Relational Database Design Theory (II)

CS348 Spring 2023

Instructor: Sujaya Maiyya

Sections: 002 & 004 only
Outline For Today

1. Application Constraints and Decompositions
2. Functional Dependencies
3. Boyce-Codd Normal Form (BCNF) & BCNF Decomposition Alg.
4. Dependency Preservation and 3rd Normal Form

This lecture
A Parts/Suppliers database example

- Each type of part has a name and an identifying number and may be supplied by zero or more suppliers.
- Each supplier has an identifying number, a name, and a contact location for ordering parts.
- Each supplier may offer the part at a different price.

![Database Diagram]

- Sno
- Sname
- Sno
- Sname
- Supplies
- Price
- Pno
- Pname
- Part
- Supplier
- City
Single table?

Supplied_Items

<table>
<thead>
<tr>
<th>Sno</th>
<th>Sname</th>
<th>City</th>
<th>Pno</th>
<th>Pname</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Magna</td>
<td>Ajax</td>
<td>P1</td>
<td>Bolt</td>
<td>0.50</td>
</tr>
<tr>
<td>S1</td>
<td>Magna</td>
<td>Ajax</td>
<td>P2</td>
<td>Nut</td>
<td>0.25</td>
</tr>
<tr>
<td>S1</td>
<td>Magna</td>
<td>Ajax</td>
<td>P3</td>
<td>Screw</td>
<td>0.30</td>
</tr>
<tr>
<td>S2</td>
<td>Budd</td>
<td>Hull</td>
<td>P3</td>
<td>Screw</td>
<td>0.40</td>
</tr>
</tbody>
</table>
Decomposed tables?

• An instance

<table>
<thead>
<tr>
<th>Suppliers</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sno</td>
<td>Sname</td>
<td>City</td>
</tr>
<tr>
<td>S1</td>
<td>Magna</td>
<td>Ajax</td>
</tr>
<tr>
<td>S2</td>
<td>Budd</td>
<td>Hull</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parts</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pno</td>
<td>Pname</td>
</tr>
<tr>
<td>P1</td>
<td>Bolt</td>
</tr>
<tr>
<td>P2</td>
<td>Nut</td>
</tr>
<tr>
<td>P3</td>
<td>Screw</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supplies</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sno</td>
<td>Pno</td>
<td>Price</td>
</tr>
<tr>
<td>S1</td>
<td>P1</td>
<td>0.50</td>
</tr>
<tr>
<td>S1</td>
<td>P2</td>
<td>0.25</td>
</tr>
<tr>
<td>S1</td>
<td>P3</td>
<td>0.30</td>
</tr>
<tr>
<td>S2</td>
<td>P3</td>
<td>0.40</td>
</tr>
</tbody>
</table>
Schema decomposition

• Let R be a relation schema (= set of attributes).
• The collection \(\{R_1, \ldots, R_n\} \) of relations is a decomposition of R if $R = R_1 \cup \cdots \cup R_n$

• What is a good decomposition?
Is this a good decomposition?

- Example 1

<table>
<thead>
<tr>
<th>Student</th>
<th>Assignment</th>
<th>Group</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ann</td>
<td>A1</td>
<td>G1</td>
<td>80</td>
</tr>
<tr>
<td>Ann</td>
<td>A2</td>
<td>G3</td>
<td>60</td>
</tr>
<tr>
<td>Bob</td>
<td>A1</td>
<td>G2</td>
<td>60</td>
</tr>
</tbody>
</table>

But computing the natural join of SGM and AM, we get **extra data** (spurious tuples).

We would therefore **lose information** if we were to replace Marks by SGM and AM.
“Good” Schema Decomposition

• Lossless-join decompositions
 • We should be able to **construct the instance** of the original table from the instances of the tables in the decomposition

A decomposition \(\{R_1, R_2\} \) of \(R \) is **lossless** iff the common attributes of \(R_1 \) and \(R_2 \) form a superkey for either schema,

\[
R_1 \cap R_2 \rightarrow R_1 \text{ or } R_1 \cap R_2 \rightarrow R_2
\]

If \(X \) is a superkey of \(R \), then \(X \rightarrow R \) (all the attributes) [last lecture]
Is this a lossless join decomposition?

• Example 1
 • $R = \{\text{Student, Assignment, Group, Mark}\}$

<table>
<thead>
<tr>
<th>Student</th>
<th>Assignment</th>
<th>Group</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ann</td>
<td>A1</td>
<td>G1</td>
<td>80</td>
</tr>
<tr>
<td>Ann</td>
<td>A2</td>
<td>G3</td>
<td>60</td>
</tr>
<tr>
<td>Bob</td>
<td>A1</td>
<td>G2</td>
<td>60</td>
</tr>
</tbody>
</table>

\mathcal{F} includes: $\text{Student, Assignment} \rightarrow \text{Group, Mark}$

• $R_1 = \{\text{Student, Group, Mark}\}, R_2 = \{\text{Assignment, Mark}\}$

$R_1 \cap R_2 = \{\text{Mark}\}$ is not a superkey of either R_1 or R_2

\Rightarrow This decomposition is lossy
Which one is a better decomposition?

• Example 2: a table for a company database
 • \(R = \{\text{Proj, Dept, Div}\} \)

\[
\mathcal{F} \text{ includes:} \\
\text{FD1: } \text{Proj} \rightarrow \text{Dept} \\
\text{FD2: } \text{Dept} \rightarrow \text{Div} \\
\text{FD3: } \text{Proj} \rightarrow \text{Div}
\]

• Consider 2 decompositions

\[
D_1 = \left\{ R_1\{\text{Proj, Dept}\}, \\
R_2\{\text{Dept, Div}\} \right\} \\
D_2 = \left\{ R_1\{\text{Proj, Dept}\}, \\
R_2\{\text{Proj, Div}\} \right\}
\]

• Both are lossless. (Why?) \(R_1 \cap R_2 \rightarrow R_1 \text{ or } R_2 \)

• However, testing FDs is easier on one of them. (Which?)
Testing FDs

• Example 2: a table for a company database
 • $R = \{Proj, Dept, Div\}$

 \mathcal{F} includes:

 FD1: $Proj \rightarrow Dept$
 FD2: $Dept \rightarrow Div$
 FD3: $Proj \rightarrow Div$

• Consider 2 decompositions

 $D_1 = \{R_1\{Proj, Dept\}, \quad R_2\{Dept, Div\}\}$

 $D_2 = \{R_1\{Proj, Dept\}, \quad R_2\{Proj, Div\}\}$

 • FD1 (in R1)
 • FD2 (in R2)
 • FD3 (join R1 and R2?)
 • \rightarrow No need, if FD1 and FD2 hold, then FD3 hold
Testing FDs

• Example 2: a table for a company database
 • $R = \{Proj, Dept, Div\}$

 \mathcal{F} includes:
 - FD1: $Proj \rightarrow Dept$
 - FD2: $Dept \rightarrow Div$
 - FD3: $Proj \rightarrow Div$

• Consider 2 decompositions

 $D_1 = \{R_1\{Proj, Dept\}, \ R_2\{Dept, Div\}\}$
 $D_2 = \{R_1\{Proj, Dept\}, \ R_2\{Proj, Div\}\}$

 • FD1 (in R1)
 • FD2 (in R2)
 • FD3 (join R1 and R2?)
 • \rightarrow No need, if FD1 and FD2 hold, then FD3 hold

 • FD1 (in R1)
 • FD3 (in R2)
 • FD2 (join R1 and R2?)
 • \rightarrow Yes. FD1 and FD3 are not sufficient to guarantee FD2
Testing FDs

• Example 2: a table for a company database
 • \(R = \{ \text{Proj, Dept, Div} \} \)

\[\mathcal{F} \text{ includes:} \]
- FD1: \(\text{Proj} \rightarrow \text{Dept} \)
- FD2: \(\text{Dept} \rightarrow \text{Div} \)
- FD3: \(\text{Proj} \rightarrow \text{Div} \)

• Consider 2 decompositions

\[D_1 = \{ R_1\{\text{Proj, Dept}\}, R_2\{\text{Dept, Div}\} \} \]
\[D_2 = \{ R_1\{\text{Proj, Dept}\}, R_2\{\text{Proj, Div}\} \} \]

- FD1 (in R1)
- FD2 (in R2)
- FD3 (join R1 and R2?)
 \[\rightarrow \] No need, if FD1 and FD2 hold, then FD3 hold

\[\text{(i) Equivalent to } \mathcal{F} \]
\[\text{(ii) Not interrelational} \]

- FD1 (in R1)
- FD2 (join R1 and R2?)
 \[\rightarrow \] Yes. FD1 and FD3 are not sufficient to guarantee FD2
“Good” Schema Decomposition

• Lossless-join decompositions
• Dependency-preserving decompositions

Given a schema R and a set of FDs \mathcal{F}, decomposition of R is dependency preserving if there is an equivalent set of FDs \mathcal{F}', none of which is interrelational in the decomposition.

• Next, how to obtain such decompositions?
 • BCNF \rightarrow guaranteed to be a lossless join decomposition!

Boyce-Codd Normal Form (BCNF)

- A relation R is in BCNF iff whenever $(X \rightarrow Y) \in \mathcal{F}^+$ and $XY \subseteq R$, then either
 - $(X \rightarrow Y)$ is trivial (i.e., $Y \subseteq X$), or
 - X is a super key of R (i.e., $X \rightarrow R$)
 - That is, all non-trivial FDs follow from “key → other attributes”

- Example: $R = \{\text{Sno, Sname, City, Pno, Pname, Price}\}$

 \mathcal{F} includes:
 - **FD1: Sno → Sname, City**
 - **FD2: Pno → Pname**
 - **FD3: Sno, Pno → Price**

 - The schema is not in BCNF because, for example, Sno determines Sname, City, is non-trivial but is not a superkey of R
BCNF decomposition algorithm

• Find a BCNF violation
 • That is, a non-trivial FD $X \rightarrow Y$ in \mathcal{F}^+ of R where X is not a super key of R
 • Example: $R = \{\text{Sno}, \text{Sname}, \text{City}, \text{Pno}, \text{Pname}, \text{Price}\}$

\mathcal{F} includes:

 - FD1: $\text{Sno} \rightarrow \text{Sname, City}$
 - FD2: $\text{Pno} \rightarrow \text{Pname}$
 - FD3: $\text{Sno, Pno} \rightarrow \text{Price}$

• Decompose R into R_1 and R_2, where
 • R_1 has attributes $X \cup Y$;
 • R_2 has attributes $X \cup Z$, where Z contains all attributes of R that are in neither X nor Y

$R = \{\text{Sno, Sname, City, Pno, Pname, Price}\}$

BCNF violation: $\text{Sno} \rightarrow \text{Sname, City}$

• Repeat (till all are in BCNF)

 R2{\text{Sno, Pno, Pname, Price}} R1{\text{Sno, Sname, City}}
BCNF decomposition example

- \(R = \{\text{Sno, Sname, City, Pno, Pname, Price}\} \)

\(\mathcal{F} \text{ includes:} \)
- \(\text{FD1: Sno } \rightarrow \text{ Sname, City} \)
- \(\text{FD2: Pno } \rightarrow \text{ Pname} \)
- \(\text{FD3: Sno, Pno } \rightarrow \text{ Price} \)

\(\{\text{Sno, Sname, City, Pno, Pname, Price}\} \)

BCNF violation: \(\text{Sno } \rightarrow \text{ Sname, City} \)

R2\{Sno, Pno, Pname, Price\} R1\{Sno, Sname, City\}

- \(\text{Pno } \rightarrow \text{ Pname} \)
- \(\text{Sno, Pno } \rightarrow \text{ Price} \)

BCNF violation: \(\text{Pno } \rightarrow \text{ Pname} \)

R2b\{Sno, Pno, Price\} R2a\{Pno, Pname\}

BCNF: \(\text{Sno, Pno } \rightarrow \text{ Price} \)

BCNF: \(\text{Pno } \rightarrow \text{ Pname} \)

\(\{\text{SNo}\}^+ = \{\text{Sno, Sname, City}\} \rightarrow \text{ a superkey of } R1 \)
BCNF helps remove redundancy

<table>
<thead>
<tr>
<th>Sno</th>
<th>Sname</th>
<th>City</th>
<th>Pno</th>
<th>Pname</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Magna</td>
<td>K-W</td>
<td>P1</td>
<td>A</td>
<td>$25</td>
</tr>
<tr>
<td>S1</td>
<td>Magna</td>
<td>K-W</td>
<td>P2</td>
<td>B</td>
<td>$34</td>
</tr>
<tr>
<td>S1</td>
<td>Magna</td>
<td>K-W</td>
<td>P3</td>
<td>A</td>
<td>$20</td>
</tr>
<tr>
<td>S2</td>
<td>Box</td>
<td>London</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BCNF violation: $Sno \rightarrow Sname, City$

<table>
<thead>
<tr>
<th>Sno</th>
<th>Pno</th>
<th>Pname</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>P1</td>
<td>A</td>
<td>$25</td>
</tr>
<tr>
<td>S1</td>
<td>P2</td>
<td>B</td>
<td>$34</td>
</tr>
<tr>
<td>S1</td>
<td>P3</td>
<td>A</td>
<td>$20</td>
</tr>
<tr>
<td>S2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sno</th>
<th>Sname</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Magna</td>
<td>K-W</td>
</tr>
<tr>
<td>S2</td>
<td>Box</td>
<td>London</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Another example

\[\mathcal{F} \text{ includes:} \\
\text{uid} \rightarrow \text{uname, twittered} \\
\text{twitterid} \rightarrow \text{uid} \\
\text{uid, gid} \rightarrow \text{fromDate} \]

\text{UserJoinsGroup} (\text{uid, uname, twitterid, gid, fromDate})
Another example

UserJointsGroup (uid, uname, twitterid, gid, fromDate)

BCNF violation: \(uid \rightarrow uname, twitterid \)

User (uid, uname, twitterid)

BCNF
\[\{uid\}^+ = \{uid, uname, twitterid\} \]
\[\{twitterid\}^+ = \{uid, uname, twitterid\} \]

Member (uid, gid, fromDate)

BCNF
\[\{uid, gid\}^+ = \{uid, gid, fromDate\} \]

\[\mathcal{F} \text{ includes:} \]
uid \rightarrow uname, twitterid

\[twitterid \rightarrow uid \]

uid, gid \rightarrow fromDate
Alt. solution

UserJoinsGroup \((uid, \text{uname}, \text{twitterid}, \text{gid}, \text{fromDate})\)

BCNF violation: \(\text{twitterid} \rightarrow \text{uid}\)

UserId \((\text{twitterid}, \text{uid})\)

BCNF

UserJoinsGroup \((\text{twitterid}, \text{uname}, \text{gid}, \text{fromDate})\)

BCNF violation: \(\text{twitterid} \rightarrow \text{uname}\)

UserName \((\text{twitterid}, \text{uname})\)

BCNF

Member \((\text{twitterid}, \text{gid}, \text{fromDate})\)

BCNF

\(\mathcal{F}\) includes:
- \(uid \rightarrow \text{uname}, \text{twitterid}\)
- \(\text{twitterid} \rightarrow \text{uid}\)
- \(\text{uid}, \text{gid} \rightarrow \text{fromDate}\)

But we need to check all the FDs in \(\mathcal{F}^+\)!!

No FDs in \(\mathcal{F}\) violate BCNF here! (as \(\text{uid}\) is missing in this relation)
“Good” Schema Decomposition

• Lossless-join decompositions
• Dependency-preserving decompositions
• BCNF \rightarrow guaranteed to be a lossless join decomposition!
 • Depend on the sequence of FDs for decomposition
 • Not necessarily dependency preserving

Example: consider $R=\{A, B, C\}$

\mathcal{F} includes: FD1: $AB \rightarrow C$ FD2: $C \rightarrow B$

BCNF violation: $C \rightarrow B$

$\{A, C\}$ $\{C, B\}$

$AB \rightarrow C$ is interrelational and cannot be tested directly
“Good” Schema Decomposition

• Lossless-join decompositions
• Dependency-preserving decompositions
• BCNF → guaranteed to be a lossless join decomposition!
 • Depend on the sequence of FDs for decomposition
 • Not necessarily dependency preserving
• 3NF → both lossless join and dependency preserving
Third normal form (3NF)

• A relation R is in 3NF iff whenever $(X \rightarrow Y) \in \mathcal{F}^+$ and $XY \subseteq R$, then either
 • $(X \rightarrow Y)$ is trivial (i.e., $Y \subseteq X$), or
 • X is a super key of R (i.e., $X \rightarrow R$) or
 • Each attribute in $Y - X$ is contained in a candidate key of R

• Example: consider $R=$\{A, B, C\}
 • Satisfies 3NF, but not BCNF

• 3NF is looser than BCNF \rightarrow Allows more redundancy
How to find a 3NF relation schemas?

• Lossless-join, dependency-preserving decomposition into 3NF relation schemas always exists.

• Step 1: Finding the minimal cover of the FD set \mathcal{F}

$$\mathcal{F} \xrightarrow{\mathcal{F}^+} \mathcal{F}' \xrightarrow{\mathcal{F}''^+} \Rightarrow \text{schema}$$

Given a set of FDs \mathcal{F}, we say \mathcal{F}' is equivalent to \mathcal{F} if their closures are the same: $\mathcal{F}^+ = \mathcal{F}''^+$.

• Step 2: Decompose based on the minimal cover (i.e., \mathcal{F}' is minimal).
Minimal cover

• A set of FDs \mathcal{F} is minimal if
 1. every right-hand side of a FD in \mathcal{F} is a single attribute

• Example: $R = \{Sno, Sname, City, Pno, Pname, Price, PType\}$

\mathcal{F}: FD1: $Sno \rightarrow Sname, City$
FD2: $Pno \rightarrow Pname$
FD3: $Sno, Pno \rightarrow Price$
FD4: $Sno, Pname \rightarrow Price$
FD5: $Pno, Pname \rightarrow Ptype$

Fail condition 1
Minimal cover

- A set of FDs \mathcal{F} is **minimal** if
 1. every right-hand side of a FD in \mathcal{F} is a single attribute
 2. there does not exist $X \rightarrow A$, and Z a proper subset of X, such that the set $(\mathcal{F} - \{X \rightarrow A\}) \cup \{Z \rightarrow A\}$ is equivalent to \mathcal{F},
 English: no extraneous (redundant) attributes in the left-hand side of an FD in \mathcal{F}

- Example: $R = \{\text{Sno, Sname, City, Pno, Pname, Price, PType}\}$

\[\mathcal{F}:\]
- FD1: $\text{Sno} \rightarrow \text{Sname, City}$
- FD2: $\text{Pno} \rightarrow \text{Pname}$
- FD3: $\text{Sno, Pno} \rightarrow \text{Price}$
- FD4: $\text{Sno, Pname} \rightarrow \text{Price}$
- FD5: $\text{Pno, Pname} \rightarrow \text{Ptype}$

- \(\text{compute} X^+ (\{\text{Pno}\}, \{\text{FD1, FD2, FD3, FD4, FD5}\}) = \{\ldots, \text{Ptype}, \ldots\}\)

[visit Lecture 9 for how to compute closure]
Minimal cover

• A set of FDs \mathcal{F} is minimal if

1. Every right-hand side of a FD in \mathcal{F} is a single attribute
2. There does not exist $X \rightarrow A$ and Z a proper subset of X, such that $(\mathcal{F} - \{X \rightarrow A\}) \cup \{Z \rightarrow A\}$ is equivalent to \mathcal{F}, English: no extraneous (redundant) attributes in the left-hand side of a FD in \mathcal{F}
3. There does not exist $X \rightarrow A$ in \mathcal{F}, such that $\mathcal{F} - \{X \rightarrow A\}$ equivalent to \mathcal{F}

Example: $R = \{\text{Sno}, \text{Sname}, \text{City}, \text{Pno}, \text{Pname}, \text{Price}, \text{PType}\}$

\mathcal{F}: FD1: $\text{Sno} \rightarrow \text{Sname}, \text{City}$
FD2: $\text{Pno} \rightarrow \text{Pname}$
FD3: $\text{Sno}, \text{Pno} \rightarrow \text{Price}$
FD4: $\text{Sno}, \text{Pname} \rightarrow \text{Price}$
FD5: $\text{Pno}, \text{Pname} \rightarrow \text{Ptype}$

Fail condition 3: FD2+FD4 can give FD3 $(\mathcal{F} - \{\text{FD3}\})$ is equiv. to \mathcal{F}

$computeX^+\{\text{Sno, Pno}\}, \{\text{FD1, FD2, FD4, FD5}\}$
$= \{\ldots, \text{Price, } \ldots\}$
Finding minimal cover

• A minimal cover for \mathcal{F} can be computed in 3 steps.
 1. Replace $X \rightarrow YZ$ with the pair $X \rightarrow Y$ and $X \rightarrow Z$
 2. Remove A from the left-hand side of $X \rightarrow B$ in \mathcal{F} if $B \in \text{compute}X^+(X - \{A\}, \mathcal{F})$
 3. Remove $X \rightarrow A$ from \mathcal{F} if $A \in \text{compute}X^+(X, \mathcal{F} - \{X \rightarrow A\})$
• Note that each step must be repeated until it no longer succeeds in updating \mathcal{F}.

• Example: $R = \{\text{Sno}, \text{Sname}, \text{City}, \text{Pno}, \text{Pname}, \text{Price}, \text{PType} \}$

\mathcal{F}: FD1: Sno \rightarrow Sname, City
FD2: Pno \rightarrow Pname
FD3: Sno, Pno \rightarrow Price
FD4: Sno, Pname \rightarrow Price
FD5: Pno, Pname \rightarrow Ptype

Remove FD3

Pno \rightarrow Ptype
Computing 3NF decomposition

Efficient algorithm for computing a 3NF decomposition of R with FDs \mathcal{F}:

1. Initialize the decomposition with empty set
2. Find a minimal cover for \mathcal{F}, let it be \mathcal{F}^*
3. For every $(X \rightarrow Y) \in \mathcal{F}^*$, add a relation $\{XY\}$ to the decomposition
4. If no relation contains a candidate key for R, then compute a candidate key K for R, and add relation $\{K\}$ to the decomposition.
Example for 3NF decomposition

\[R = \{ \text{Sno, Sname, City, Pno, Pname, Price} \} \]

\[\mathcal{F}: \text{FD1: Sno} \rightarrow \text{Sname, City} \]
\[\text{FD2: Pno} \rightarrow \text{Pname} \]
\[\text{FD3: Sno, Pno} \rightarrow \text{Price} \]
\[\text{FD4: Sno, Pname} \rightarrow \text{Price} \]

\[\mathcal{F}^*: \text{FD1a: Sno} \rightarrow \text{Sname} \]
\[\text{FD1b: Sno} \rightarrow \text{City} \]
\[\text{FD2: Pno} \rightarrow \text{Pname} \]
\[\text{FD4: Sno, Pname} \rightarrow \text{Price} \]

• Add relation for candidate key
• Optimization for this example: combine relations R1a and R1b
Summary

• Functional dependencies: provide clues towards elimination of (some) redundancies in a schema.
 • Closure of FDs (rules, e.g. Armstrong’s axioms)
 • Compute attribute closure

• Schema decomposition
 • Lossless join decompositions
 • Dependency preserving decompositions
 • Normal forms based on FDs
 • BCNF \rightarrow lossless join decompositions
 • 3rd NF \rightarrow lossless join and dependency-preserving decompositions with more redundancy