Query Processing

CS348
Instructor: Sujaya Maiyya

Announcements

e Midterm:

* Everything until lecture 12
* RA, SQL, DB Design (ER + design theory)

Overview

Text
SELECT ...

FROM ... —»(Parser

AST
e |

WHERE...

} Root

Customer

Product

Logical Plan

[Physical Plan)

f
N

Optimizer

4

)
)

Join

‘ C.cid=0.cid

Translator

Project . ¥
) oid Logical Plan

|

Scan Tbl

Order
100 < price

Scan Tbl
Customer

cid=3

{

Translator J‘
Physical
Plan |
Project
[$5]
‘ HashJoin ’
L.$2=R.4$3
‘ Filter J [IndexScan
$2=5 cust.db
‘ IndexScan J
order.db

Query

L Executor

RESULT

=

cid

Overview (cont.)

* Many different ways of processing the same query
e Scan? Sort? Hash? Use an index?

* All have different performance characteristics and/or
make different assumptions about data

* Best choice depends on the situation
* Implement all alternatives?

* Let the choose at run-time (next
lecture)

Outline

Number of memory
blocks available:

* Scan
select * from User where pop =0.8 ut, u2
Memory | U3,uq
e Ind select * from User, Member where
ndex User.uid = Member.uid;
— T
User Member
Disk
* Hash
Number of rows for a table -~

Number of disk blocks for a table

Notation

e Relations: 7,

* Tuples: 7,

* Number of tuples: |R|,

 Number of disk blocks: ,

* Number of memory blocks available:

* Cost metric
* Number of I/O’s
* Memory requirement

Scanning-based algorithms

110101001 101010001 101001000
O?OJITTO?O?OI10101000101010
10107101 1000101CC010101001 0K
01101010011101011011101000
pO1010010101101110101000110
10011010100111010110111010
30010100!0101101]:010?0001
)N}’('OOHOMMHOH

.mo’ 11010 TO 0100

Table scan

Buffer output
* Scan table R and process the query Memory
over R 1 for input
of R without duplicate elimination /—i\
° I/O’S: . Disk O

* Trick for selection:
» stop early if it is a lookup by key
* Memory requirement: 2 (blocks)
* 1forinput, 1 for buffer output SN~— _
* Increase memory does not improve 1/O

* Not counting the cost of writing the result out
* Same for any algorithm!

R

Basic nested-loop join

* For each r in a block By of R:
For each s in a block Bgs of §:
Output rs 1f p 1s true over r and s

* Ris calledthe table; S is called the table

e |/O’s:
Blocks of R are moved Blocks of S are moved into memory
into memory only once |R| number of times

* Memory requirement:

Example for basic nested loop join

* 1block =2 tuples, 3 b

°(R

r1,r2

ocks of memory

r3,r4

51,52

r1,r2 r1,r2 r1,r2 r1,r2 r,r2 r,r2 H 3,r4 3,r4 3,r4
s1,52 || s3,54 |.| 5,6 | | s1,s2 || s3,54 |, S5,56 || s1,s2 || $3,54 |.| S5,56
® ™)) » X R i .
output output output output output output output output output
\

53,54

S5,S6

Disk

* Number of 1/O:

Only compares (r1,s1), (r1,52)

B(R) + |R| * B(S) = 2 blocks + 4 * 3blocks = 14

10

Improvement: block nested-loop join

* For each block By of R:
For each block Bg of §:
For each r in By :
For each s 1n Bg:
Output rs 1f p 1s true over r and s

e |/O’s:
Blocks of R are moved Blocks of S are moved into memory
into memory only once B(R) number of times

* Memory requirement:

Example for block-based nested loop
join

* 1block =2 tuples, 3 blocks of memory

*R nr r,r2 || rr2 || r,e2 ..{rs,r4 r3,r4 | | r3,r4
> 1,52 | 53,54 || 55,56 | | s1,52 || 53,54 || 55,56
S1,S S3,S S5,S S1,S S3,S S5,S
o0 O T gy
output output output output output output
e S |s,s2
S3,54
p Compares (r1,s1), (r2,s1),
S5,S
> (r1,s2),(r2,s2)

* Number of 1/O:
B(R) + B(R)* B(S) = 2 blocks + 2 * 3blocks = 8

More improvements

* Stop early if the key of the inner table is being
matched

* Make use of available memory

 Stuff memory with as much of R as possible, stream S
by, and join every S tuple with all R tuples in memory

* |/O’s:
* Or, roughly:
* Memory requirement: M/ (as much as possible)

* Which table would you pick as the outer? (exercise)

Example for block-based nested loop
join

* 1block =2 tuples, 4 blocks of memory
*R [nr r,r2 || rr2 || rr2
r3,r4
s1,52 |] S3,S s5,56
> 3,54 N 5
e S |s1s2 1
output\ output output
53,54
Time 1
S5,S6

Compares (r1,s1), (r2,s1), (r1,s2),(r2,s2),

(r3,51),(r3,52),(r4,51),(r4,52)

* Number of 1/O:
B(R) + B(R)/(M-2)* B(S) = 2 blocks + 1 * 3blocks =5

14

Case study:

System requirements:
* Each disk/memory block can hold up to 10 rows (from any table);
 All tables are stored compactly on disk (10 rows per block);
* 8 memory blocks are available for query processing:

Database:
* User(uid, age, pop), Member(gid,uid,date), Group(gid, gname)
* |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows
» #of blocks:

Q1: select * from User where pop =0.8
* /O cost using table scan?

Q2: select * from User, Member where User.uid = Member.uid;
* 1/O cost using blocked-based nested loop join

Outline

* Scan
* Selection, duplicate-preserving projection, nested-loop join

* Sort
* External merge sort, sort-merge-join

* Hash
* Hash join, point selection, group by and aggregations

* Index
* Selection, index nested-loop join

Sorting-based algorithms

17

http://en.wikipedia.org/wiki/Mail _sorter#mediaviewer/File:Mail_sorting,1951.jpg

External merge sort

Recall in-memory merge sort: Sort progressively larger
runs, 2, 4, 8, ..., |[R|, by merging consecutive “runs

T Dick TN
u
Problem: sort R, but R does not fit in memory | g
el :read M blo%ks | } R
of R at a time them
and write out’a ’ L
Level-0
e e e M H @
evel-0 runs at a time
and write out a ’ -:} Level-1
¥/

. : (M — 1) level-1 runs at a time, and
write out a

produces one sorted run

Example

» 3 memory blocks available; each holds one number

> Input:1,7,4,5,2,8,9,6,3 — N
> ——
Phase 0 1 1]
R: | 1| 7| 4| 5|28 9 6|3

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 — T
/

7| 45| 2| 8| 9| 63

» Phase o I

Example

» 3 memory blocks available; each holds one number

> Input:1,7,4,5,2,8,9,6,3 —
\
> Phase o T 11
R: [1| 7] 4]5]2
1| 4|7

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —

> Phase o 1
5

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —

> Phase o

o |t
W | g

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —

> Phase o

W | g

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —

» Phase 0

> Phase 1 Re [1]7]4]5]2
! !
11 4| 7| | 2|58

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —

» Phase 0

> Phase 1 Re [1]7]4]5]2
! !
11 4| 7| | 2|58

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —

» Phase 0
> Phase 1 Re [1]7]4]5]2
! !
11 4| 7| | 2|58

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —

» Phase 0
> Phase 1 Re [1]7]4]5]2
! !
11 4| 7| | 2|58

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —

» Phase 0
> Phase 1 Re [1]7]4]5]2
! !
11 4| 7| | 2|58

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —

» Phase 0
> Phase 1 Re [1]7]4]5]2
! !
11 4| 7| | 2|58

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —

» Phase 0
> Phase 1 Re [1]7]4]5]2
! !
11 4| 7| | 2|58

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —

» Phase 0
> Phase 1 Re [1]7]4]5]2
! !
11 4| 7| | 2|58

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —

» Phase 0
> Phase 1 Re [1]7]4]5]2
! !
11 4| 7| | 2|58

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —

» Phase o
> Phase 1 R [1171452
| !
11 4| 7| | 2|58
124|578

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —

» Phase o
> Phase 1 R: [1]7]4]5]2
» Phase 2 (final) 114|7| 2|58
!
124|578

Example

» 3 memory blocks available; each holds one number

» Input:1,7,4,5,2,8,9,6,3 —

» Phase o
> Phase 1 R: [1]7]4]5]2
» Phase 2 (final) 114/ 7| |2|5|8
|
12 4 57 8
112345678

Analysis (optional)

: read M blocks of R at a time, sort them,

and write out a level-0 run

 There are [%\ level-0 sorted runs /O costis 2 - B(R)

: merge (M — 1) level-(i — 1) runs at a time,
and write out a level-i run
* (M — 1) memory blocks for input, 1 to buffer output

number of level—(i—1) runs‘
M-1

e The number of level-i runs = [

number of such phases
1/O costis 2 - B(R)
produces one sorted run times # of phases

Subtract B(R) for the final pass

Performance of external merge sort

¢ |/O’s
+ 2B(R) - (1 + [logM : [B(R)H) — B(R)

What we

will use in
class

* Roughly, thisis O(B(R) X 108MB(R)]

* Memory requirement: / (as much as possible)

38

Case study (optional):

e System requirements:
* Each disk/memory block can hold up to 10 rows (from any table);

 All tables are stored compactly on disk (10 rows per block);
* 8 memory blocks are available for query processing:

e Database:
* User(uid, age, pop), Member(gid,uid,date), Group(gid, gname)
* |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows
» #of blocks

* Q3:select * from User order by age asc;
* 1/O cost using external merge sort?

Case study (optional):

e System requirements:

* Each disk/memory block can hold up to 10 rows (from any table);
 All tables are stored compactly on disk (10 rows per block);
* 8 memory blocks are available for query processing:

e Database:
* User(uid, age, pop), Member(gid,uid,date), Group(gid, gname) —
* |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows
» #of blocks: ; B(Group)=100/10=10;

* Q3:select * from User order by age asc;
* 1/O cost using external merge sort? E Level-0
g

Phase o: read 8 blocks into memory at a time and sort it => ceil(100/8)=13 runs
Phase 1: merge 7 runs at a time => ceil(13/7)=2 runs

Phase 2: merge last 2 runs into a single run I_ } Leviel-1
|

Eobocs |
| IR
Level-2

w

Operators That Use Sorting

* Pure Sort: e.g., ORDER BY

« Set Union, Difference, Intersection, or Join on R and S (next slide): When
the join condition is an equality condition e.g., R.A=S.B,
* All can be implemented by walking relations “in tandem” as in the
merge step of merge sort.

* DISTINCT

* Group-By-and-Aggregate: Exercise: Think about how you can implement

group-by-and-aggregate with sorting?

Sort-merge join

* Sort R and S by their join attributes; then merge
* 1, s =the first tuplesin sorted R and §

* Repeat until one of R and S is exhausted:
Ifr.A>s.B
then s = next tuplein §
elseifr.A<s.B
then r = next tuplein R
else output all matching tuples, and
r,s=nextinRand S

¢ |/O’s:
* In most cases (e.g., join of key and foreign key)
* Worst caseis : everything joins

-« M < N <F 1N
O N N N

qp)]
OO O L L

— AN MM OO

I L | I I |
bt
haaaa v

— N ML DD
I | VI [VI |
LSS S

E oS @I 0N

Example of merge join

Outline

* Scan
* Selection, duplicate-preserving projection, nested-loop join

* Sort
* External merge sort, sort-merge-join

* Hash
* Hash join, point selection, group by and aggregations

* Index
* Selection, index nested-loop join

Hashing-based algorithms

https://recipesfromapantry.com/frozen-hash-browns-in-oven/

45

Hash join

R Xpa-sp S

* Main idea
* Partition R and S by hashing their join attributes, and
then consider corresponding partitions of R and S
* Ifr.A and s. B get hashed to different partitions, they
don’tjoin

1 2 3,_}3 4 5

. —

—_—

Nested-loop join
considers all slots

Hash join considers only
those along the diagonal!

= -

Ul A UJU)N

46

Partitioning phase

* Partition R and S according to the same hash
function on their join attributes

Memory

\
Q

Same for S

allocate 1 for input and
M-1 for output buffers

&1 partltlonsof/R

If the hash function is good, each

partition has a size of B(R)/(M-1)

47

Probing phase

* Read in each partition of R, stream in the
corresponding partition of S, join

* Typically build a hash table for the partition of R
* Not the same hash function used for partition, of course!

R <

partitions [

S <

—
—

Disk

\
/

partitions [

load

J

Memory

8 0 i I

A -

For each S tuple,

> [probe and join

] | stream)|

allocate M-1 blocks for R
and 1 block for S

48

Performance of (two-pass) hash join

* If hash join completes in two phases:
e |/O’s:

* Memory requirement:
* In the probing phase, we should have enough memory to fit
one partition of R:

* We can always pick R to be the smaller relation, so:

Generalizing for larger inputs

* What if a partition is too large for memory?
* Read it back in and partition it again!
» Re-partition 0(log,,B(R)) times

Other hash-based algorithms

* Union (set), difference, intersection

* Duplicate elimination
* Check for duplicates within each partition/bucket

* Grouping and aggregation
* Apply the hash functions to the group-by columns

Outline

* Scan
* Selection, duplicate-preserving projection, nested-loop join

* Sort
* External merge sort, sort-merge-join

* Hash
* Hash join, point selection, group by and aggregations

* Index
* Selection, index nested-loop join

Index-based algorithms

{JINDICATO

~>

} okE Ainr& ‘ :
uNeEACTusEn I

http://il.trekearth.com/photos/28820/p2270994.jpg

53

Selection using index

* Equality predicate:
* Use an ISAM, B*-tree, or hash index on R(A4)

* Range predicate:
e Use an index (e.g., ISAM or B*-tree) on R(4)
* Hash index is not applicable

* Indexes other than those on R(4) may be useful
* Example: B*-tree index on R(A, B)
* How about B*-tree index on R(B, 4)?

Index versus table scan

Situations where index clearly wins:

which do not require retrieving
actual tuples
* Example:

* Primary index clustered according to search key
* One lookup leads to all result tuples in their entirety

Index versus table scan (cont’d)

BUT(!):

* Consider and a secondary, non-clustered
indexon R(A)
* Need to follow pointers to get the actual result tuples

* Say that 20% of R satisfies A > v
* Could happen even for equality predicates

* |/O’s for scan-based selection:
* |/O’s for index-based selection:

* Table scan wins if a block contains more than 5 tuples!
* B(R) = |R|/5 < 20%|R|+lookup

Index nested-loop join

* Idea: use avalue of R. A to probe the index on S(B)

* For each block of R, and for each r in the block:

Use the index on S(B) to retrieve s withs.B=r.4
Output rs

* |/O’s:
* Typically, the cost of an index lookup is 2-4 1/O’s (depending on the
index tree height if B+ tree)

* Beats other join methods if |R| is not too big
* Better pick R to be the smaller relation

* Memory requirement: 3 (extra memory can be used to
cache index, e.g. root of B+ tree)

Summary of techniques

* Scan
* Selection, duplicate-preserving projection, nested-loop join

e Sort

 External merge sort, sort-merge join, union (set), difference,
intersection, duplicate elimination, grouping and agg.

e Hash

* Hash join, union (set), difference, intersection, duplicate
elimination, grouping and aggregation

* Index
* Selection, index nested-loop join, zig-zag join

Another view of techniques

* Selection
* Scan without index (linear search):
* Scan with index - selection condition must be on search-key of index
* B+ index:
* Hashindex:
* Projection
* Without duplicate elimination:
* With duplicate elimination
 Sorting-based:
* Hash-based: where t is the result of the hashing phase

* Join
* Block-based nested loop join (scan table):
* Sort-merge join
* Hashjoin
* Index nested loop join

	Slide 1: Query Processing
	Slide 2: Announcements
	Slide 3
	Slide 4: Overview (cont.)
	Slide 5: Outline
	Slide 6: Notation
	Slide 7: Scanning-based algorithms
	Slide 8: Table scan
	Slide 9: Basic nested-loop join
	Slide 10: Example for basic nested loop join
	Slide 11: Improvement: block nested-loop join
	Slide 12: Example for block-based nested loop join
	Slide 13: More improvements
	Slide 14: Example for block-based nested loop join
	Slide 15: Case study:
	Slide 16: Outline
	Slide 17: Sorting-based algorithms
	Slide 18: External merge sort
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Analysis (optional)
	Slide 38: Performance of external merge sort
	Slide 39: Case study (optional):
	Slide 40: Case study (optional):
	Slide 41
	Slide 42: Sort-merge join
	Slide 43: Example of merge join
	Slide 44: Outline
	Slide 45: Hashing-based algorithms
	Slide 46: Hash join
	Slide 47: Partitioning phase
	Slide 48: Probing phase
	Slide 49: Performance of (two-pass) hash join
	Slide 50: Generalizing for larger inputs
	Slide 51: Other hash-based algorithms
	Slide 52: Outline
	Slide 53: Index-based algorithms
	Slide 54: Selection using index
	Slide 55: Index versus table scan
	Slide 56: Index versus table scan (cont’d)
	Slide 57: Index nested-loop join
	Slide 58: Summary of techniques
	Slide 59: Another view of techniques

