
Relational Database 
Design Theory (II)

CS348 Spring 2024
Instructor: Sujaya Maiyya
Sections: 002 & 003 only



Announcements

• Milestone 1: Due on June 20th

• Up to 2 days extension with 25% penalty per day  

• Assignment 2: Due June 29th

• Up to 2 days extension with 5% penalty per day
• Accessibility/Short term absence: still ONLY 2 days 

extension but no penalty

• Must email Sylvie for accessibility/short term absence! 
It’s your responsibility to email Sylvie since I do not 
check/track them.

2



Outline For Today

1. Application Constraints and Decompositions 

2. Functional Dependencies 

3. Boyce-Codd Normal Form (BCNF) & BCNF Decomposition Alg.

4. Dependency Preservation and 3rd Normal Form
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This 
lecture



A Parts/Suppliers database example
• Each type of part has a name and an identifying number and 

may be supplied by zero or more suppliers. 
• Each supplier has an identifying number, a name, and a 

contact location for ordering parts.
• Each supplier may offer the part at a different price.
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Single table?
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Sno Sname City Pno Pname Price

S1 Apple K-W P1 A $25

S1 Apple K-W P2 B $34

S2 BBuy Lon P3 A $5

S2 BBuy Lon … … …



Or decomposed tables?

• An instance

6

Sno Sname City

S1 Apple K-W

S2 BBuy Lon

Pno Pname Price

P1 A $25

P2 B $34

P3 A $5

Sno Pno Price

S1 P1 $25

S1 P2 $34

S2 P3 $5

S2 … …



Schema decomposition

• Let 𝑅 be a relation schema (= set of attributes). 
• The collection {𝑅!, … , 𝑅"} of relations is a 

decomposition of 𝑅 if 𝑅 = 	𝑅! ∪⋯∪ 𝑅"

• What is a good decomposition? 
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Sno Sname City Pno Pname Price

S1 Apple K-W P1 A $25

S1 Apple K-W P2 B $34

S2 BBuy Lon P3 A $5

S2 BBuy Lon … … …

R
Sno Sname City

S1 Apple K-W

S2 BBuy Lon

R1

Pno Pname Price

P1 A $25

P2 B $34

P3 A $5

R2

Sno Pno Price

S1 P1 $25

S1 P2 $34

S2 P3 $5

S2 … …

R3



Is this a good decomposition?
• Example 1
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Marks

But computing the natural join of R1 and R2, 
we get extra data (spurious tuples).

We would therefore lose information if we 
were to replace R by R1 and R2

Natural Join

Sno Sname City Pno Pname Price

S1 Apple K-W P1 A $25

S1 Apple K-W P2 B $34

S2 BBuy Lon P3 A $5

S2 BBuy Lon … … …

Sno Sname Pname

S1 Apple A

S1 Apple B

S2 BBuy A

S2 BBuy …

Pname City Pno Price

A K-W P1 $25

B K-W P2 $34

A Lon P3 $5

… Lon … …

Sno Sname City Pno Pname Price

S1 Apple K-W P1 A $25

S1 Apple K-W P2 B $34

S1 Apple Lon P3 A $5

S2 BBuy K-W P1 A $25

S2 BBuy Lon … … …

R R1 R2



“Good” Schema Decomposition

• Lossless-join decompositions
• We should be able to construct the instance of the 

original table from the instances of the tables in the 
decomposition
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A decomposition {𝑅!, 𝑅"} of 𝑅 is lossless iff the common 
attributes of 𝑅!	and 𝑅" form a superkey for either schema, 

𝑅!∩ 𝑅# → 𝑅! or 𝑅! ∩ 𝑅# → 𝑅# 

*If 𝑋	is a superkey of R , then 𝑋 → 𝑅 (all the attributes)  [last lecture]



Is this a lossless join decomposition? 
• Example 1

• 𝑅 = Sno,Sname,City,Pno,Pname,Price, PType

• 𝑅! = 𝑆𝑛𝑜, 𝑆𝑛𝑎𝑚𝑒, 𝑃𝑛𝑎𝑚𝑒 , 𝑅" = {𝑃𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦, 𝑃𝑛𝑜, 𝑃𝑟𝑖𝑐𝑒}
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𝑅! ∩ 𝑅" = 𝑃𝑛𝑎𝑚𝑒  is not a 
superkey of either 𝑅! or 𝑅" à This decomposition is lossy

Sno Sname City Pno Pname Price

S1 Apple K-W P1 A $25

S1 Apple K-W P2 B $34

S2 BBuy Lon P3 A $5

S2 BBuy Lon … … …



Which one is a better decomposition?

• Example 2: a table for a company database
• 𝑅 = 𝑃𝑟𝑜𝑗, 𝐷𝑒𝑝𝑡, 𝐷𝑖𝑣

• Consider 2 decompositions

• Both are lossless. (Why?)

• However, testing FDs is easier on one of them. (Which?)
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ℱ includes:
FD1: 𝑃𝑟𝑜𝑗 → 𝐷𝑒𝑝𝑡           FD2: 𝐷𝑒𝑝𝑡	 → 𝐷𝑖𝑣	 FD3: 𝑃𝑟𝑜𝑗	 → 𝐷𝑖𝑣

𝐷! =
𝑅! 𝑃𝑟𝑜𝑗, 𝐷𝑒𝑝𝑡 ,	
𝑅" 𝐷𝑒𝑝𝑡, 𝐷𝑖𝑣

𝐷" =
𝑅! 𝑃𝑟𝑜𝑗, 𝐷𝑒𝑝𝑡 ,	
𝑅" 𝑃𝑟𝑜𝑗, 𝐷𝑖𝑣

𝑅! ∩ 𝑅" 	→ 𝑅! or 𝑅"



Testing FDs 

• Example 2: a table for a company database
• 𝑅 = 𝑃𝑟𝑜𝑗, 𝐷𝑒𝑝𝑡, 𝐷𝑖𝑣

• Consider 2 decompositions
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ℱ includes:
FD1: 𝑃𝑟𝑜𝑗 → 𝐷𝑒𝑝𝑡           FD2: 𝐷𝑒𝑝𝑡	 → 𝐷𝑖𝑣	 FD3: 𝑃𝑟𝑜𝑗	 → 𝐷𝑖𝑣

𝐷! =
𝑅! 𝑃𝑟𝑜𝑗, 𝐷𝑒𝑝𝑡 ,	
𝑅" 𝐷𝑒𝑝𝑡, 𝐷𝑖𝑣

𝐷" =
𝑅! 𝑃𝑟𝑜𝑗, 𝐷𝑒𝑝𝑡 ,	
𝑅" 𝑃𝑟𝑜𝑗, 𝐷𝑖𝑣

• FD1 (in R1)
• FD2 (in R2)
• FD3 (join R1 and R2?) 
• à No need, if FD1 and FD2 hold, 

then FD3 hold



Testing FDs 

• Example 2: a table for a company database
• 𝑅 = 𝑃𝑟𝑜𝑗, 𝐷𝑒𝑝𝑡, 𝐷𝑖𝑣

• Consider 2 decompositions
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ℱ includes:
FD1: 𝑃𝑟𝑜𝑗 → 𝐷𝑒𝑝𝑡           FD2: 𝐷𝑒𝑝𝑡	 → 𝐷𝑖𝑣	 FD3: 𝑃𝑟𝑜𝑗	 → 𝐷𝑖𝑣

𝐷! =
𝑅! 𝑃𝑟𝑜𝑗, 𝐷𝑒𝑝𝑡 ,	
𝑅" 𝐷𝑒𝑝𝑡, 𝐷𝑖𝑣

𝐷" =
𝑅! 𝑃𝑟𝑜𝑗, 𝐷𝑒𝑝𝑡 ,	
𝑅" 𝑃𝑟𝑜𝑗, 𝐷𝑖𝑣

• FD1 (in R1)
• FD3 (in R2)
• FD2 (join R1 and R2?) 

à Yes.  FD1 and FD3 are not 
sufficient to guarantee FD2

• FD1 (in R1)
• FD2 (in R2)
• FD3 (join R1 and R2?) 
• à No need, if FD1 and FD2 hold, 

then FD3 hold

interrelational



Testing FDs 

• Example 2: a table for a company database
• 𝑅 = 𝑃𝑟𝑜𝑗, 𝐷𝑒𝑝𝑡, 𝐷𝑖𝑣

• Consider 2 decompositions
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ℱ includes:
FD1: 𝑃𝑟𝑜𝑗 → 𝐷𝑒𝑝𝑡           FD2: 𝐷𝑒𝑝𝑡	 → 𝐷𝑖𝑣	 FD3: 𝑃𝑟𝑜𝑗	 → 𝐷𝑖𝑣

𝐷! =
𝑅! 𝑃𝑟𝑜𝑗, 𝐷𝑒𝑝𝑡 ,	
𝑅" 𝐷𝑒𝑝𝑡, 𝐷𝑖𝑣

𝐷" =
𝑅! 𝑃𝑟𝑜𝑗, 𝐷𝑒𝑝𝑡 ,	
𝑅" 𝑃𝑟𝑜𝑗, 𝐷𝑖𝑣

• FD1 (in R1)
• FD3 (in R2)
• FD2 (join R1 and R2?) 

à Yes.  FD1 and FD3 are not 
sufficient to guarantee FD2

• FD1 (in R1)
• FD2 (in R2)
• FD3 (join R1 and R2?) 
• à No need, if FD1 and FD2 hold, 

then FD3 hold

(i) Equivalent to ℱ 
(ii) Not interrelational interrelational



“Good” Schema Decomposition

• Lossless-join decompositions
• Dependency-preserving decompositions

• Next, how to obtain such decompositions?
• BCNF à guaranteed to be a lossless join decomposition!
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Given a schema 𝑅 and a set of FDs ℱ, 
decomposition of 𝑅 is dependency preserving 

if there is an equivalent set of FDs	ℱ′, 
none of which is interrelational in the decomposition. 



Boyce-Codd Normal Form (BCNF)

• A relation 𝑅 is in BCNF iff whenever 𝑋 → 𝑌 ∈ ℱ9 
and 𝑋𝑌 ⊆ 𝑅, then either 
• (𝑋 → 𝑌) is trivial (i.e., 𝑌 ⊆ 𝑋), or 
• 𝑋 is a super key of 𝑅 (i.e., 𝑋 → 𝑅)

• That is, all non-trivial FDs follow from “key → other attributes”

• Example: 𝑅 = Sno,Sname,City,Pno,Pname,Price

• The schema is not in BCNF because, for example, Sno 
determines Sname,City, is non-trivial but is not a 
superkey of 𝑅
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ℱ includes:
FD1: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦       FD2: 𝑃𝑛𝑜	 → 𝑃𝑛𝑎𝑚𝑒	 FD3: 𝑆𝑛𝑜, 𝑃𝑛𝑜	 → 𝑃𝑟𝑖𝑐𝑒



BCNF decomposition algorithm

• Find a BCNF violation
• That is, a non-trivial FD 𝑋 → 𝑌 in ℱ7 of	𝑅 where 𝑋 is not 

a super key of 𝑅
• Example: 𝑅 = Sno,Sname,City,Pno,Pname,Price

• Decompose 𝑅 into 𝑅! and 𝑅#, where
• 𝑅! has attributes 𝑋 ∪ 𝑌; 
• 𝑅" has attributes 𝑋 ∪ 𝑍, where 𝑍 contains all attributes 

of 𝑅 that are in neither 𝑋 nor 𝑌

• Repeat (till all are in BCNF)
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ℱ includes:
FD1: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦       FD2: 𝑃𝑛𝑜	 → 𝑃𝑛𝑎𝑚𝑒	 FD3: 𝑆𝑛𝑜, 𝑃𝑛𝑜	 → 𝑃𝑟𝑖𝑐𝑒

𝑅 = Sno,Sname,City,Pno,Pname,Price

R2 Sno,Pno,Pname,Price

BCNF violation:	𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦

R1 Sno,Sname,City



BCNF decomposition example
• 𝑅 = Sno,Sname,City,Pno,Pname,Price
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ℱ includes:
FD1: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦       FD2: 𝑃𝑛𝑜	 → 𝑃𝑛𝑎𝑚𝑒	 FD3: 𝑆𝑛𝑜, 𝑃𝑛𝑜	 → 𝑃𝑟𝑖𝑐𝑒

Sno,Sname,City,Pno,Pname,Price

R2 Sno,Pno,Pname,Price

BCNF violation:	𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦

R1 Sno,Sname,City BCNF: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦
𝑃𝑛𝑜 → 𝑃𝑛𝑎𝑚𝑒	 𝑆𝑛𝑜, 𝑃𝑛𝑜 → 𝑃𝑟𝑖𝑐𝑒

BCNF violation: 𝑃𝑛𝑜 → 𝑃𝑛𝑎𝑚𝑒

R2b Sno,Pno,Price R2a Pno,Pname
BCNF: 𝑃𝑛𝑜 → 𝑃𝑛𝑎𝑚𝑒BCNF: 𝑆𝑛𝑜, 𝑃𝑛𝑜 → 𝑃𝑟𝑖𝑐𝑒

{SNo}+={Sno, Sname, City}
à a superkey of R1



BCNF helps remove redundancy
Sno Sname City Pno Pname Price

S1 Apple K-W P1 A $25

S1 Apple K-W P2 B $34

S1 Apple K-W P3 A $20

S2 BBuy London … … …
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BCNF violation:	𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦

Sno Sname City

S1 Apple K-W

S2 BBuy London

.. … …

Sno Pno Pname Price

S1 P1 A $25

S1 P2 B $34

S1 P3 A $20

S2 … … …



Another example
20

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)

ℱ includes:
       uid → uname, twittered
       twitterid → uid
       uid, gid → fromDate



Another example
21

UserJoinsGroup (uid, uname, twitterid, gid, fromDate)
BCNF violation: uid → uname, twitterid

User (uid, uname, twitterid) Member (uid, gid, fromDate)

BCNF
BCNF

uid → uname, twitterid
twitterid → uid

uid, gid → fromDate

{uid}+={uid, uname, twitterid}

{uid}+={uid, uname, twitterid}
{twitterid} +={uid, uname, twitterid}

{uid,gid}+={uid,gid
,fromeDate}

ℱ includes:
       uid → uname, twitterid
       twitterid → uid
       uid, gid → fromDate



Alt. solution 
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UserJoinsGroup (uid, uname, twitterid, gid, fromDate)
BCNF violation: twitterid → uid

UserId (twitterid, uid)

Member (twitterid, gid, fromDate)

BCNF

BCNF

twitterid → uname
twitterid, gid → fromDate

UserJoinsGroup (twitterid, uname, gid, fromDate)

BCNF violation: twitterid → uname

UserName (twitterid, uname)
BCNF

twitterid → uid
No FDs in ℱ violate BCNF here!  

(as uid is missing in this relation)

ℱ includes:
       uid → uname, twitterid
       twitterid → uid
       uid, gid → fromDate

But we need to check all the 
FDs  in ℱ# !!



“Good” Schema Decomposition

• Lossless-join decompositions
• Dependency-preserving decompositions
• BCNF à guaranteed to be a lossless join 

decomposition!
• Depends on the on the sequence of FDs for decomposition
• Not necessarily dependency preserving
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Example: consider R={A, B, C} ℱ includes:  FD1: 𝐴𝐵 → 𝐶       FD2: C → 𝐵

BCNF violation: C → 𝐵

{A, C} {C, B} 
𝐴𝐵 → 𝐶 is interrelational and cannot be tested directly



“Good” Schema Decomposition

• Lossless-join decompositions
• Dependency-preserving decompositions
• BCNF à guaranteed to be a lossless join 

decomposition!
• Depend on the on the sequence of FDs for decomposition
• Not necessarily dependency preserving

• 3NF à both lossless join and dependency preserving
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Third normal form (3NF)

• A relation 𝑅 is in 3NF iff
whenever 𝑋 → 𝑌 ∈ ℱ9 and 𝑋𝑌 ⊆ 𝑅, then either 
• (𝑋 → 𝑌) is trivial (i.e., 𝑌 ⊆ 𝑋), or 
• 𝑋 is a super key of 𝑅 (i.e., 𝑋 → 𝑅) or 
• Each attribute in 𝐘 − 𝑿 is contained in a candidate key of 𝑹

• Example: consider R={A, B, C}
• Satisfies 3NF, but not BCNF

• 3NF is looser than BCNF à Allows more redundancy 
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ℱ includes:  FD1: 𝐴𝐵 → 𝐶       FD2: 𝐶 → 𝐵

{B}-{C} = {B} is part of the key {AB}



How to find a 3NF relation schemas?

• Find a way for lossless-join, dependency-preserving 
decomposition

• Step 1: Finding the minimal cover of the FD set ℱ

Given a set of FDs ℱ, we say ℱ′ is equivalent to ℱ if their 
closures are the same:	ℱ7 = ℱ?7.
• Step 2: Decompose based on the minimal cover (i.e., ℱ′ is 

minimal).

26

ℱ ℱ#
ℱ′ ℱ′#

⇒	 ⇒	schema



Minimal cover
• A set of FDs ℱ is minimal if
1. every right-hand side of a FD in ℱ is a single attribute

• Example:	𝑅 = Sno,Sname,City,Pno,Pname,Price, PType
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ℱ: FD1: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦       
      FD2: 𝑃𝑛𝑜	 → 𝑃𝑛𝑎𝑚𝑒	
      FD3: 𝑆𝑛𝑜, 𝑃𝑛𝑜	 → 𝑃𝑟𝑖𝑐𝑒
      FD4: 𝑆𝑛𝑜, 𝑃𝑛𝑎𝑚𝑒	 → 𝑃𝑟𝑖𝑐𝑒
      FD5:	𝑃𝑛𝑜, 𝑃𝑛𝑎𝑚𝑒 → Ptype

Fail condition 1



Minimal cover
• A set of FDs ℱ is minimal if
1. every right-hand side of a FD in ℱ is a single attribute 

2. there does not exist X à A, and Z a proper subset of X, such that the set 
ℱ − 𝑋 → 𝐴 ∪ 𝑍 → 𝐴 is equivalent to F,

English: no extraneous (redundant) attributes in the left-hand side of an FD in F 

• Example:	𝑅 = Sno,Sname,City,Pno,Pname,Price, PType
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ℱ: FD1: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦       
      FD2: 𝑃𝑛𝑜	 → 𝑃𝑛𝑎𝑚𝑒	
      FD3: 𝑆𝑛𝑜, 𝑃𝑛𝑜	 → 𝑃𝑟𝑖𝑐𝑒
      FD4: 𝑆𝑛𝑜, 𝑃𝑛𝑎𝑚𝑒	 → 𝑃𝑟𝑖𝑐𝑒
      FD5:	𝑃𝑛𝑜, 𝑃𝑛𝑎𝑚𝑒 → Ptype

No redundant 
attributes in 𝑋

Fail condition 2: replace by 
FD5’: Pno à Ptype 

(ℱ − {FD5}+{FD5’}) is equiv. to ℱ    

𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑋#({Pno}, {FD1,FD2,FD3, FD4,FD5})
  = {…, Ptype, …}
[visit last lecture for how to compute closure]



Minimal cover
• A set of FDs ℱ is minimal if
1. Every right-hand side of a FD in ℱ is a single attribute 

2. There does not exist X à A and Z a proper subset of X, such that the set 
(ℱ − 𝑋 → 𝐴 ) ∪ 𝑍 → 𝐴 	is equivalent to F,
English: no extraneous (redundant) attributes in the left-hand side of a FD in F 

3. There does not exist 𝑋→𝐴 in ℱ,such that ℱ − {𝑋 → 𝐴} equivalent to ℱ

Example:	𝑅 = Sno,Sname,City,Pno,Pname,Price, PType
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ℱ: FD1: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦       
      FD2: 𝑃𝑛𝑜	 → 𝑃𝑛𝑎𝑚𝑒	
      FD3: 𝑆𝑛𝑜, 𝑃𝑛𝑜	 → 𝑃𝑟𝑖𝑐𝑒
      FD4: 𝑆𝑛𝑜, 𝑃𝑛𝑎𝑚𝑒	 → 𝑃𝑟𝑖𝑐𝑒
      FD5:	𝑃𝑛𝑜, 𝑃𝑛𝑎𝑚𝑒 → Ptype

No redundant 
FD in ℱ

Fail condition 3: FD2+FD4 can give FD3
(ℱ − {FD3}) is equiv. to ℱ    

𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑋#({Sno, Pno}, {FD1,FD2,FD4,FD5})
  = {…, Price, …}



Finding minimal cover

• A minimal cover for ℱ can be computed in 3 steps. 
1. Replace 𝑋 → 𝑌𝑍 with the pair 𝑋 → 𝑌 and 𝑋 → 𝑍
2. Remove 𝐴 from the left-hand side of 𝑋 → 𝐵 in ℱ if B ∈

𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑋#(𝑋 − {𝐴}, ℱ)
3. Remove 𝑋 → 𝐴 from ℱ if 𝐴 ∈ 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑋#(𝑋, ℱ − 𝑋 → 𝐴 )
• Note that each step must be repeated until it no longer succeeds in 

updating ℱ.

• Example:	𝑅 = Sno,Sname,City,Pno,Pname,Price, 𝑃𝑇𝑦𝑝𝑒	
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ℱ: FD1: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦       
      FD2: 𝑃𝑛𝑜	 → 𝑃𝑛𝑎𝑚𝑒	
      FD3: 𝑆𝑛𝑜, 𝑃𝑛𝑜	 → 𝑃𝑟𝑖𝑐𝑒
      FD4: 𝑆𝑛𝑜, 𝑃𝑛𝑎𝑚𝑒	 → 𝑃𝑟𝑖𝑐𝑒
      FD5: 𝑃𝑛𝑜, 𝑃𝑛𝑎𝑚𝑒	 → 𝑃𝑡𝑦𝑝𝑒

𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒,
	 𝑆𝑛𝑜 → 𝐶𝑖𝑡𝑦

Remove FD3

𝑃𝑛𝑜	 → 𝑃𝑡𝑦𝑝𝑒



Computing 3NF decomposition 

Efficient algorithm for computing a 3NF 
decomposition of 𝑅 with FDs ℱ:
1. Initialize the decomposition with empty set
2. Find a minimal cover for ℱ, let it be ℱ∗

3. For every X → Y ∈ ℱ∗, add a relation {XY} to the 
decomposition 

4. If no relation contains a candidate key for 𝑅, then 
compute a candidate key 𝐾 for R, and add 
relation {K} to the decomposition. 
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Example for 3NF decomposition
• 𝑅 = Sno,Sname,City,Pno,Pname,Price

• Minimal cover ℱ∗

• Add relation for candidate key
• Optimization for this example: combine relations R1a 

and R1b 
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ℱ: FD1: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒, 𝐶𝑖𝑡𝑦       
      FD2: 𝑃𝑛𝑜	 → 𝑃𝑛𝑎𝑚𝑒	
      FD3: 𝑆𝑛𝑜, 𝑃𝑛𝑜	 → 𝑃𝑟𝑖𝑐𝑒
      FD4: 𝑆𝑛𝑜, 𝑃𝑛𝑎𝑚𝑒	 → 𝑃𝑟𝑖𝑐𝑒

ℱ∗: FD1a: 𝑆𝑛𝑜 → 𝑆𝑛𝑎𝑚𝑒 
      FD1b: 𝑆𝑛𝑜 → 𝐶𝑖𝑡𝑦     
      FD2: 𝑃𝑛𝑜	 → 𝑃𝑛𝑎𝑚𝑒	
      FD4: 𝑆𝑛𝑜, 𝑃𝑛𝑎𝑚𝑒	 → 𝑃𝑟𝑖𝑐𝑒

R1a(Sno, Sname)
R1b(Sno, City)

R2(Pno, Pname)
R4(Sno,Pname,Price)

R5(Sno,Pno)

Exercise

Exercise



Summary

• Functional dependencies: provide clues towards 
elimination of (some) redundancies in a schema.
• Closure of FDs (rules, e.g. Armstrong’s axioms)
• Compute attribute closure

• Schema decomposition
• Lossless join decompositions
• Dependency preserving decompositions
• Normal forms based on FDs

• BCNF à lossless join decompositions
• 3rd NF à lossless join and dependency-preserving 

decompositions with more redundancy
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