Relational Database
Design Theory (1)

CS348
Instructor: Sujaya Maiyya



Announcements

* Assignment 2 is released
* Due by Oct 31



Database Design — where are we?

Conceptual Logical Schema
Schema (Relational
(E/R model) model)

Conceptual

Design

* Understand the real-world domain being modeled
and constrained

* Entity-Relationship model

* Translate E/R diagram to relational data model
* (Refine a good database schema)

* Create DBMS schema (using DDL SQL)



Case Study

* Consider a simple university DB:

Instructors Departments Courses Students

'i' :::??:: g &

* External application constraints such as:
* Each instructor has name, salary, and department

* Eachinstructor is officially affiliated with one
department

* Each department has one building and one budget

e Each student can have at most one advisor from
each department




Ca Se Stu dy Redundant data replication! (CS,

DG, 20000) repeated k times if
there are k instructors in CS!

* Possible Design: one large table InstructorDep with
one row for each instructor

instructorID | name | salary | depName | bldng | budget
11 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000
444 Diana 5500 CS DC 20000

Fail to capture corner cases!

* If the building of CS is changed to E4?
* If the only instructor in Physics retires?
* If new department (w/o yet an instructor) is added?



Case Study

* Possible Design: consider the following schema for
courses with one row for each course offering

CourselD term instructorName | capacity
| CS348 I S23 Sujaya 100
CS341 W25 Lap Chi 80

CS348 W25 Semih 100
| CS348 | S25 Xiao 100

(S350 W19 Salem 130

* [s there any redundancy?
* Depends on the external application constraints

* If courses have one associated capacity (independent of
term): Redundant

* Otherwise, repetition may be necessary



Solution To Redundancy: Decompositions

InstDep

iID | name | salary | depName | bldng | budget

111 | Alice | 5000 CS DC 20000

222 | Bob | 4000 Physics PHY | 30000

333 | Carl | 5200 CS DC 20000

444 | Diana | 5500 cS DC 20000

Inst Dep

iID | name | salary | depName depName | bldng | budget
11 | Alice | 5000 CS CS DC 20000
222 | Bob | 4000 Physics Physics PHY 30000
333 | Carl | 5200 CS
444 | Diana | 5500 (&




Decompositions: A good example

Breaktdonnt complex instructorID na!ne salary | depName | bldng | budget
: 111 Alice 5000 CsS DC 20000
database schema into 222 Bob 4000 Physics PHY 30000
Sma”er’ more 333 Carl 5200 &) DC 20000
managea ble PieC@S 444 Diana 5500 CS DC 20000
instructoriD name: salary [ depName
11 Alice | 5000 CsS depName bldng | budget
222 Bob | 4000 Physics D4 CS DC 20000
333 Carl 5200 CS Physics PHY 30000
444 Diana | 5500 &)
instructorlD | name | salary | depName | bldng | budget
Loss less 11 Alice 5000 cS DC 20000
decomposition 222 Bob 4000 Physics PHY 30000
R =R1X R2 333 Carl 5200 cS DC 20000
444 Diana 5500 cS DC 20000




Decompositions: A bad example

instructorID | name | salary | depName | bldng | budget
111 Alice 5000 cS DC 20000
222 Bob 4000 Physics PHY 30000
333 Carl 5200 CS DC 20000
444 Diana 5500 (&) DC 20000
instruM%ng bui:lget
m Alice 5000 CS DC 20000
222 X D4 | 4000 | D4 Physics | D4 PHY [30000]
333 Carl
444 Diana 5500
: Lossy? But | got more
instructorID | name | salary | depName | bldng | budget
11 Alice | 5000 S DC 20000 rOWS! Can’t te" what’s
1 Bob | 5200 | ¢s | PHY | 30000 | factand what’s not, so
we lose information!




10

Decompositions: must be lossless

R
A1 A2 A3 A4
R 1 AAA R 5
A1 A2 A3 A3 A4

* R is decomposed into R; and R,
e Attribute (R;) U Attribute(R,) = Attribute (R)

* R, and R, are the projections of R onto Attribute (7,) and
Attribute(R,)

* Lossless decomposition gives R = R, ™ R,

For any tuple (a,b,c,d) € R, (a,b,c) € Ry and (¢, d) € Ry;

then (a,b,c) @ (¢,d) € R



Decompositions: second requirement

» R2 (Locality of Constraints): If the app had a constraint C, we would

prefer to check Cin a single relation

High level question we answer in this topic:



Normal Forms

e Given a set of constraints about the real-world facts
that an application will store, how can we formally

separate “good” and “bad” relational database
schemas?

Normalization helps in
and

)
making it easier to manage and maintain databases.



Outline For Today

2. Functional Dependencies



A Motivation Example

* Consider the following schema for InstructorDept

oy | rame |y ephame b

Each instructorID has 1 name and salary
* instructorID determines name and salary

Each depName has 1 building and 1 associated budget
* depName determines bldng and budget

Each instructorID, depName is unique in InstructorDep

* instructorID and depName together determine all remaining
attributes, including name, salary, bldgn and budget

How about instructorID and name together determining
name? This is trivial!

14



Functional dependencies

* X — Y means that whenever two tuples in R agree
on all the attributes in X, they must also agree on
all attributesinY

a b c

alb ?
Mustbe b——"" .. —— Could be anything



Formal definition

Let be a tuple t’s projection on attributes

Let X, Y be sets of attributes

* AFD X — Y holds in a relation R if any given pair of
tuples t, and t, € R with , we must have

* We say X Y

e AFD X — Y holdsinarelationRmeansthat X - Y
holds on of R



Redefining “keys’ using FD’s
A set of attributes K is a for arelation R if

* K — all (other) attributes of R
 Thatis, Kis a

* No proper subset of K satisfies the above condition
 Thatis, Kis



Closure of FD sets: F ™

e How do we know what FDs hold on a
schema R?

e Aset F of FDs X->YifX-Y
holds in

* The of a FD set F (denoted as 7 ): F

* The set of all FDs that are logically implied by F

* Informally, 7 "includes all of the FDs in F, i.e., F € F*,
plus any dependencies they imply.



Armstrong’s Axioms

If Y € X, then X — Y (trivially)

instructorID, name — instructorID

if X =Y, then XZ — YZ (trivially)

If instructorID — salary, then
instructorID, name — salary, name

ifX—>YandY —Z,thenX—Z

If instructor ID — depName and depName — budget,
then instructorIiD — budget



Implications of Armstrong’s Axioms

IfX—>YZ,thenX—>Yand X — Z

* Proof:

i X—YZ

ii. YZ— Y (byreflexivity); YZ — Z (by reflexivity)
iii. X —Y(bytransitivity); X — Z (by transitivity)

IfX—>Yand X— ZthenX—>YZ
fX—YandYZ—-TthenXZ—T

* Using Armstrong’s Axioms, gou can prove or disprove a
(derived) FD given a set of (base) FDs



ProveaFDIiNF T Fincudes:

instructor|D — name

projlD — projName, projDep
instructorID, projlD — funds instructorlD, projID — hours

projDep, hours — funds

* projlD — projName, projDep

* projlD — projDep

* instructorlD, projlD — instructorlD, projDep

* instructorlID, projlD — hours

* instructorlD, projlD — instructorlD, hours, projDep
* instructorlD, projlD — hours, projDep

* hours, projDep — funds

* instructorlD, projlD — funds



Compute F* from F

e Start with closure F = F

* ForeachFD fin F*
* Apply and rules on
* Add theresulting FD to F*

* For each pairof FDs f1and f2in F*

* If f1and 2 can be combined using the
, add the resulting FD to F*

* Repeat until no new FD can be added to F*



Reasoning with F 7

Given arelation R and aset F of FD’s

Compute with respect to F

o If ,then X —» Y follows from F
o If , [{ is a super key
* Still need to verify that K is (how?)

* Hint: For any proper subset X of K,



Attribute closure:

Given the relation schema R and a set F of FDs

* The (denoted as X ) is the
set of

(thatis, X > A;A, ... Ag)

* Algorithm for computing the closure

e Start with closure = X

o |f and , then also
add Y to the closure

* Repeat until no new attributes can be added



In class exercise

* Given arelation R(ABCDEFG) under a set F of FDs,
computeX*({B, F}, F)?

F includes:
A B—F
A—-C
B—ED
D,F—>G

|zt
initial B, F

B—E D B, FE, D

D,F-G B, F,ED,G

25

25



In class exercise

 Given arelation EmpProj (SIN, pnum, hours, ename,
pname, plog, allowance) under a set F of FDs,

F includes:
SIN, pnum — hours initial pnum, hours
SIN — ename | pnum — pnum, hours,
%
pnum — pname, ploc pname, ploc pname, ploc

ploc, hours — allowance
ploc, hours -  pnum, hours,pname,

allowance ploc, allowance



In class exercise

 Given arelation EmpProj (SIN, pnum, hours, ename,
pname, plog, allowance) under a set F of FDs,

F includes: initial SIN, pnum
SIN, pnum — hours

SIN —» ename

pnum — pname, ploc
ploc, hours — allowance S’N, pnum — hours S’N, pnum, ename, pname, pIOC,
hours

SIN =» ename SIN, pnum , ename

pnum — pname, ploc SIN, pnum, ename, pname, ploc

ploc, hours — SIN, pnum , ename, pname, ploc,
allowance hours, allowance



Reasoning with X ™

Given arelation R and aset F of FD’s

Compute X+ with respect to F
IfY € X*, then X - Y follows from F

Compute K* with respect to F
If K™ contains all the attributes of R, K is a super key

Still need to verify that K is (how?)

* Hint: check the attribute closure of its proper subset, i.e., Check
that for no set X formed by removing attributes from K is
K*the set of all attributes



Alternative: Compute F* from X~

Subset-closure enumeration

* Compute its attribute closure under F
* Then all FDs with liein F*



What is next?

* Functional dependencies
* Armstrong’s axioms
* Closure of FDs
* Closure of attributes



	Slide 1: Relational Database  Design Theory (I)
	Slide 2: Announcements
	Slide 3: Database Design – where are we?
	Slide 4: Case Study
	Slide 5: Case Study
	Slide 6: Case Study
	Slide 7
	Slide 8: Decompositions: A good example
	Slide 9: Decompositions: A bad example
	Slide 10: Decompositions: must be lossless
	Slide 11
	Slide 12: Normal Forms
	Slide 13
	Slide 14: A Motivation Example
	Slide 15: Functional dependencies
	Slide 16: Formal definition
	Slide 17: Redefining “keys” using FD’s
	Slide 18: Closure of FD sets: script cap F to the plus 
	Slide 19: Armstrong’s Axioms
	Slide 20: Implications of Armstrong’s Axioms
	Slide 21: Prove a FD in script cap F to the plus  
	Slide 22: Compute script cap F to the plus  from script cap F
	Slide 23: Reasoning with script cap F to the plus 
	Slide 24: Attribute closure: cap Z to the plus 
	Slide 25: In class exercise
	Slide 26: In class exercise
	Slide 27: In class exercise
	Slide 28: Reasoning with cap X to the plus 
	Slide 29: Alternative: Compute script cap F to the plus  from cap X to the plus 
	Slide 30: What is next?

