
Query Processing
CS348

Instructor: Sujaya Maiyya

Announcements

• Midterm: On Nov 7th

• Everything until lecture 12
• RA, SQL, DB Design (ER + design theory)

2

Overview

3

SELECT …
FROM …
WHERE…

Parser Binder

Logical Plan
Translator

Optimizer
Physical Plan

Translator

Query
Executor

Root

SELECT … TABLES … CON.

Customer Product
=

cid 5

RESULT

cid

…

AST
Text

Logical Plan

Physical
Plan

Join
C.cid=O.cid

Scan Tbl
Order

100 < price

Project
oid

Scan Tbl
Customer

cid=3

HashJoin
L.$2=R.$3

Filter
$2=5

IndexScan
order.db

IndexScan
cust.db

Project
$5

Overview (cont.)

• Many different ways of processing the same query
• Scan? Sort? Hash? Use an index?

• All have different performance characteristics and/or
make different assumptions about data

• Best choice depends on the situation
• Implement all alternatives?

• Let the query optimizer choose at run-time (next
lecture)

4

Outline

• Scan

• Index

• Sort

• Hash

5

Memory

Disk

select * from User where pop =0.8

u1
u2
…

m1
m2
…

u1, u2

u3,u4

…

MemberUser

select * from User, Member where
User.uid = Member.uid;

Number of memory
blocks available: 𝑀

Number of rows for a table 𝑈𝑠𝑒𝑟𝑠
Number of disk blocks for a table

𝐵 𝑈𝑠𝑒𝑟𝑠 =
𝑈𝑠𝑒𝑟𝑠

𝑜𝑓 𝑟𝑜𝑤𝑠 𝑝𝑒𝑟 𝑏𝑙𝑜𝑐𝑘

Notation

• Relations: 𝑅, 𝑆

• Tuples: 𝑟, 𝑠

• Number of tuples: 𝑅 , 𝑆

• Number of disk blocks: 𝐵 𝑅 , 𝐵 𝑆

• Number of memory blocks available: 𝑀

• Cost metric
• Number of I/O’s

• Memory requirement

6

Scanning-based algorithms

7

Table scan

• Scan table R and process the query
• Selection over R

• Projection of R without duplicate elimination

• I/O’s: 𝐵 𝑅
• Trick for selection:

• stop early if it is a lookup by key

• Memory requirement: 2 (blocks)
• 1 for input, 1 for buffer output

• Increase memory does not improve I/O

• Not counting the cost of writing the result out
• Same for any algorithm!

8

Disk

r1 r2 R

Memory

r3 r4

….

r1 r2

r1 r2

Buffer output

1 for input

Basic nested-loop join

𝑅 ⋈𝑝 𝑆

• For each 𝑟 in a block BR of 𝑅:
 For each 𝑠 in a block BS of 𝑆:
 Output 𝑟𝑠 if 𝑝 is true over 𝑟 and 𝑠

• 𝑅 is called the outer table; 𝑆 is called the inner table

• I/O’s: 𝐵 𝑅 + |𝑅| ⋅ 𝐵 𝑆

• Memory requirement: 3

9

Blocks of R are moved
into memory only once

Blocks of S are moved into memory
|R| number of times

Example for basic nested loop join

• 1block =2 tuples, 3 blocks of memory

• R

• S

• Number of I/O:
 B(R) + |R| * B(S) = 2 blocks + 4 * 3blocks = 14

10

r1,r2

r3,r4

s1,s2

s3,s4

s5,s6

r1,r2

s1,s2

output

r1,r2

s3,s4

output

r1,r2

s5,s6

output

r1,r2

s1,s2

output

r1,r2

s3,s4

output

r1,r2

s5,s6

output

r3,r4

s1,s2

output

r3,r4

s3,s4

output

r3,r4

s5,s6

output

Only compares (r1,s1), (r1,s2)
Disk

Time 1 2 3 4 5 6 7 8 9

Improvement: block nested-loop join

𝑅 ⋈𝑝 𝑆

• For each block BR of 𝑅:
 For each block BS of 𝑆:
 For each 𝑟 in BR :
 For each 𝑠 in BS:
 Output 𝑟𝑠 if 𝑝 is true over 𝑟 and 𝑠

• I/O’s: 𝐵 𝑅 + 𝐵(𝑅) ⋅ 𝐵 𝑆

• Memory requirement: 3

11

Blocks of R are moved
into memory only once

Blocks of S are moved into memory
B(R) number of times

Example for block-based nested loop
join
• 1block =2 tuples, 3 blocks of memory

• R

• S

• Number of I/O:
 B(R) + B(R)* B(S) = 2 blocks + 2 * 3blocks = 8

12

r1,r2

r3,r4

s1,s2

s3,s4

s5,s6

r1,r2

s1,s2

output

r1,r2

s3,s4

output

r1,r2

s5,s6

output

r3,r4

s1,s2

output

r3,r4

s3,s4

output

r3,r4

s5,s6

output

Compares (r1,s1), (r2,s1),
(r1,s2),(r2,s2)

Time 1 2 3 4 5 6

More improvements

• Stop early if the key of the inner table is being
matched

• Make use of available memory
• Stuff memory with as much of 𝑅 as possible, stream 𝑆

by, and join every 𝑆 tuple with all 𝑅 tuples in memory

• I/O’s: 𝐵 𝑅 +
𝐵 𝑅

𝑀−2
⋅ 𝐵 𝑆

• Or, roughly: 𝐵(𝑅) ⋅ 𝐵(𝑆)/𝑀

• Memory requirement: 𝑀 (as much as possible)

• Which table would you pick as the outer? (exercise)

13

• 1block =2 tuples, 4 blocks of memory

• R

• S

• Number of I/O:
B(R) + B(R)/(M-2)* B(S) = 2 blocks + 1 * 3blocks = 5

Example for block-based nested loop
join

14

r1,r2

r3,r4

s1,s2

s3,s4

s5,s6

r1,r2

s1,s2

r1,r2

s3,s4

r1,r2

s5,s6

r3,r4 r3,r4 r3,r4

Compares (r1,s1), (r2,s1), (r1,s2),(r2,s2),
(r3,s1),(r3,s2),(r4,s1),(r4,s2)

output output output

Time 1 2 3

Case study:

• System requirements:
• Each disk/memory block can hold up to 10 rows (from any table);

• All tables are stored compactly on disk (10 rows per block);

• 8 memory blocks are available for query processing: M=8

• Database:
• User(uid, age, pop), Member(gid,uid,date), Group(gid, gname)

• |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows

• #of blocks: B(User)=1000/10=100; B(Group)=100/10=10; B(Member)=50000/10=5k

• Q1: select * from User where pop =0.8
• I/O cost using table scan?

• Q2: select * from User, Member where User.uid = Member.uid;
• I/O cost using blocked-based nested loop join

15

𝐵 𝑈𝑠𝑒𝑟 = 100

𝐵 𝑈𝑠𝑒𝑟 +
𝐵 𝑈𝑠𝑒𝑟

𝑀 − 2
⋅ 𝐵 𝑀𝑒𝑚𝑏𝑒𝑟 = 100 +

100

8 − 2
⋅ 5000 = 85,100

Outline

• Scan
• Selection, duplicate-preserving projection, nested-loop join

• Sort
• External merge sort, sort-merge-join

• Hash
• Hash join, point selection, group by and aggregations

• Index
• Selection, index nested-loop join

16

Sorting-based algorithms

17http://en.wikipedia.org/wiki/Mail_sorter#mediaviewer/File:Mail_sorting,1951.jpg

External merge sort
Recall in-memory merge sort: Sort progressively larger

runs, 2, 4, 8, …, |R|, by merging consecutive “runs”

Problem: sort 𝑹, but 𝑹 does not fit in memory
• Phase 0: read 𝑀 blocks

of 𝑅 at a time, sort them,
and write out a level-0 run

• Phase 1: merge 𝑀 − 1
level-0 runs at a time,
and write out a level-1 run

• Phase 2: merge 𝑀 − 1 level-1 runs at a time, and
write out a level-2 run

…
• Final phase produces one sorted run 18

Memory

𝑅

Level-0

…

…

… Level-1

Disk

19

➢ 3 memory blocks available; each holds one number

➢ Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

➢ Phase 0

Example

R: 1 7 4 5 2 8 9 6 3

Arrows indicate the
blocks in memory

Disk

20

➢ 3 memory blocks available; each holds one number

➢ Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

➢ Phase 0

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the
blocks in memory

Disk

21

➢ 3 memory blocks available; each holds one number

➢ Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

➢ Phase 0

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the
blocks in memory

Disk

22

➢ 3 memory blocks available; each holds one number

➢ Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

➢ Phase 0

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the
blocks in memory

Disk

2 5 8

23

➢ 3 memory blocks available; each holds one number

➢ Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

➢ Phase 0

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the
blocks in memory

Disk

2 5 8

24

➢ 3 memory blocks available; each holds one number

➢ Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

➢ Phase 0

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the
blocks in memory

Disk

2 5 8 3 6 9

25

➢ 3 memory blocks available; each holds one number

➢ Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

➢ Phase 0

➢ Phase 1

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the
blocks in memory

Disk

2 5 8 3 6 9

26

➢ 3 memory blocks available; each holds one number

➢ Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

➢ Phase 0

➢ Phase 1

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the
blocks in memory

Disk

2 5 8 3 6 9

1

27

➢ 3 memory blocks available; each holds one number

➢ Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

➢ Phase 0

➢ Phase 1

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the
blocks in memory

Disk

2 5 8 3 6 9

1

28

➢ 3 memory blocks available; each holds one number

➢ Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

➢ Phase 0

➢ Phase 1

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the
blocks in memory

Disk

2 5 8 3 6 9

1 2

29

➢ 3 memory blocks available; each holds one number

➢ Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

➢ Phase 0

➢ Phase 1

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the
blocks in memory

Disk

2 5 8 3 6 9

1 2

30

➢ 3 memory blocks available; each holds one number

➢ Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

➢ Phase 0

➢ Phase 1

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the
blocks in memory

Disk

2 5 8 3 6 9

1 2 4

31

➢ 3 memory blocks available; each holds one number

➢ Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

➢ Phase 0

➢ Phase 1

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the
blocks in memory

Disk

2 5 8 3 6 9

1 2 4

32

➢ 3 memory blocks available; each holds one number

➢ Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

➢ Phase 0

➢ Phase 1

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the
blocks in memory

Disk

2 5 8 3 6 9

1 2 4 5

33

➢ 3 memory blocks available; each holds one number

➢ Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

➢ Phase 0

➢ Phase 1

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the
blocks in memory

Disk

2 5 8 3 6 9

1 2 4 5

34

➢ 3 memory blocks available; each holds one number

➢ Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

➢ Phase 0

➢ Phase 1

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the
blocks in memory

Disk

2 5 8 3 6 9

1 2 4 5 7 8

35

➢ 3 memory blocks available; each holds one number

➢ Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

➢ Phase 0

➢ Phase 1

➢ Phase 2 (final)

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the
blocks in memory

Disk

2 5 8 3 6 9

1 2 4 5 7 8 3 6 9

36

➢ 3 memory blocks available; each holds one number

➢ Input: 1, 7, 4, 5, 2, 8, 9, 6, 3

➢ Phase 0

➢ Phase 1

➢ Phase 2 (final)

Example

R: 1 7 4 5 2 8 9 6 3

1 4 7

Arrows indicate the
blocks in memory

Disk

2 5 8 3 6 9

1 2 4 5 7 8 3 6 9

1 2 3 4 5 6 7 8 9

Analysis (optional)

• Phase 0: read 𝑀 blocks of 𝑅 at a time, sort them,
and write out a level-0 run

• There are
𝐵 𝑅

𝑀
 level-0 sorted runs

• Phase 𝑖: merge 𝑀 − 1 level- 𝑖 − 1 runs at a time,
and write out a level-𝑖 run
• 𝑀 − 1 memory blocks for input, 1 to buffer output

• The number of level-𝑖 runs =
 𝑛𝑢𝑚𝑏𝑒𝑟 of level− 𝑖−1 runs

𝑀−1

• log𝑀−1
𝐵 𝑅

𝑀
 number of such phases

• Final pass produces one sorted run

37

I/O cost is 2 ⋅ 𝐵 𝑅

I/O cost is 2 ⋅ 𝐵 𝑅
times # of phases

Subtract 𝐵 𝑅 for the final pass

Performance of external merge sort

• I/O’s

• 2B R ⋅ 1 + log𝑀−1
𝐵 𝑅

𝑀
− B R

• Roughly, this is 𝑂 𝐵 𝑅 × log𝑀𝐵 𝑅

• Memory requirement: 𝑀 (as much as possible)

38

What we
will use in

class

Case study (optional):

• System requirements:
• Each disk/memory block can hold up to 10 rows (from any table);

• All tables are stored compactly on disk (10 rows per block);

• 8 memory blocks are available for query processing: M=8

• Database:
• User(uid, age, pop), Member(gid,uid,date), Group(gid, gname)

• |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows

• #of blocks: B(User)=1000/10=100; B(Group)=100/10=10;
B(Member)=50000/10=5k

• Q3: select * from User order by age asc;
• I/O cost using external merge sort?

39

Case study (optional):

• System requirements:
• Each disk/memory block can hold up to 10 rows (from any table);

• All tables are stored compactly on disk (10 rows per block);

• 8 memory blocks are available for query processing: M=8

• Database:
• User(uid, age, pop), Member(gid,uid,date), Group(gid, gname)

• |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows

• #of blocks: B(User)=1000/10=100; B(Group)=100/10=10;
B(Member)=50000/10=5k

• Q3: select * from User order by age asc;
• I/O cost using external merge sort?

• Phase 0: read 8 blocks into memory at a time and sort it => ceil(100/8)=13 runs

• Phase 1: merge 7 runs at a time => ceil(13/7)=2 runs

• Phase 2: merge last 2 runs into a single run

40

𝑅
…

8blocks

8blocks

8blocks

Level-0…

8blocks

8blocks

Level-1
8*7=56blocks

8*5+4=blocks

4blocks

100 blocks

Level-2

Number of phases: log𝑀−1
𝐵 𝑈𝑠𝑒𝑟

𝑀
+ 1 = log(8−1)

100

8
+ 1 = 3

Phase 0: read B(user)=100 blocks, write B(User)=100 blocks (temporary result)
Phase 1: read B(user)=100 blocks, write B(User)=100 blocks (temporary result)
Phase 2: read B(user)=100 blocks, write B(User)=100 blocks (final result, don’t count)

Total: 2𝐵 𝑈𝑠𝑒𝑟 ∗ 3 − 𝐵 𝑈𝑠𝑒𝑟 = 5𝐵 𝑢𝑠𝑒𝑟 = 500

41

• Pure Sort: e.g., ORDER BY

• Set Union, Difference, Intersection, or Join on R and S (next slide): When

the join condition is an equality condition e.g., R.A = S.B,

• All can be implemented by walking relations “in tandem” as in the

merge step of merge sort.

• DISTINCT

• Group-By-and-Aggregate: Exercise: Think about how you can implement

group-by-and-aggregate with sorting?

Operators That Use Sorting

Sort-merge join

𝑅 ⋈𝑅.𝐴=𝑆.𝐵 𝑆

• Sort 𝑅 and 𝑆 by their join attributes; then merge
• 𝑟, 𝑠 = the first tuples in sorted 𝑅 and 𝑆

• Repeat until one of 𝑅 and 𝑆 is exhausted:
 If 𝑟. 𝐴 > 𝑠. 𝐵
 then 𝑠 = next tuple in 𝑆
 else if 𝑟. 𝐴 < 𝑠. 𝐵
 then 𝑟 = next tuple in 𝑅
 else output all matching tuples, and
 𝑟, 𝑠 = next in 𝑅 and 𝑆

• I/O’s: sorting +𝑂(𝐵 𝑅 + 𝐵 𝑆)
• In most cases (e.g., join of key and foreign key)

• Worst case is 𝐵 𝑅 ⋅ 𝐵 𝑆 : everything joins
42

Example of merge join

𝑅: 𝑆: 𝑅 ⋈𝑅.𝐴=𝑆.𝐵 𝑆:
 𝑟1. 𝐴 = 1 𝑠1. 𝐵 = 1
 𝑟2. 𝐴 = 3 𝑠2. 𝐵 = 2
 𝑟3. 𝐴 = 3 𝑠3. 𝐵 = 3
 𝑟4. 𝐴 = 5 𝑠4. 𝐵 = 3
 𝑟5. 𝐴 = 7 𝑠5. 𝐵 = 8
 𝑟6. 𝐴 = 7
 𝑟7. 𝐴 = 8

43

𝑟1𝑠1

𝑟2𝑠3

𝑟2𝑠4

𝑟3𝑠3

𝑟3𝑠4

𝑟7𝑠5

Outline

• Scan
• Selection, duplicate-preserving projection, nested-loop join

• Sort
• External merge sort, sort-merge-join

• Hash
• Hash join, point selection, group by and aggregations

• Index
• Selection, index nested-loop join

44

Hashing-based algorithms

45https://recipesfromapantry.com/frozen-hash-browns-in-oven/

Hash join

𝑅 ⋈𝑅.𝐴=𝑆.𝐵 𝑆

• Main idea
• Partition 𝑅 and 𝑆 by hashing their join attributes, and

then consider corresponding partitions of 𝑅 and 𝑆

• If 𝑟. 𝐴 and 𝑠. 𝐵 get hashed to different partitions, they
don’t join

46

Nested-loop join
considers all slots

1

2

1 2 3 4 5𝑅

𝑆
3

4

5

Hash join considers only
those along the diagonal!

Partitioning phase

• Partition 𝑅 and 𝑆 according to the same hash
function on their join attributes

47

𝑀 − 1 partitions of 𝑅

DiskMemory

𝑅

Same for 𝑆

… …

If the hash function is good, each
partition has a size of B(R)/(M-1)

allocate 1 for input and
M-1 for output buffers

ℎ

Probing phase

• Read in each partition of 𝑅, stream in the
corresponding partition of 𝑆, join
• Typically build a hash table for the partition of 𝑅

• Not the same hash function used for partition, of course!

48

Disk Memory

𝑅
partitions

𝑆
partitions

…
…

…load

stream For each 𝑆 tuple,
probe and join

ℎ′

ℎ′

allocate M-1 blocks for R
and 1 block for S

Performance of (two-pass) hash join

• If hash join completes in two phases:
• I/O’s: 3 ⋅ 𝐵 𝑅 + 𝐵 𝑆 or 𝑂 𝐵 𝑅 + 𝐵 𝑆

• 1st phase: read B(R) + B(S) into memory to partition and write
partitioned B(R) +B(S) to disk

• 2nd phase: read B(R) + B(S) into memory to merge and join

• Memory requirement:
• In the probing phase, we should have enough memory to fit

one partition of R: 𝑀 − 1 >
𝐵 𝑅

𝑀−1

• 𝑀 > 𝐵 𝑅 + 1

• We can always pick 𝑅 to be the smaller relation, so:

𝑀 > min 𝐵 𝑅 , 𝐵 𝑆 + 1

49

Generalizing for larger inputs

• What if a partition is too large for memory?
• Read it back in and partition it again!

• Re-partition 𝑂 log𝑀𝐵 𝑅 times

50

Other hash-based algorithms

• Union (set), difference, intersection

• Duplicate elimination
• Check for duplicates within each partition/bucket

• Grouping and aggregation
• Apply the hash functions to the group-by columns

51

Outline

• Scan
• Selection, duplicate-preserving projection, nested-loop join

• Sort
• External merge sort, sort-merge-join

• Hash
• Hash join, point selection, group by and aggregations

• Index
• Selection, index nested-loop join

52

Index-based algorithms

53http://i1.trekearth.com/photos/28820/p2270994.jpg

Selection using index

• Equality predicate: 𝜎𝐴=𝑣 𝑅
• Use an ISAM, B+-tree, or hash index on 𝑅 𝐴

• Range predicate: 𝜎𝐴>𝑣 𝑅
• Use an ordered index (e.g., ISAM or B+-tree) on 𝑅(𝐴)

• Hash index is not applicable

• Indexes other than those on 𝑅(𝐴) may be useful
• Example: B+-tree index on 𝑅 𝐴, 𝐵

• How about B+-tree index on 𝑅 𝐵, 𝐴 ?

54

Index versus table scan

Situations where index clearly wins:

• Index-only queries which do not require retrieving
actual tuples
• Example: 𝜋𝐴 𝜎𝐴>𝑣 𝑅

• Primary index clustered according to search key
• One lookup leads to all result tuples in their entirety

55

Index versus table scan (cont’d)

BUT(!):

• Consider 𝜎𝐴>𝑣 𝑅 and a secondary, non-clustered
index on 𝑅(𝐴)
• Need to follow pointers to get the actual result tuples

• Say that 20% of 𝑅 satisfies 𝐴 > 𝑣
• Could happen even for equality predicates

• I/O’s for scan-based selection: 𝐵 𝑅

• I/O’s for index-based selection: lookup + 20% 𝑅

• Table scan wins if a block contains more than 5 tuples!
• B(R) = |R|/5 < 20%|R|+lookup

56

Index nested-loop join

𝑅 ⋈𝑅.𝐴=𝑆.𝐵 𝑆

• Idea: use a value of 𝑅. 𝐴 to probe the index on 𝑆(𝐵)

• For each block of 𝑅, and for each 𝑟 in the block:
 Use the index on 𝑆 𝐵 to retrieve 𝑠 with 𝑠. 𝐵 = 𝑟. 𝐴

 Output 𝑟𝑠

• I/O’s: 𝐵 𝑅 + 𝑅 ⋅ (index_lookup + I/O for record fetch)
• Typically, the cost of an index lookup is 2-4 I/O’s (depending on the

index tree height if B+ tree)

• Beats other join methods if 𝑅 is not too big

• Better pick 𝑅 to be the smaller relation

• Memory requirement: 3 (extra memory can be used to
cache index, e.g. root of B+ tree)

57

Summary of techniques

• Scan
• Selection, duplicate-preserving projection, nested-loop join

• Sort
• External merge sort, sort-merge join, union (set), difference,

intersection, duplicate elimination, grouping and agg.

• Hash
• Hash join, union (set), difference, intersection, duplicate

elimination, grouping and aggregation

• Index
• Selection, index nested-loop join, zig-zag join

58

Another view of techniques

• Selection
• Scan without index (linear search): O(𝐵 𝑅)

• Scan with index – selection condition must be on search-key of index

• B+ index: O(log(𝐵 𝑅)

• Hash index: O(1)

• Projection
• Without duplicate elimination: O(𝐵 𝑅)

• With duplicate elimination

• Sorting-based: 𝑂 𝐵 𝑅 ⋅ log𝑀𝐵 𝑅

• Hash-based: O(𝐵 𝑅 + 𝑡)where t is the result of the hashing phase

• Join

• Block-based nested loop join (scan table): O(𝐵 𝑅 ⋅
𝐵 𝑆

𝑀
)

• Sort-merge join 𝑂 𝐵 𝑅 ⋅ log𝑀𝐵 𝑅 + 𝐵 𝑆 ⋅ log𝑀𝐵 𝑆

• Hash join 𝑂 𝐵 𝑅 + 𝐵 𝑆

• Index nested loop join O(𝐵 𝑅 + 𝑅 ⋅ index lookup)
59

	Slide 1: Query Processing
	Slide 2: Announcements
	Slide 3
	Slide 4: Overview (cont.)
	Slide 5: Outline
	Slide 6: Notation
	Slide 7: Scanning-based algorithms
	Slide 8: Table scan
	Slide 9: Basic nested-loop join
	Slide 10: Example for basic nested loop join
	Slide 11: Improvement: block nested-loop join
	Slide 12: Example for block-based nested loop join
	Slide 13: More improvements
	Slide 14: Example for block-based nested loop join
	Slide 15: Case study:
	Slide 16: Outline
	Slide 17: Sorting-based algorithms
	Slide 18: External merge sort
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Analysis (optional)
	Slide 38: Performance of external merge sort
	Slide 39: Case study (optional):
	Slide 40: Case study (optional):
	Slide 41
	Slide 42: Sort-merge join
	Slide 43: Example of merge join
	Slide 44: Outline
	Slide 45: Hashing-based algorithms
	Slide 46: Hash join
	Slide 47: Partitioning phase
	Slide 48: Probing phase
	Slide 49: Performance of (two-pass) hash join
	Slide 50: Generalizing for larger inputs
	Slide 51: Other hash-based algorithms
	Slide 52: Outline
	Slide 53: Index-based algorithms
	Slide 54: Selection using index
	Slide 55: Index versus table scan
	Slide 56: Index versus table scan (cont’d)
	Slide 57: Index nested-loop join
	Slide 58: Summary of techniques
	Slide 59: Another view of techniques

