Relational Database Design Theory (I) [additional exercises]

CS348 Spring 2024

Exercises for Attribute closure

- The closure of attributes Z in a relation R (denoted Z^+) with respect to a set of FDs, \mathcal{F} , is the set of all attributes $\{A_1, A_2, ...\}$ functionally determined by Z (that is, $Z \to A_1 A_2$...)
- Algorithm for computing the closure Compute $Z^+(Z,\mathcal{F})$:
 - Start with closure = Z
 - If $X \to Y$ is in \mathcal{F} and X is already in the closure, then also add Y to the closure
 - Repeat until no new attributes can be added

Example for computing attribute closure

Consider the schema of a table EmpProj and the FDs:

EmpProj

SIN PNum Hours EName PName PLoc Allow

```
F includes:

SIN, PNum → Hours

SIN → EName

PNum → PName,PLoc

PLoc, Hours → Allowance
```

Example for computing attribute closure

Compute $Z^+(\{PNum, Hours\}, \mathcal{F})$:

```
F includes:

SIN, PNum → Hours

SIN → EName

PNum → PName,PLoc

PLoc, Hours → Allowance
```

FD	Z^+
initial	PNum, Hours
PNum → PName,PLoc	PNum, Hours, PName, PLoc
PLoc, Hours → Allowance	PNum, Hours, PName, PLoc, Allowance

 $PNum, Hours \rightarrow PName, PLoc, Allowance$

Using attribute closure

Given a relation R and set of FD's \mathcal{F}

- Does another FD $X \to Y$ follow from \mathcal{F} ?
 - Compute X^+ with respect to \mathcal{F}
 - If $Y \subseteq X^+$, then $X \to Y$ follows from \mathcal{F}
- Is *K* a key of *R*?
 - Compute K^+ with respect to \mathcal{F}
 - If K^+ contains all the attributes of R, K is a super key
 - Still need to verify that K is minimal (how?)
 - Hint: check the attribute closure of its proper subset.
 - i.e., Check that for no set X formed by removing attributes from K is K⁺the set of all attributes

Exercise I

Compute $Z^+(\{SIN,PNum\},\mathcal{F})$:

\mathcal{F} includes:

SIN, PNum → Hours SIN → EName PNum → PName,PLoc PLoc, Hours → Allowance

Compute $Z^+(\{SIN, PNum, Hours\}, \mathcal{F})$?

Exercise I

Compute $Z^+(\{SIN,PNum\},\mathcal{F})$:

F includes: SIN, PNum → Hours SIN → EName PNum → PName,PLoc PLoc, Hours → Allowance

FD	Z^+
initial	SIN, PNum
SIN → EName	SIN, PNum, EName
PNum → PName, PLoc	SIN, PNum, EName, PLoc
SIN, PNum → Hours	SIN, PNum, EName, Ploc, Hours
Ploc, Hours → Allowance	SIN, PNum, EName, Ploc, Hours, Allowance

 $\{SIN, PNum\} \rightarrow \{SIN, PNum, Hours, EName, PName, Ploc, Allowance\}$ $\{SIN, PNum\}$ is key

Compute $Z^+(\{SIN, PNum, Hours\}, \mathcal{F})$?

{SIN, PNum, Hours, EName, PName, Ploc, Allowance}

→ A super key (why?)

Exercise II

- R(A,B,C)
- F includes
 - FD1: A → B
 - FD2: B \rightarrow C
 - FD3: A → C
- $ComputeZ^{+}(\{A\}, F) = ?$
 - {A,B,C}
- $ComputeZ^{+}(\{B\}, F) = ?$
 - {B,C}
- $ComputeZ^+(\{A,B,C\}, F) = ?$
 - {A,B,C}

- Super keys for R?
 - A, AB, AC, ABC
- Candidate keys for R?
 - A

Exercise III

- R(A,B,C)
- F includes
 - FD1: A → B
- $ComputeZ^{+}(\{A\}, F) = ?$
 - {A,B}
- Super keys for R?
 - AC, ABC
- Candidate keys for R?
 - AC