Query Processing

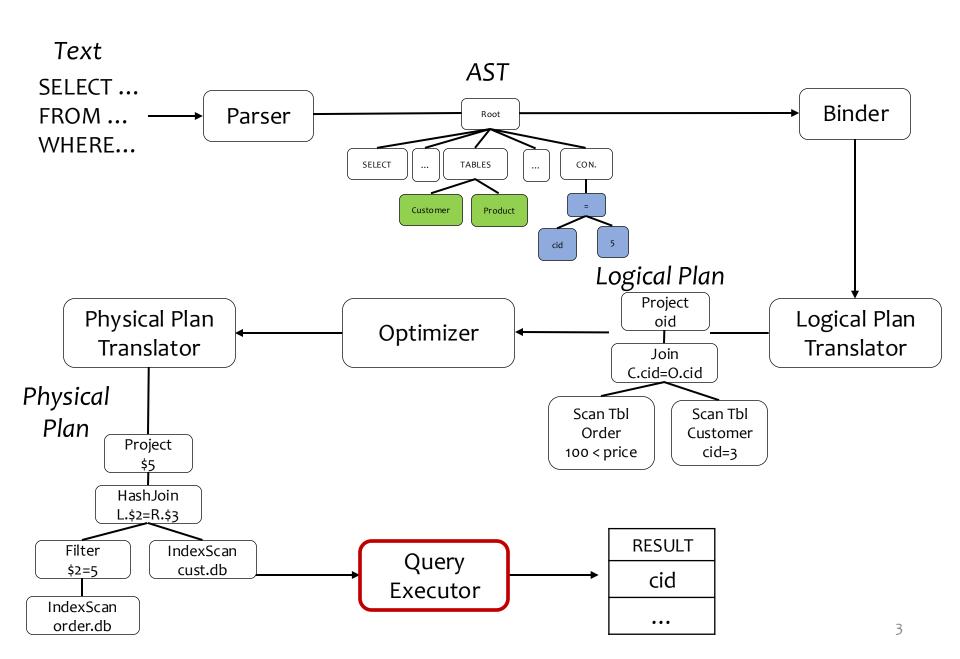
CS348

Instructor: Sujaya Maiyya

Announcements

- Midterm: On Nov 7th
 - Everything until lecture 12
 - RA, SQL, DB Design (ER + design theory)

Overview



Overview (cont.)

- Many different ways of processing the same query
 - Scan? Sort? Hash? Use an index?
 - All have different performance characteristics and/or make different assumptions about data
- Best choice depends on the situation
 - Implement all alternatives?
 - Let the query optimizer choose at run-time (next lecture)

Outline Number of memory blocks available: M Scan u1, u2 select * from User where pop =0.8 Memory u3,u4 select * from User, Member where • Index User.uid = Member.uid; Sort Member User **U1** m₁ Disk **u**2 m₂ Hash Number of rows for a table | *Users* | Number of disk blocks for a table $B(Users) = \frac{|Users|}{\# of \ rows \ per \ block}$

Notation

- Relations: R, S
- Tuples: *r* , *s*
- Number of tuples: |R|, |S|
- Number of disk blocks: B(R), B(S)
- Number of memory blocks available: M
- Cost metric
 - Number of I/O's
 - Memory requirement

Scanning-based algorithms

Table scan

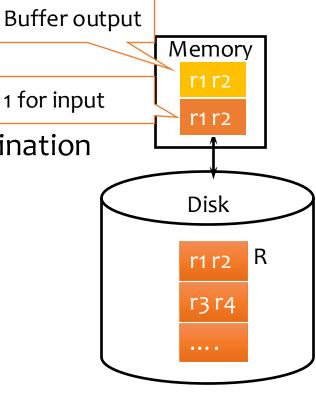
Scan table R and process the query

Selection over R

Projection of R without duplicate elimination

• I/O's: *B*(*R*)

- Trick for selection:
 - stop early if it is a lookup by key
- Memory requirement: 2 (blocks)
 - 1 for input, 1 for buffer output
 - Increase memory does not improve I/O
- Not counting the cost of writing the result out
 - Same for any algorithm!



Basic nested-loop join

$R \bowtie_p S$

- For each r in a block $B_{
 m R}$ of R:

 For each s in a block $B_{
 m S}$ of S:

 Output rs if p is true over r and s
 - *R* is called the outer table; *S* is called the inner table
 - I/O's: $B(R) + |R| \cdot B(S)$

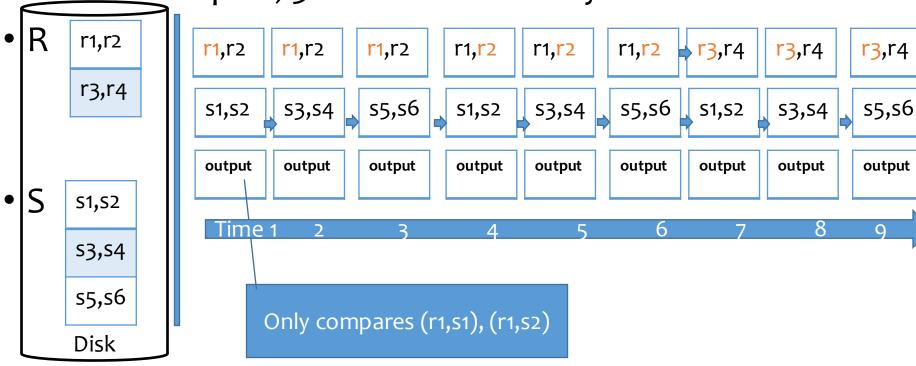
Blocks of R are moved into memory only once

Blocks of S are moved into memory |R| number of times

Memory requirement: 3

Example for basic nested loop join

• 1block = 2 tuples, 3 blocks of memory



• Number of I/O: B(R) + |R| * B(S) = 2 blocks + 4 * 3blocks = 14

Improvement: block nested-loop join

$R \bowtie_p S$

```
• For each block B_R of R:
    For each block B_S of S:
    For each r in B_R:
    For each s in s:
    Output rs if p is true over r and s
```

• I/O's: $B(R) + B(R) \cdot B(S)$

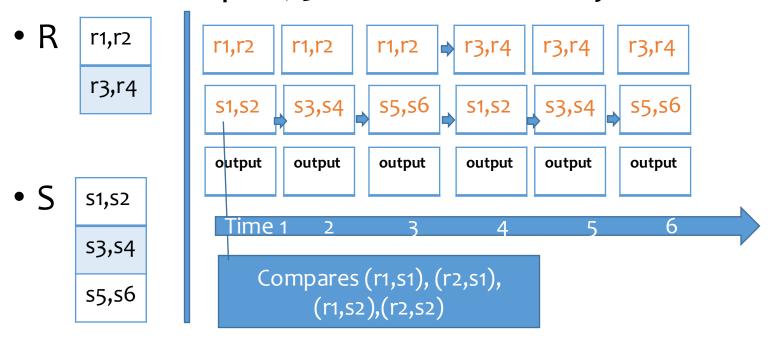
Blocks of R are moved into memory only once

Blocks of S are moved into memory B(R) number of times

Memory requirement: 3

Example for block-based nested loop join

• 1block = 2 tuples, 3 blocks of memory



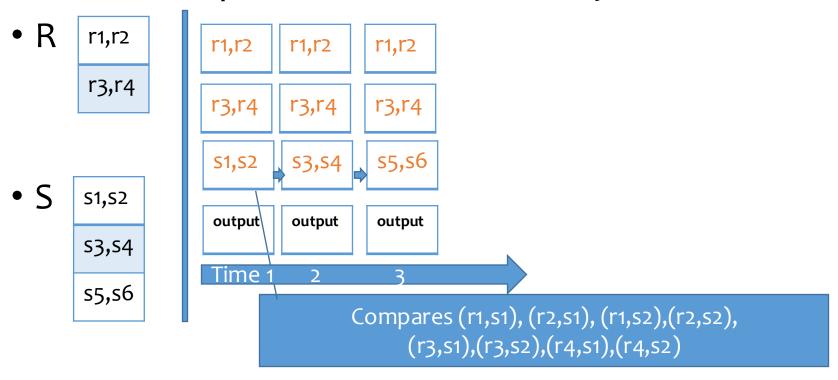
• Number of I/O: B(R) + B(R) * B(S) = 2 blocks + 2 * 3blocks = 8

More improvements

- Stop early if the key of the inner table is being matched
- Make use of available memory
 - Stuff memory with as much of *R* as possible, stream *S* by, and join every *S* tuple with all *R* tuples in memory
 - I/O's: $B(R) + \left[\frac{B(R)}{M-2}\right] \cdot B(S)$
 - Or, roughly: $B(R) \cdot B(S)/M$
 - Memory requirement: M (as much as possible)
- Which table would you pick as the outer? (exercise)

Example for block-based nested loop join

• 1block = 2 tuples, 4 blocks of memory



• Number of I/O: B(R) + B(R)/(M-2)* B(S) = 2 blocks + 1* 3blocks = 5

Case study:

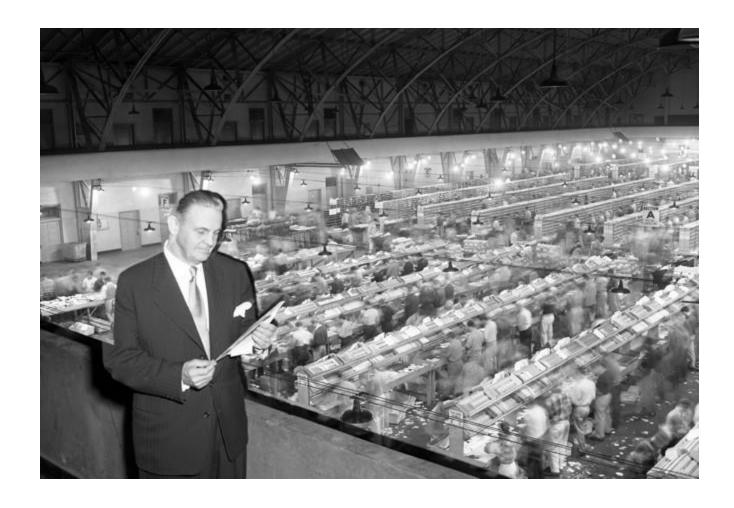
- System requirements:
 - Each disk/memory block can hold up to 10 rows (from any table);
 - All tables are stored compactly on disk (10 rows per block);
 - 8 memory blocks are available for query processing: M=8
- Database:
 - User(<u>uid</u>, age, pop), Member(<u>gid</u>, <u>uid</u>, date), Group(<u>gid</u>, gname)
 - |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows
 - #of blocks: B(User)=1000/10=100; B(Group)=100/10=10; B(Member)=50000/10=5k
- Q1: select * from User where pop =0.8
 - I/O cost using table scan? B(User) = 100
- Q2: select * from User, Member where User.uid = Member.uid;
 - I/O cost using blocked-based nested loop join

$$B(User) + \left[\frac{B(User)}{M-2}\right] \cdot B(Member) = 100 + \left[\frac{100}{8-2}\right] \cdot 5000 = 85,100$$

Outline

- Scan
 - Selection, duplicate-preserving projection, nested-loop join
- Sort
 - External merge sort, sort-merge-join
- Hash
 - Hash join, point selection, group by and aggregations
- Index
 - Selection, index nested-loop join

Sorting-based algorithms



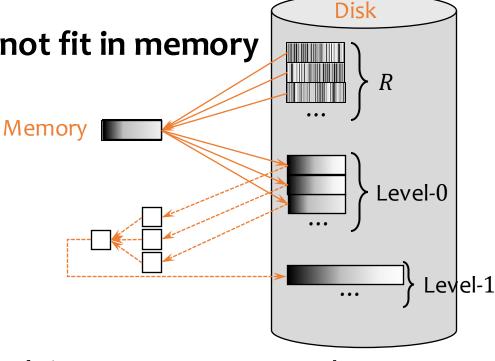
External merge sort

Recall in-memory merge sort: Sort progressively larger runs, 2, 4, 8, ..., |R|, by merging consecutive "runs"

Problem: sort R, but R does not fit in memory

 Phase 0: read M blocks of R at a time, sort them, and write out a level-0 run

 Phase 1: merge (M − 1) level-0 runs at a time, and write out a level-1 run

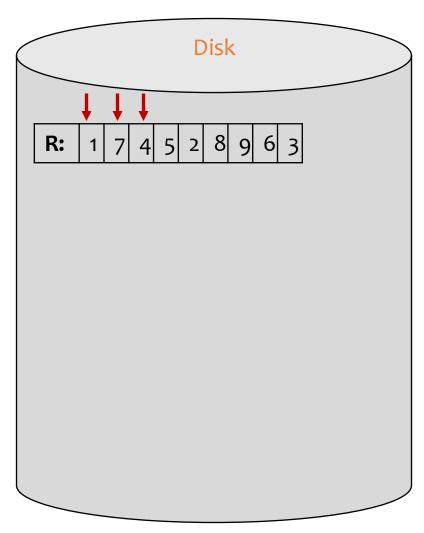


• Phase 2: merge (M-1) level-1 runs at a time, and write out a level-2 run

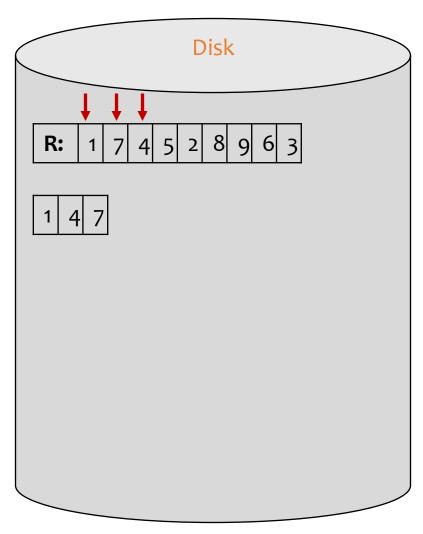
• • •

Final phase produces one sorted run

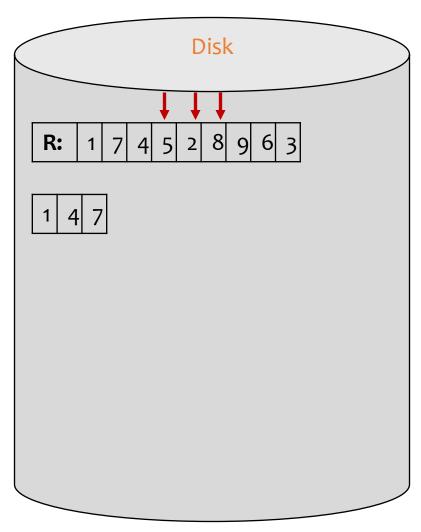
- > 3 memory blocks available; each holds one number
- > Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- > Phase o



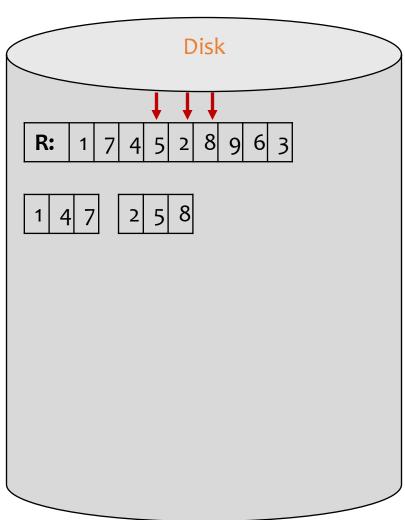
- > 3 memory blocks available; each holds one number
- > Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- > Phase o



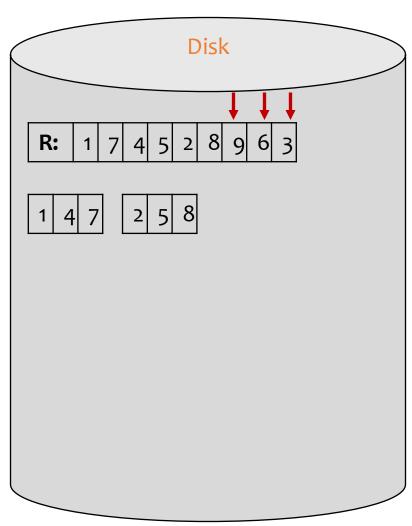
- > 3 memory blocks available; each holds one number
- > Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- > Phase o



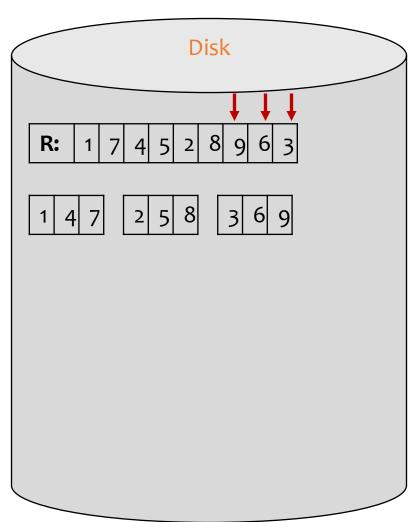
- > 3 memory blocks available; each holds one number
- > Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- > Phase o



- > 3 memory blocks available; each holds one number
- > Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- > Phase o

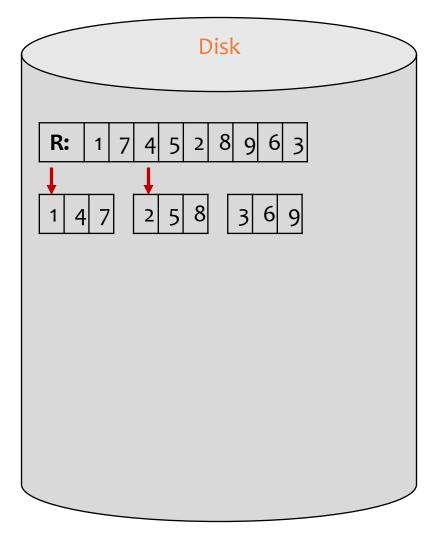


- > 3 memory blocks available; each holds one number
- > Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- > Phase o



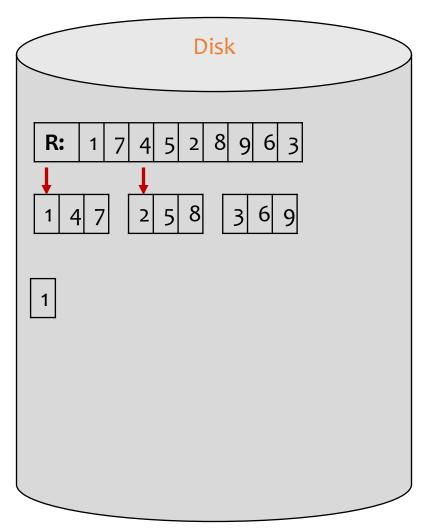
- > 3 memory blocks available; each holds one number
- > Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- > Phase o

➤ Phase 1



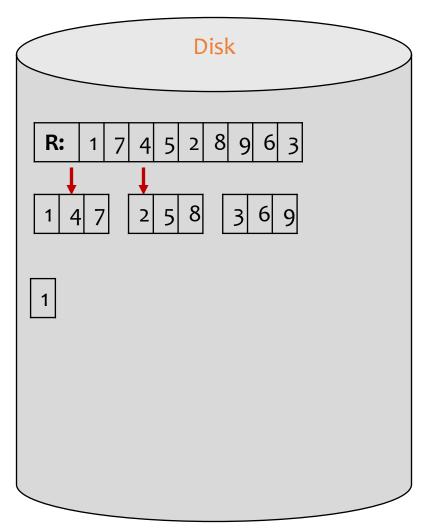
- > 3 memory blocks available; each holds one number
- > Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- > Phase o

➤ Phase 1



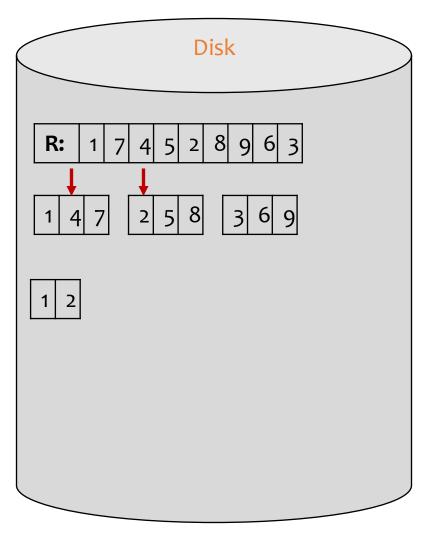
- > 3 memory blocks available; each holds one number
- > Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- > Phase o

➤ Phase 1



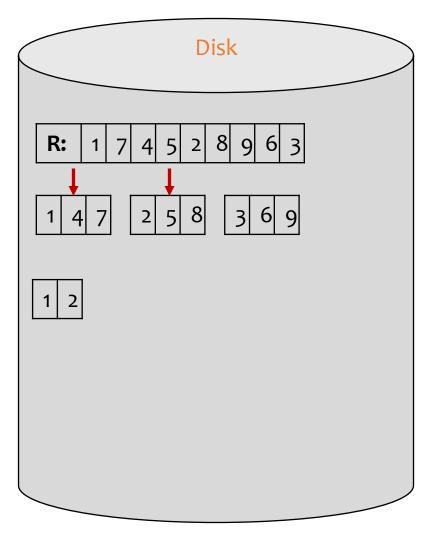
- > 3 memory blocks available; each holds one number
- > Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- > Phase o

➤ Phase 1



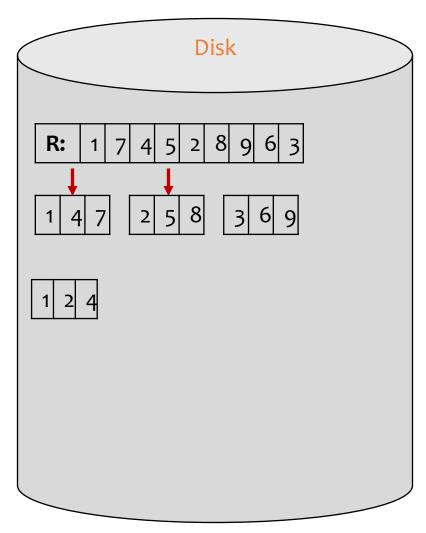
- > 3 memory blocks available; each holds one number
- > Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- > Phase o

➤ Phase 1



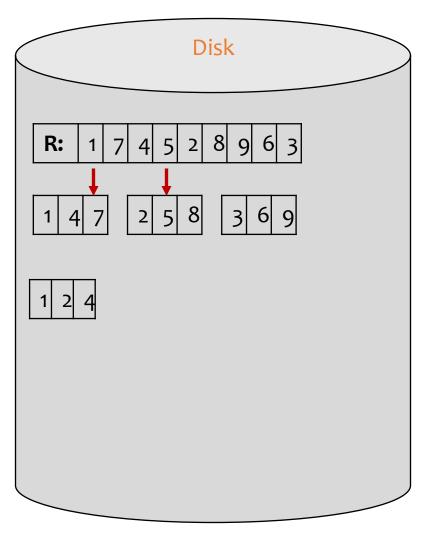
- > 3 memory blocks available; each holds one number
- > Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- > Phase o

➤ Phase 1



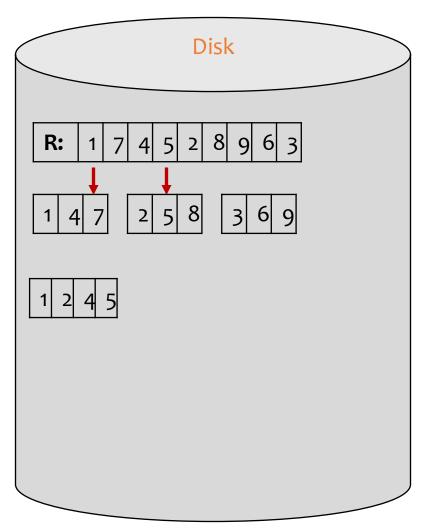
- > 3 memory blocks available; each holds one number
- > Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- > Phase o

➤ Phase 1



- > 3 memory blocks available; each holds one number
- > Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- > Phase o

➤ Phase 1



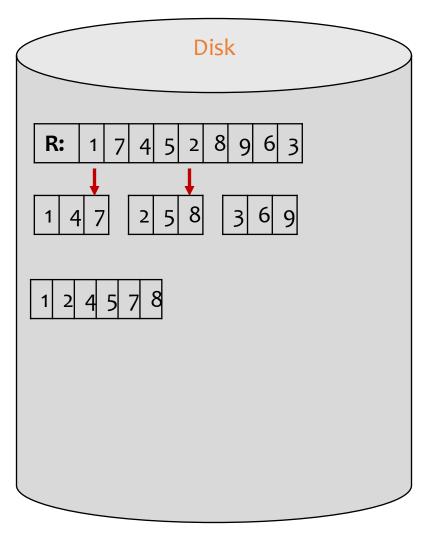
- > 3 memory blocks available; each holds one number
- > Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- > Phase o

➤ Phase 1



- > 3 memory blocks available; each holds one number
- > Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- Phase o

➤ Phase 1

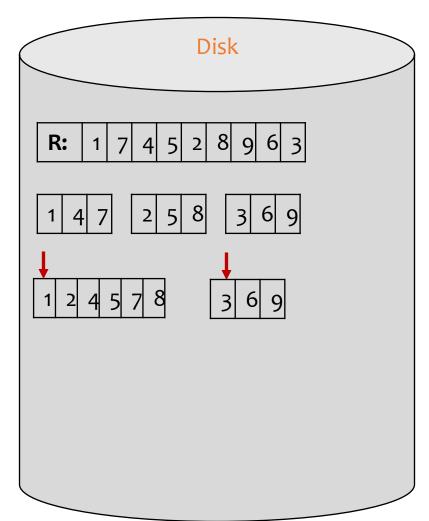


> 3 memory blocks available; each holds one number

Arrows indicate the

blocks in memory

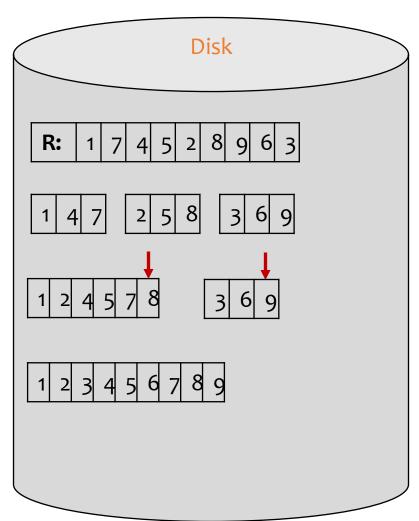
- > Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- > Phase o
- ➤ Phase 1
- Phase 2 (final)



> 3 memory blocks available; each holds one number

Arrows indicate the

- > Input: 1, 7, 4, 5, 2, 8, 9, 6, 3
- > Phase o
 - blocks in memory
- Phase 1
- Phase 2 (final)



Analysis (optional)

- Phase 0: read M blocks of R at a time, sort them, and write out a level-0 run
 - There are $\left[\frac{B(R)}{M}\right]$ level-0 sorted runs

I/O cost is $2 \cdot B(R)$

- Phase i: merge (M-1) level-(i-1) runs at a time, and write out a level-i run
 - (M-1) memory blocks for input, 1 to buffer output
 - The number of level-*i* runs = $\frac{number \text{ of level-}(i-1) \text{ runs}}{M-1}$
 - $\left[\log_{M-1}\left[\frac{B(R)}{M}\right]\right]$ number of such phases
 - Final pass produces one sorted run

I/O cost is $2 \cdot B(R)$ times # of phases

Subtract B(R) for the final pass

Performance of external merge sort

• I/O's

•
$$2B(R) \cdot \left(1 + \left\lceil \log_{M-1} \left\lceil \frac{B(R)}{M} \right\rceil \right\rceil \right) - B(R)$$

• Roughly, this is $O(B(R) \times \log_M B(R))$

What we will use in class

• Memory requirement: M (as much as possible)

Case study (optional):

- System requirements:
 - Each disk/memory block can hold up to 10 rows (from any table);
 - All tables are stored compactly on disk (10 rows per block);
 - 8 memory blocks are available for query processing: M=8
- Database:
 - User(<u>uid</u>, age, pop), Member(<u>gid</u>, <u>uid</u>, date), Group(<u>gid</u>, gname)
 - |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows
 - #of blocks: B(User)=1000/10=100; B(Group)=100/10=10; B(Member)=50000/10=5k
- Q3: select * from User order by age asc;
 - I/O cost using external merge sort?

Case study (optional):

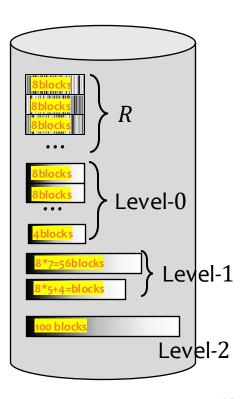
- System requirements:
 - Each disk/memory block can hold up to 10 rows (from any table);
 - All tables are stored compactly on disk (10 rows per block);
 - 8 memory blocks are available for query processing: M=8

• Database:

- User(<u>uid</u>, age, pop), Member(<u>gid</u>, <u>uid</u>, date), Group(<u>gid</u>, gname)
- |User|=1000 rows, |Group|=100 rows, |Member|=50000 rows
- #of blocks: B(User)=1000/10=100; B(Group)=100/10=10; B(Member)=50000/10=5k
- Q3: select * from User order by age asc;
 - I/O cost using external merge sort?
 - Phase o: read 8 blocks into memory at a time and sort it => ceil(100/8)=13 runs
 - Phase 1: merge 7 runs at a time => ceil(13/7)=2 runs
 - Phase 2: merge last 2 runs into a single run

Number of phases:
$$\left[\log_{M-1}\left\lceil\frac{B(User)}{M}\right\rceil\right] + 1 = \left\lceil\log_{(8-1)}\left\lceil\frac{100}{8}\right\rceil\right\rceil + 1 = 3$$

Phase 0: read B(user)=100 blocks, write B(User)=100 blocks (temporary result) Phase 1: read B(user)=100 blocks, write B(User)=100 blocks (temporary result) Phase 2: read B(user)=100 blocks, write B(User)=100 blocks (final result, don't count)



Operators That Use Sorting

- Pure Sort: e.g., ORDER BY
- Set Union, Difference, Intersection, or Join on R and S (next slide): When the join condition is an equality condition e.g., R.A = S.B,
 - All can be implemented by walking relations "in tandem" as in the merge step of merge sort.
- DISTINCT
- Group-By-and-Aggregate: Exercise: Think about how you can implement group-by-and-aggregate with sorting?

Sort-merge join

$R\bowtie_{R.A=S.B} S$

- Sort R and S by their join attributes; then merge
 - r, s = the first tuples in sorted R and S
 - Repeat until one of *R* and *S* is exhausted:

```
If r.A > s.B
then s = \text{next tuple in } S
else if r.A < s.B
then r = \text{next tuple in } R
else output all matching tuples, and r, s = \text{next in } R and S
```

- I/O's: sorting +O(B(R) + B(S))
 - In most cases (e.g., join of key and foreign key)
 - Worst case is $B(R) \cdot B(S)$: everything joins

Example of merge join

$$R:$$
 $S:$ $R \bowtie_{R.A=S.B} S:$

→ $r_1.A = 1$ → $s_1.B = 1$ r_1s_1

→ $r_2.A = 3$ → $s_2.B = 2$ r_2s_3
 $r_3.A = 3$ → $s_3.B = 3$ r_2s_4

→ $r_4.A = 5$ → $s_5.B = 8$ r_3s_3

→ $r_6.A = 7$ → $r_7.A = 8$ r_7s_5

Outline

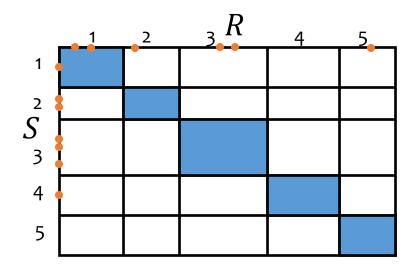
- Scan
 - Selection, duplicate-preserving projection, nested-loop join
- Sort
 - External merge sort, sort-merge-join
- Hash
 - Hash join, point selection, group by and aggregations
- Index
 - Selection, index nested-loop join

Hashing-based algorithms

Hash join

$$R\bowtie_{R.A=S.B} S$$

- Main idea
 - Partition R and S by hashing their join attributes, and then consider corresponding partitions of R and S
 - If r. A and s. B get hashed to different partitions, they don't join

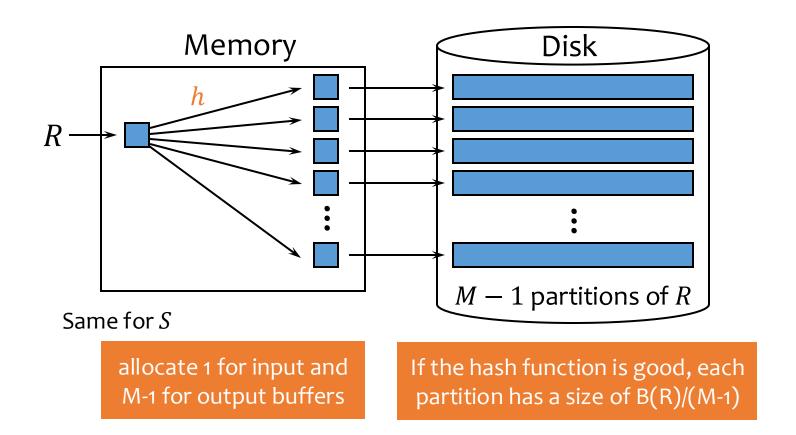


Nested-loop join considers all slots

Hash join considers only those along the diagonal!

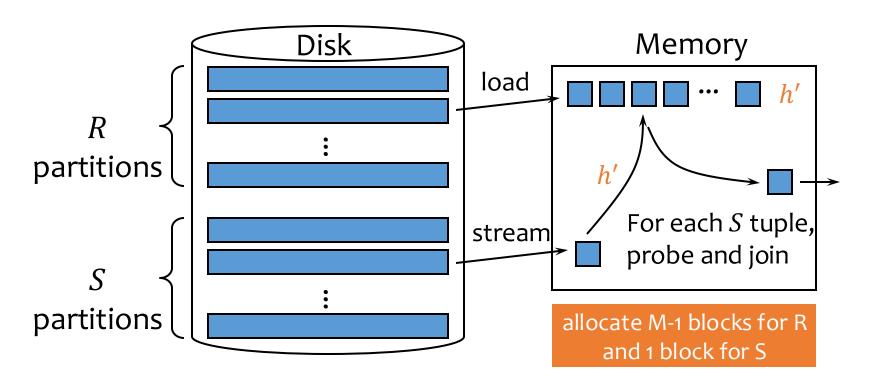
Partitioning phase

• Partition *R* and *S* according to the same hash function on their join attributes



Probing phase

- Read in each partition of R, stream in the corresponding partition of S, join
 - Typically build a hash table for the partition of R
 - Not the same hash function used for partition, of course!



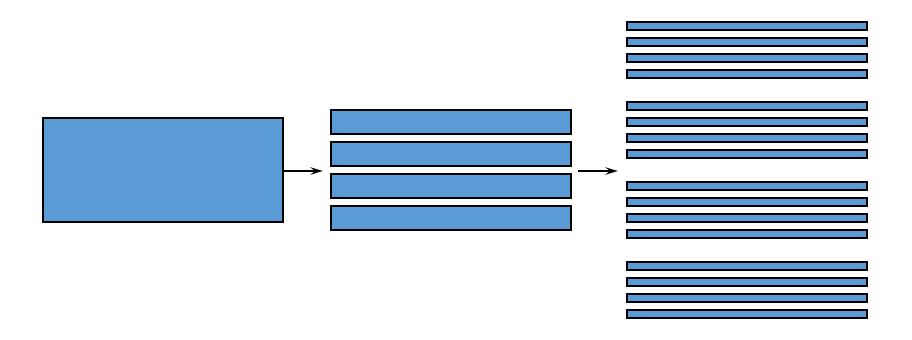
Performance of (two-pass) hash join

- If hash join completes in two phases:
 - I/O's: $3 \cdot (B(R) + B(S))$ or O(B(R) + B(S))
 - 1st phase: read B(R) + B(S) into memory to partition and write partitioned B(R) + B(S) to disk
 - 2nd phase: read B(R) + B(S) into memory to merge and join
 - Memory requirement:
 - In the probing phase, we should have enough memory to fit one partition of R: $M-1>\frac{B(R)}{M-1}$
 - $M > \sqrt{B(R)} + 1$
 - We can always pick *R* to be the smaller relation, so:

$$M > \sqrt{\min(B(R), B(S))} + 1$$

Generalizing for larger inputs

- What if a partition is too large for memory?
 - Read it back in and partition it again!
 - Re-partition $O(\log_M B(R))$ times



Other hash-based algorithms

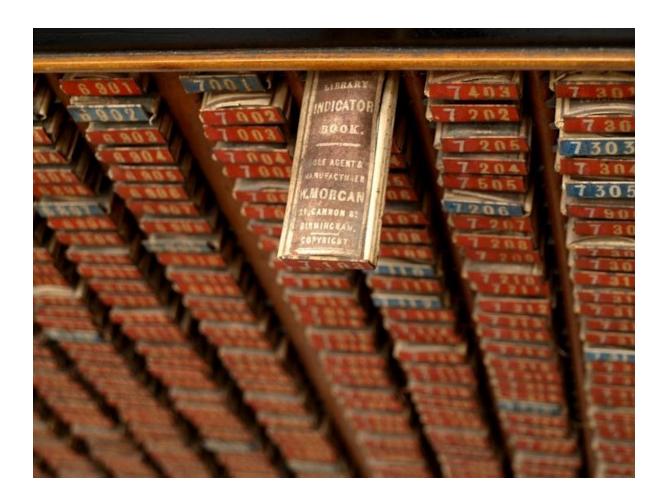
• Union (set), difference, intersection

- Duplicate elimination
 - Check for duplicates within each partition/bucket
- Grouping and aggregation
 - Apply the hash functions to the group-by columns

Outline

- Scan
 - Selection, duplicate-preserving projection, nested-loop join
- Sort
 - External merge sort, sort-merge-join
- Hash
 - Hash join, point selection, group by and aggregations
- Index
 - Selection, index nested-loop join

Index-based algorithms



Selection using index

- Equality predicate: $\sigma_{A=v}(R)$
 - Use an ISAM, B⁺-tree, or hash index on R(A)
- Range predicate: $\sigma_{A>v}(R)$
 - Use an ordered index (e.g., ISAM or B⁺-tree) on R(A)
 - Hash index is not applicable

- Indexes other than those on R(A) may be useful
 - Example: B^+ -tree index on R(A,B)
 - How about B⁺-tree index on R(B, A)?

Index versus table scan

Situations where index clearly wins:

- Index-only queries which do not require retrieving actual tuples
 - Example: $\pi_A(\sigma_{A>v}(R))$
- Primary index clustered according to search key
 - One lookup leads to all result tuples in their entirety

Index versus table scan (cont'd)

BUT(!):

- Consider $\sigma_{A>v}(R)$ and a secondary, non-clustered index on R(A)
 - Need to follow pointers to get the actual result tuples
 - Say that 20% of R satisfies A > v
 - Could happen even for equality predicates
 - I/O's for scan-based selection: B(R)
 - I/O's for index-based selection: lookup + 20% |R|
 - Table scan wins if a block contains more than 5 tuples!
 - B(R) = |R|/5 < 20% |R| + lookup

Index nested-loop join

$R\bowtie_{R.A=S.B} S$

- Idea: use a value of R.A to probe the index on S(B)
- For each block of R, and for each r in the block: Use the index on S(B) to retrieve s with s.B = r.AOutput rs
- I/O's: B(R) + |R| · (index_lookup + I/O for record fetch)
 - Typically, the cost of an index lookup is 2-4 I/O's (depending on the index tree height if B+ tree)
 - Beats other join methods if |R| is not too big
 - Better pick *R* to be the smaller relation
- Memory requirement: 3 (extra memory can be used to cache index, e.g. root of B+ tree)

Summary of techniques

- Scan
 - Selection, duplicate-preserving projection, nested-loop join
- Sort
 - External merge sort, sort-merge join, union (set), difference, intersection, duplicate elimination, grouping and agg.
- Hash
 - Hash join, union (set), difference, intersection, duplicate elimination, grouping and aggregation
- Index
 - Selection, index nested-loop join, zig-zag join

Another view of techniques

Selection

- Scan without index (linear search): O(B(R))
- Scan with index selection condition must be on search-key of index
 - B+ index: $O(\log(B(R)))$
 - Hash index: 0(1)

Projection

- Without duplicate elimination: O(B(R))
- With duplicate elimination
 - Sorting-based: $O(B(R) \cdot \log_M B(R))$
 - Hash-based: O(B(R) + t) where t is the result of the hashing phase

Join

- Block-based nested loop join (scan table): $O(B(R) \cdot \frac{B(S)}{M})$
- Sort-merge join $O(B(R) \cdot \log_M B(R) + B(S) \cdot \log_M B(S))$
- Hash join O(B(R) + B(S))
- Index nested loop join $O(B(R) + |R| \cdot (index lookup))$