Relational Database Design Theory (I)

CS348 Spring 2024 Instructor: Sujaya Maiyya Sections: **002 and 003 only**

Announcements

- Assignment 2 is released
 - Due by June 27th

Lectures on Relational Algebra & SQL

- Main SQL clauses for querying and data manipulation
 - Founded on relational algebra
 - Constraints: Primary Keys, Foreign Keys, Not NULL, General

```
Assertions and CHECKs
```

Triggers

Achieve Integrity of Database

Views

Ease of Programming

When materialized also a way to achieve performance

Indexes

Fast access to some data

Performance

Recursion & programming

Enhanced functionality 3

Lectures on Entity/Relationship (ER) Model

> Often users do not directly design relational tables

> ER Model: An even higher-level data model

Convert requirements in plaintext to ER diagrams

> Convert ER diagrams into relational model

Convert relational model into SQL DDL commands

Next 2 Lectures: Relational Database Design Theory

Theory of Normal Forms (TNF): Given a set of constraints about the real-world facts that an app will store, how can we formally separate "good" and "bad" relational db schemas?

	8							
	InstDep							
iID	name	salary	depName	bldng	budget			
111	Alice	5000	CS	DC	20000			
222	Bob	4000	Physics	PHY	30000			
333	Carl	5200	CS	DC	20000			
444	Diana	5500	CS	DC	20000			
	•••	•••						

Design 1

If each department identified by depName has as associated (bldng, budget) Design 1, intuitively, is a bad design with redundancy.

	Inst						
i	ID	name salary		depName			
1	111	Alice	5000	CS			
2	Bob		4000	Physics			
			••••				
			Dep				
	depName		bldng	budget			
	CS		DC	20000			
	Р	hysics	PHY	30000			

Design 2

➤ Goal of TNF: make the above intuition formal.

Outline For Today

- 1. Application Constraints and Decompositions
- 2. Functional Dependencies
- 3. Boyce-Codd Normal Form (BCNF) & BCNF Decomposition Alg.
- 4. Dependency Preservation and 3rd Normal Form

Outline For Today

 Application Constraints and Decompositions This lecture
 Functional Dependencies
 Boyce-Codd Normal Form (BCNF) & BCNF Decomposition Alg. Next
 Dependency Preservation and 3rd Normal Form

Application Constraints

Consider a simple university DB:

Instructors

Departments

Courses

Students

Independent of stored data: there will be external app. constraints. E.g.

- Each instructor has 1 name, salary, and department
- Each department has 1 building
- Each student can have 1 advisor from each department
- Instructor i's set of addresses are independent of the departments of i
 - > High-level idea: A "good" DB makes such constraints explicit

Application Constraints

- Instructors: iIDs, names, salaries, departments (w/ unique iIDs)
- Departments: names, building, budget (w/ unique names)
 b/c iID is key

Constraint 1: Each instructor has 1 name, salary, and department

Constraint 2: Each department has 1 building and 1 associated budget

b/c depName is not key

Possible Design: 1 large table InstDep with one row for each instructor

InstDep						
ilD	name	salary	depName	bldng	budget	
111	Alice	5000	CS	DC	20000	
222	Bob	4000	Physics	PHY	30000	
333	Carl	5200	CS	DC	20000	
444	Diana	5500	CS	DC	20000	
	•••	•••		•••		

Problem: redundant data replication. (CS, DC, 20000) repeated k times if there are k instructors in CS.

Problems of Redundancy

InstDep						
iID	name	salary	depName	bldng	budget	
111	Alice	5000	CS	DC	20000	
222	Bob	4000	Physics	PHY	30000	
333	Carl	5200	CS	DC	20000	
444	Diana	5500	CS	DC	20000	
•••	•••	•••	•••	•••	•••	

- > Harder to keep db consistent when facts are stored multiple times. E.g.
- If CS's building changed to E4 => need to update 3 rows
- Suppose Bob is the only instructor in Physics and retires (a delete):
 - Deletion of Bob's tuple: Physics department, which will continue to exist, is deleted unless extra work is done
- ➢ If new department (w/out yet an instructor) is added: new row w/ NULLs

Redundancy Is Determined By App. Constraints

Courses: cID, term, iID, capacity

Course						
cID	term	iID	capacity			
CS348	S23	Sujaya	100			
CS341	F22	Lap Chi	80			
CS348	S21	Semih	100			
CS348	W20	Xi	100			
CS350	W19	Salem	130			

- > Unclear if this is redundant or not. Depends on external app constraint:
- If courses have 1 associated capacity (independent of term): Redundant
- > Otherwise, repetition may be necessary and reflects similarity across entities

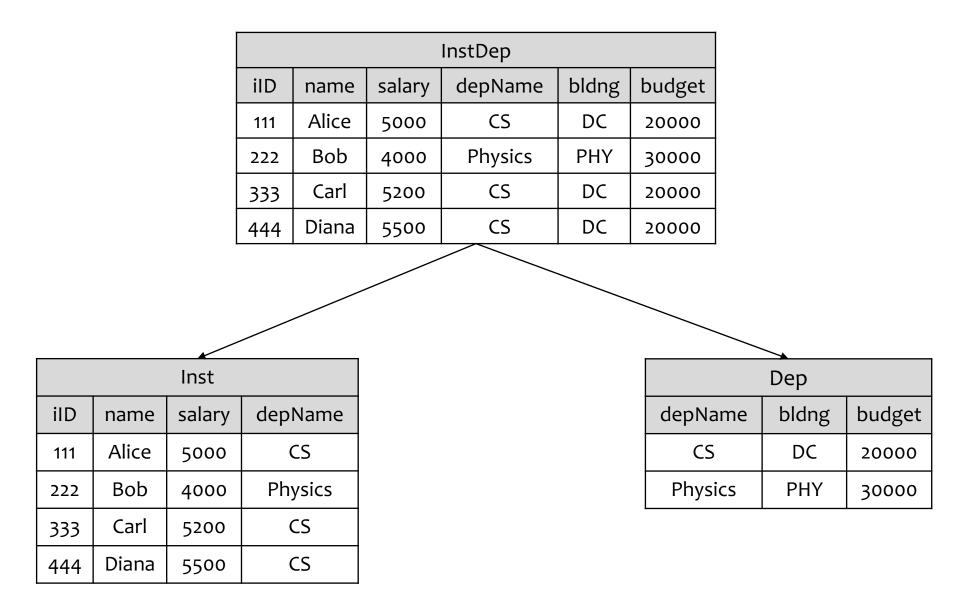
Redundancy Is Determined By App. Constraints

Courses: cID, term, iID, capacity

Course					
cID	term	iID	capacity		
CS348	S23	Sujaya	100		
CS341	F22	Lap Chi	80		
CS348	S21	Semih	100		
CS348	W20	Xi	100		
CS350	W19	Salem	130		
CS348	W23	David	200		

- > Unclear if this is redundant or not. Depends on external app constraint:
- If courses have 1 associated capacity (independent of term): Redundant
- Otherwise, repetition may be necessary and reflects similarity across entities
- Takeaway: Constraints are external to the db/app and need to be inputs in a db design theory.

Solution To Redundancy: Decompositions



Requirement for Decompositions (1)

➢ R1 (Lossless): If R is decomposed into R1 and R2, then:

R = R1 ⋈ R2

 \bowtie

Lossless-ness achieved by decomposing on an appropriate key

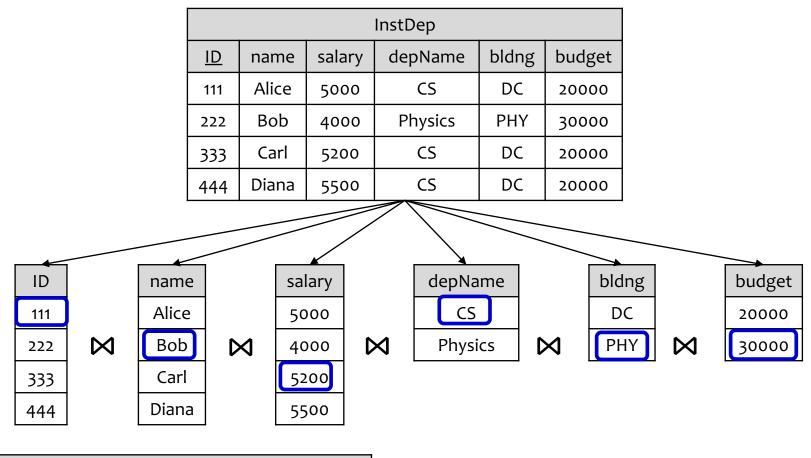
Inst						
iID	name	salary	depName			
111	Alice	5000	CS			
222	Bob	4000	Physics			
333	Carl	5200	CS			
444	Diana	5500	CS			

Dep				
depName	bldng	budget		
CS	DC	20000		
Physics	PHY	30000		

RESULT						
iID	name	salary	depName	bldng	budget	
111	Alice	5000	CS	DC	20000	
222	Bob	4000	Physics	PHY	30000	
333	Carl	5200	CS	DC	20000	
444	Diana	5500	CS	DC	20000	

InstDep						
iID	name	salary	depName	bldng	budget	
111	Alice	5000	CS	DC	20000	
222	Bob	4000	Physics	PHY	30000	
333	Carl	5200	CS	DC	20000	
444	Diana	5500	CS	DC	20000	

Example Lossy Decomposition



RESULT						
<u>ID</u>	name	salary	depName	bldng	budget	
111	Alice	5000	CS	DC	20000	
111	Bob	5200	CS	PHY	30000	
•••		•••		•••		

Can't tell what's fact and what's not.

Requirement for Decompositions (2)

- R2 (Locality of Constraints): If the app had a constraint C, we would prefer to check C in a single relation
- ➢ Will discuss more in 3rd Normal Form (next lecture)

High level question we answer in this topic:

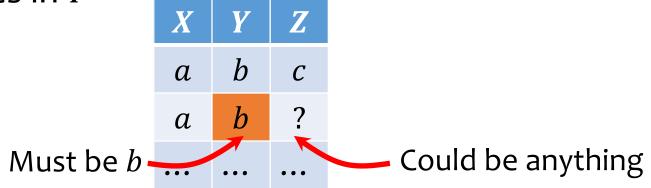
How to decompose a database to be lossless & (preferably) retain locality of constraints?

Outline For Today

- 1. Application Constraints and Decompositions
- 2. Functional Dependencies
- 3. Boyce-Codd Normal Form (BCNF) & BCNF Decomposition Alg.
- 4. Dependency Preservation and 3rd Normal Form

Functional dependencies

- A functional dependency (FD) is a constraint between two sets of attributes in a relation
- FD has the form $X \rightarrow Y$, where X and Y are sets of attributes in a relation R
- $X \rightarrow Y$ means that whenever two tuples in R agree on all the attributes in X, they must also agree on all attributes in Y



• If X is a superkey of R , then $X \rightarrow R$ (all the attributes)

Functional dependencies: Formal definition

Formally: Let t[A] be a tuple t's projection on attributes A

• Dfn: Let X, Y be sets of attributes. An fd $X \rightarrow Y$ holds in a

relation R if given t_1 and $t_2 \in R$ s.t. :

If $t_1[X] = t_2[X]$, then $t_1[Y] = t_2[Y]$ holds.

If $X \rightarrow Y$, we say X determines Y

Example FDs

Captures generalized uniqueness constraints (beyond keys):

InstDep						
iID	name	salary	depName	bldng	budget	
111	Alice	5000	CS	DC	20000	
222	Bob	4000	Physics	PHY	30000	
333	Carl	5200	CS	DC	20000	
444	Diana	5500	CS	DC	20000	
••••	•••	•••	•••	•••	•••	

Constraint 1: Each iID has 1 name and salary

 \succ iID → name, salary

Constraint 2: Each depName has 1 building & 1 associated budget

- \succ depName → bldng, budget
- ➢ Key constraints: Each iID, depName is unique in InstDep
 - \blacktriangleright iID, depName \rightarrow name, salary, bldgn, budget

Some FD Vocabulary

- > We take FDs as given, i.e., cannot be inferred from a relation instance.
- > FDs limit legal instances of a relation $R(A_1, ..., A_m)$
- ▷ Given a set \mathcal{F} of fds on R, on all legal instances of R, each F ∈ \mathcal{F} hold.

InstDep					
iID	name salary		depName	bldng	budget
111	Alice	5000	CS	DC	20000
111	Alice	5000	Biology	BIO	50000
222	Bob	4000	Physics	PHY	30000
333	Carl	5200	CS	DC	20000
444	Diana	5500	CS	DC	20000

- Suppose \mathcal{F} : (i) iID \rightarrow name, salary; (ii) depName \rightarrow bldng, budget
- > E.g: The above instance is a legal instance
- \succ E.g: iID \rightarrow name, salary holds on the above instance.
- > Won't need this vocabulary much in lecture.

Implied FDs: Armstrong's Axioms

- > A set of fds can imply other fds via 3 intuitive rules: Armstrong's Axioms
- 1. Reflexivity: If $Y \subseteq X$, then $X \to Y$ (trivially)
 - ➢ iID, name → iID
 - English: Each iID and name value determine a unique iID value
- 2. Augmentation: if $X \rightarrow Y$, then $XZ \rightarrow YZ$ (trivially)
 - \succ If iID → salary then iID, name → salary, name
 - English: if each iID determines a unique salary value, then each (iID, name) value pair determines a unique (salary, name) value

	InstDep					
ilD	name	salary	depName	bldng	budget	
111	Alice	5000	CS	DC	20000	
222	Bob	4000	Physics	PHY	30000	
333	Carl	5200	CS	DC	20000	
	•••		•••			

Implied FDs: Armstrong's Axioms

- 3. Transitivity: if $X \rightarrow Y$ and $Y \rightarrow Z$, then $X \rightarrow Z$
 - Suppose each instructor can be in a single department and each dep has a single budget
 - \succ FD1: iID → depName FD2: depName → budget, then

 $iID \rightarrow budget$

English: If each iID value determines a unique depName value, which in turn determines a unique budget value, then each iID value determines a unique budget value.

	InstDep				
ilD	name	salary	depName	bldng	budget
111	Alice	5000	CS	DC	20000
222	Bob	4000	Physics	PHY	30000
333	Carl	5200	CS	DC	20000
	•••		•••	•••	

Other Rules Implied by Armstrong's Axioms

- 1. Decomposition: If $X \rightarrow YZ$, then $X \rightarrow Y$ and $X \rightarrow Z$ Proof:
 - i. $X \rightarrow YZ$
 - ii. $YZ \rightarrow Y$ (by reflexivity); $YZ \rightarrow Z$ (by reflexivity)
 - iii. $X \rightarrow Y$ (by transitivity); $X \rightarrow Z$ (by transitivity)
- 2. Union: If $X \rightarrow Y$ and $X \rightarrow Z$ then $X \rightarrow YZ$ (Prove as exercise)
- 3. Pseudo-transitivity: If $X \rightarrow Y$ and $YZ \rightarrow T$ then $XZ \rightarrow T$ (Prove as exercise)

Using these rules, you can prove or disprove a (derived) FD given a set of (base) FDs

Closure of FD sets: \mathcal{F}^+

- How do we know what additional FDs hold in a schema?
- A set of FDs \mathcal{F} logically implies a FD $X \to Y$ if $X \to Y$ holds in all instances of R that satisfy \mathcal{F}
- The closure of a FD set \mathcal{F} (denoted \mathcal{F}^+):
 - The set of all FDs that are logically implied by ${\mathcal F}$
 - Informally, \mathcal{F}^+ includes all of the FDs in \mathcal{F} , i.e., $\mathcal{F} \subseteq F^+$, plus any dependencies they imply.

 \mathcal{F}^+

 ${\mathcal F}$

\mathcal{F}^+ : Closure of \mathcal{F} (example)

Dfn: Let \mathcal{F} be a set of fds. The closure \mathcal{F}^+ of \mathcal{F} is the set of all fds implied by \mathcal{F} .

- \succ Ex: \mathcal{F} : iID→name, depName; depName→bldng

iID \rightarrow bldng (transitivity) etc..

	InstDep				
iID	name	email	depName	bldng	
111	Alice	alice@gmail	CS	DC	
111	Alice	alice@hotmai I	CS	DC	
222	Bob	bob@gmail	Physics	PHY	
222	Bob	bob@hotmail	Physics	PHY	
333	Carl	carl@gmail	CS	DC	
	•••	••••	•••		

Exercise Showing an FD is in \mathcal{F}^+

Consider an Inst_Proj relation of instructors and their research projects

InstProj						
ilD	name	projID	projName	projDep	hours	funds

- ➢ Given: (i) iID → name; (ii) projID → projName, projDep;
 (iii) iID, projID → hours; (iv) projDep, hours → funds;
- ➢ Prove iID, projID → funds
- 1. iID, projID \rightarrow hours (by fd iii)
- 2. projID \rightarrow projName, projDep (by fd ii)
- 3. iID, projID \rightarrow hours, projName, projDep (by reflexivity, union & decomposition of 1 & 2)
- 4. iID, projID \rightarrow funds (by transitivity of 3, and fd iv) (+ decomposition)

How To Compute \mathcal{F}^+ from \mathcal{F}

 $F^+ = F$ **repeat for each** functional dependency f in F^+ apply reflexivity and augmentation rules on fadd the resulting functional dependencies to F^+ **for each** pair of functional dependencies f_1 and f_2 in F^+ **if** f_1 and f_2 can be combined using transitivity add the resulting functional dependency to F^+ **until** F^+ does not change any further

Figure 8.7 A procedure to compute F^+ .

Attribute closure

- The closure of attributes Z in a relation R (denoted Z^+) with respect to a set of FDs, \mathcal{F} , is the set of all attributes $\{A_1, A_2, ...\}$ functionally determined by Z (that is, $Z \rightarrow A_1 A_2 ...$)
- Algorithm for computing the closure ComputeZ⁺(Z, F):
 - Start with closure = Z
 - If X → Y is in F and X is already in the closure, then also add Y to the closure
 - Repeat until no new attributes can be added

Example for computing attribute closure

Given relation R(ABCDEFG) Compute $Z^+(\{B,F\},\mathcal{F})$: \mathcal{F} includes: $A, B \rightarrow F$ $A \rightarrow C$ $B \rightarrow E, D$ $D, F \rightarrow G$

FD	Z^+
initial	<i>B</i> , <i>F</i>
$B \rightarrow E, D$	B, F, E, D
D, $F \rightarrow G$	B, F, E, D, G

 $B, F \rightarrow E, D, G$

Using attribute closure

Given a relation R and set of FD's \mathcal{F}

- Does another $FD X \rightarrow Y$ follow from \mathcal{F} ?
 - Compute X^+ with respect to \mathcal{F}
 - If $Y \subseteq X^+$, then $X \to Y$ follows from \mathcal{F}
- Is *K* a key of *R*?
 - Compute K^+ with respect to \mathcal{F}
 - If K⁺ contains all the attributes of R, K is a super key
 - Still need to verify that *K* is minimal (how?)
 - Hint: check the attribute closure of its proper subset.
 - i.e., Check that for no set X formed by removing attributes from K is K⁺the set of all attributes

Design Theory

- Detect anomalies: Functional dependencies
 - Closure of FDs (rules, e.g. Armstrong's axioms)
 - Attribute closure
- Repair anomalies: Schema decomposition
 - (next lecture)