AN MM OO

I L | I I |
bt
haaaa v

— N ML DD
I | VI [ VI |
LSS S

E oS @I 0N

Example of merge join



Outline

* Scan
* Selection, duplicate-preserving projection, nested-loop join

* Sort
* External merge sort, sort-merge-join

* Hash
* Hash join, point selection, group by and aggregations

* Index
* Selection, index nested-loop join



Hashing-based algorithms

https://recipesfromapantry.com/frozen-hash-browns-in-oven/
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Hash join

R Xpa-sp S

* Main idea
* Partition R and S by hashing their join attributes, and
then consider corresponding partitions of R and S
* Ifr.A and s. B get hashed to different partitions, they
don’tjoin

1 2 3,_}3 4 5

. —

—_—

Nested-loop join
considers all slots

Hash join considers only
those along the diagonal!

= -

Ul A UJU)N

46



Partitioning phase

* Partition R and S according to the same hash
function on their join attributes

Memory

\
Q

Same for S

allocate 1 for input and
M-1 for output buffers

&1 partltlonsof/R

If the hash function is good, each

partition has a size of B(R)/(M-1)

47



Probing phase

* Read in each partition of R, stream in the
corresponding partition of S, join

* Typically build a hash table for the partition of R
* Not the same hash function used for partition, of course!

R <

partitions [

S <

—
—

Disk

\
/

partitions [

load

J

Memory

8 0 i I

A -

For each S tuple,

> [ probe and join

] | stream)|

allocate M-1 blocks for R
and 1 block for S

48



Performance of (two-pass) hash join

* If hash join completes in two phases:
e |/O’s:

* Memory requirement:
* In the probing phase, we should have enough memory to fit
one partition of R:

* We can always pick R to be the smaller relation, so:



Generalizing for larger inputs

* What if a partition is too large for memory?
* Read it back in and partition it again!
» Re-partition 0(log,,B(R)) times




Other hash-based algorithms

* Union (set), difference, intersection

* Duplicate elimination
* Check for duplicates within each partition/bucket

* Grouping and aggregation
* Apply the hash functions to the group-by columns



Outline

* Scan
* Selection, duplicate-preserving projection, nested-loop join

* Sort
* External merge sort, sort-merge-join

* Hash
* Hash join, point selection, group by and aggregations

* Index
* Selection, index nested-loop join



Index-based algorithms
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Selection using index

* Equality predicate:
* Use an ISAM, B*-tree, or hash index on R(A4)

* Range predicate:
e Use an index (e.g., ISAM or B*-tree) on R(4)
* Hash index is not applicable

* Indexes other than those on R(4) may be useful
* Example: B*-tree index on R(A, B)
* How about B*-tree index on R(B, 4)?



Index versus table scan

Situations where index clearly wins:

which do not require retrieving
actual tuples
* Example:

* Primary index clustered according to search key
* One lookup leads to all result tuples in their entirety



Index versus table scan (cont’d)

BUT(!):

* Consider and a secondary, non-clustered
indexon R(A)
* Need to follow pointers to get the actual result tuples

* Say that 20% of R satisfies A > v
* Could happen even for equality predicates

* |/O’s for scan-based selection:
* |/O’s for index-based selection:

* Table scan wins if a block contains more than 5 tuples!
* B(R) = |R|/5 < 20%|R|+lookup



Index nested-loop join

* Idea: use avalue of R. A to probe the index on S(B)

* For each block of R, and for each r in the block:

Use the index on S(B) to retrieve s withs.B=r.4
Output rs

* |/O’s:
* Typically, the cost of an index lookup is 2-4 1/O’s (depending on the
index tree height if B+ tree)

* Beats other join methods if |R| is not too big
* Better pick R to be the smaller relation

* Memory requirement: 3 (extra memory can be used to
cache index, e.g. root of B+ tree)



Summary of techniques

* Scan
* Selection, duplicate-preserving projection, nested-loop join

e Sort

 External merge sort, sort-merge join, union (set), difference,
intersection, duplicate elimination, grouping and agg.

e Hash

* Hash join, union (set), difference, intersection, duplicate
elimination, grouping and aggregation

* Index
* Selection, index nested-loop join, zig-zag join



Another view of techniques

* Selection
* Scan without index (linear search):
* Scan with index - selection condition must be on search-key of index
* B+ index:
* Hashindex:
* Projection
* Without duplicate elimination:
* With duplicate elimination
 Sorting-based:
* Hash-based: where t is the result of the hashing phase

* Join
* Block-based nested loop join (scan table):
* Sort-merge join
* Hashjoin
* Index nested loop join
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