
Relational Database
Design Theory (I)

CS348

Instructor: Sujaya Maiyya

Announcements

• Assignment 2 is released
• Due by Oct 31st

2

Database Design – where are we?

• Understand the real-world domain being modeled
and constrained

• Entity-Relationship model

• Translate E/R diagram to relational data model

• (Refine a good database schema)

• Create DBMS schema (using DDL SQL)

3

Conceptual
Design

Conceptual
Schema

(E/R model)

Logical
Design

Logical Schema
(Relational

model)

Case Study

• Consider a simple university DB:

• External application constraints such as:
• Each instructor has name, salary, and department
• Each instructor is officially affiliated with one

department
• Each department has one building and one budget
• Each student can have at most one advisor from

each department

4

Instructors Departments Courses Students

Case Study

• Possible Design: one large table InstructorDep with
one row for each instructor

• If the building of CS is changed to E4?

• If the only instructor in Physics retires?

• If new department (w/o yet an instructor) is added?

5

instructorID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

Redundant data replication! (CS,
DC, 20000) repeated k times if

there are k instructors in CS!

Fail to capture corner cases!

Case Study

• Possible Design: consider the following schema for
courses with one row for each course offering

• Is there any redundancy?
• Depends on the external application constraints
• If courses have one associated capacity (independent of

term): Redundant
• Otherwise, repetition may be necessary

6

CourseID term instructorName capacity

CS348 S23 Sujaya 100

CS341 W25 Lap Chi 80

CS348 W25 Semih 100

CS348 S25 Xiao 100

CS350 W19 Salem 130

Unclear!

Solution To Redundancy: Decompositions

7

InstDep

iID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

Inst

iID name salary depName

111 Alice 5000 CS

222 Bob 4000 Physics

333 Carl 5200 CS

444 Diana 5500 CS

Dep

depName bldng budget

CS DC 20000

Physics PHY 30000

Decompositions: A good example
8

instructorID name salary depName

111 Alice 5000 CS

222 Bob 4000 Physics

333 Carl 5200 CS

444 Diana 5500 CS

depName bldng budget

CS DC 20000

Physics PHY 30000

instructorID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

instructorID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

⋈

Break down a complex
database schema into

smaller, more
manageable pieces

Loss less
decomposition

R = R1⋈ R2

Decompositions: A bad example
9

instructorID name salary depName bldng budget

111 Alice 5000 CS DC 20000

222 Bob 4000 Physics PHY 30000

333 Carl 5200 CS DC 20000

444 Diana 5500 CS DC 20000

instructorID

111

222

333

444

name

Alice

Bob

Carl

Diana

salary

5000

4000

5200

5500

depName

CS

Physics

bldng

DC

PHY

budget

20000

30000⋈ ⋈ ⋈ ⋈ ⋈

instructorID name salary depName bldng budget

111 Alice 5000 CS DC 20000

111 Bob 5200 CS PHY 30000

… … … … … …

Lossy? But I got more
rows! Can’t tell what’s
fact and what’s not, so
we lose information!

Decompositions: must be lossless

• 𝑅 is decomposed into 𝑅1 and 𝑅2

• Attribute (𝑅1) ∪ Attribute(𝑅2) = Attribute (𝑅)

• 𝑅1 and 𝑅2 are the projections of 𝑅 onto Attribute (𝑅1) and
Attribute(𝑅2)

• Lossless decomposition gives 𝑅 = 𝑅1 ⋈ 𝑅2

10

A1 A2 A3

… … …

A3 A4

… …

A1 A2 A3 A4

… … … …

𝑅

𝑅1 𝑅2

For any tuple (𝑎, 𝑏, 𝑐, 𝑑) ∈ 𝑅, (𝑎, 𝑏, 𝑐) ∈ 𝑅1 and (𝑐, 𝑑) ∈ 𝑅2;
then (𝑎, 𝑏, 𝑐) ⋈ 𝑐, 𝑑 ∈ 𝑅

Decompositions: second requirement

➢ R2 (Locality of Constraints): If the app had a constraint C, we would

prefer to check C in a single relation

11

High level question we answer in this topic:

 How to decompose a database to be lossless &
(preferably) retain locality of constraints?

Normal Forms

• Given a set of constraints about the real-world facts
that an application will store, how can we formally
separate “good” and “bad” relational database
schemas?

• Normal Forms (NF): Normalization helps in reducing
data redundancy and improving data integrity,
making it easier to manage and maintain databases.

12

Outline For Today

1. Application Constraints and Decompositions

2. Functional Dependencies

3. Boyce-Codd Normal Form (BCNF) & BCNF Decomposition Alg.

4. Dependency Preservation and 3rd Normal Form

13

A Motivation Example

• Consider the following schema for InstructorDept

• Each instructorID has 1 name and salary
• instructorID determines name and salary

• Each depName has 1 building and 1 associated budget
• depName determines bldng and budget

• Each instructorID, depName is unique in InstructorDep
• instructorID and depName together determine all remaining

attributes, including name, salary, bldgn and budget

• How about instructorID and name together determining
name? This is trivial!

14

instructorID name salary depName bldng budget

Functional dependencies

• 𝑋 → 𝑌 means that whenever two tuples in 𝑅 agree
on all the attributes in 𝑋, they must also agree on
all attributes in 𝑌

15

𝑿 𝒀 𝒁

𝑎 𝑏 𝑐

𝑎 ? ?

… … …

𝑿 𝒀 𝒁

𝑎 𝑏 𝑐

𝑎 𝑏 ?

… … …Must be 𝑏 Could be anything

Formal definition

Let t[A] be a tuple t’s projection on attributes A

Let X, Y be sets of attributes

• A FD X → Y holds in a relation R if any given pair of
tuples t1 and t2 ∈ R with t1[X] = t2[X], we must have
t1[Y] = t2[Y].

• We say X determines Y

• A FD X → Y holds in a relation R means that 𝑋 → 𝑌
holds on all instances of 𝑅

16

16

Redefining “keys” using FD’s

A set of attributes K is a key for a relation R if

• K → all (other) attributes of R
• That is, K is a “super-key”

• No proper subset of K satisfies the above condition
• That is, K is minimal

17

17

Closure of FD sets: ℱ+

• How do we know what additional FDs hold on a
schema 𝑅?

• A set ℱ of FDs logically implies 𝑋 → 𝑌 if 𝑋 → 𝑌
holds in all instances of 𝑅 that satisfy ℱ

• The closure of a FD set ℱ (denoted as ℱ+):
• The set of all FDs that are logically implied by ℱ

• Informally, ℱ+includes all of the FDs in ℱ, i.e., ℱ ⊆ 𝐹+,
plus any dependencies they imply.

18

ℱ
ℱ+

18

Armstrong’s Axioms

• Reflexivity: If Y ⊆ X, then X → Y (trivially)

• Augmentation: if X → Y, then XZ → YZ (trivially)

• Transitivity: if X → Y and Y → Z, then X → Z

19

19

instructorID, name → instructorID

If instructorID → salary , then
instructorID, name → salary, name

If instructor ID → depName and depName → budget,
then instructorID → budget

Implications of Armstrong’s Axioms

• Decomposition: If X → YZ, then X → Y and X → Z
• Proof:

i. X → YZ

ii. YZ → Y (by reflexivity); YZ → Z (by reflexivity)

iii. X → Y (by transitivity); X → Z (by transitivity)

• Union: If X → Y and X → Z then X → YZ

• Pseudo-transitivity: If X → Y and YZ → T then XZ→ T

• Using Armstrong’s Axioms, you can prove or disprove a
(derived) FD given a set of (base) FDs

20

20

Prove a FD in ℱ+

instructorID, projID → funds

• projID → projName, projDep

• projID → projDep (decomposition)

• instructorID, projID → instructorID, projDep (augmentation)

• instructorID, projID → hours

• instructorID, projID → instructorlD, hours, projDep (union)

• instructorID, projID → hours, projDep (decomposition)

• hours, projDep → funds

• instructorID, projID → funds (transitivity)

21

21

ℱ includes:
instructorID → name
projID → projName, projDep
instructorID, projID → hours
projDep, hours → funds

Compute ℱ+ from ℱ

• Start with closure ℱ+ = ℱ

• For each FD f in ℱ+

• Apply reflexivity and augmentation rules on f

• Add the resulting FD to ℱ+

• For each pair of FDs f1 and f2 in ℱ+

• If f1 and f2 can be combined using the
transitivity rule, add the resulting FD to ℱ+

• Repeat until no new FD can be added to ℱ+

22

22

Reasoning with ℱ+

Given a relation 𝑅 and a set ℱ of FD’s

• Does another FD 𝑋 → 𝑌 follow from ℱ?
• Compute ℱ+ with respect to ℱ

• If 𝑋 → 𝑌 ∈ ℱ+, then 𝑋 → 𝑌 follows from ℱ

• Is 𝐾 a key of 𝑅?
• If 𝐾 → 𝑅 ∈ ℱ+, 𝐾 is a super key

• Still need to verify that 𝐾 is minimal (how?)
• Hint: For any proper subset 𝑋 of 𝐾, 𝑋 → 𝑅 ∉ ℱ+

23

23

Attribute closure: 𝑍+

Given the relation schema 𝑅 and a set ℱ of FDs

• The closure of attributes 𝑋 (denoted as 𝑋+) is the
set of all attributes 𝐴1, 𝐴2, … 𝐴𝑘 functionally
determined by 𝑋 (that is, 𝑋 → 𝐴1𝐴2 … AK)

• Algorithm for computing the closure
Compute𝑋+(𝑋, ℱ):
• Start with closure = 𝑋

• If 𝑍 → 𝑌 is in ℱ and 𝑍 is already in the closure, then also
add 𝑌 to the closure

• Repeat until no new attributes can be added

24

In class exercise

FD 𝑍+

initial 𝐵, 𝐹

25

ℱ includes:
A, B → F
A → C
B → E, D
D, F → G

• Given a relation R(ABCDEFG) under a set ℱ of FDs,
compute𝑋+ 𝐵, 𝐹 , ℱ ?

B → E, D B, F, E, D

D, F → G B, F, E, D, G

25

In class exercise
26

• Given a relation EmpProj (SIN, pnum, hours, ename,
pname, ploc, allowance) under a set ℱ of FDs,
compute𝑋+({pnum, hours}, ℱ)?

26

ℱ includes:
SIN, pnum → hours
SIN → ename
pnum → pname, ploc
ploc, hours → allowance

FD 𝑍+

initial pnum, hours

pnum →
pname, ploc

pnum, hours,
pname, ploc

ploc, hours →
allowance

pnum, hours,pname,
ploc, allowance

FD 𝑍+

initial SIN, pnum

27

ℱ includes:
SIN, pnum → hours
SIN → ename
pnum → pname, ploc
ploc, hours → allowance

SIN → ename SIN, pnum , ename

pnum → pname, ploc SIN, pnum , ename, pname, ploc

SIN, pnum → hours SIN, pnum , ename, pname, ploc,
hours

ploc, hours →
allowance

SIN, pnum , ename, pname, ploc,
hours, allowance

In class exercise

• Given a relation EmpProj (SIN, pnum, hours, ename,
pname, ploc, allowance) under a set ℱ of FDs,
compute𝑋+({SIN, pnum}, ℱ)?

• Compute𝑋+({SIN, pnum, hours}, ℱ)?

Reasoning with 𝑋+

Given a relation 𝑅 and a set ℱ of FD’s

• Does another FD 𝑋 → 𝑌 follow from ℱ?
• Compute 𝑋+ with respect to ℱ

• If 𝑌 ⊆ 𝑋+, then 𝑋 → 𝑌 follows from ℱ

• Is 𝐾 a key of 𝑅?
• Compute 𝐾+ with respect to ℱ

• If 𝐾+ contains all the attributes of 𝑅, 𝐾 is a super key

• Still need to verify that 𝐾 is minimal (how?)
• Hint: check the attribute closure of its proper subset, i.e., Check

that for no set X formed by removing attributes from 𝐾 is
𝐾+the set of all attributes

28

28

Alternative: Compute ℱ+ from 𝑋+

Subset-closure enumeration

• List every subset 𝑋 ⊆ 𝑅

• Compute its attribute closure 𝑋+ under ℱ

• Then all FDs 𝑋 → 𝑌 with 𝑌 ⊆ 𝑋+ lie in ℱ+

29

29

What is next?

• Functional dependencies
• Armstrong’s axioms

• Closure of FDs

• Closure of attributes

• Next lecture: Decomposition
• Boyce-Codd Normal Form (BCNF)

• Third Normal Form (3NF)

30

	Slide 1: Relational Database Design Theory (I)
	Slide 2: Announcements
	Slide 3: Database Design – where are we?
	Slide 4: Case Study
	Slide 5: Case Study
	Slide 6: Case Study
	Slide 7
	Slide 8: Decompositions: A good example
	Slide 9: Decompositions: A bad example
	Slide 10: Decompositions: must be lossless
	Slide 11
	Slide 12: Normal Forms
	Slide 13
	Slide 14: A Motivation Example
	Slide 15: Functional dependencies
	Slide 16: Formal definition
	Slide 17: Redefining “keys” using FD’s
	Slide 18: Closure of FD sets: script cap F to the plus
	Slide 19: Armstrong’s Axioms
	Slide 20: Implications of Armstrong’s Axioms
	Slide 21: Prove a FD in script cap F to the plus
	Slide 22: Compute script cap F to the plus from script cap F
	Slide 23: Reasoning with script cap F to the plus
	Slide 24: Attribute closure: cap Z to the plus
	Slide 25: In class exercise
	Slide 26: In class exercise
	Slide 27: In class exercise
	Slide 28: Reasoning with cap X to the plus
	Slide 29: Alternative: Compute script cap F to the plus from cap X to the plus
	Slide 30: What is next?

