Relational Database Design Theory (I)

[additional exercises]

CS348 Spring 2023
Exercises for Attribute closure

• The closure of attributes Z in a relation R (denoted Z^+) with respect to a set of FDs, \mathcal{F}, is the set of all attributes $\{A_1, A_2, \ldots\}$ functionally determined by Z (that is, $Z \rightarrow A_1A_2 \ldots$)

• Algorithm for computing the closure

 Compute$Z^+(Z, \mathcal{F})$:

 • Start with closure $= Z$
 • If $X \rightarrow Y$ is in \mathcal{F} and X is already in the closure, then also add Y to the closure
 • Repeat until no new attributes can be added
Example for computing attribute closure

Consider the schema of a table EmpProj and the FDs:

\[F \text{ includes:} \]
\[SIN, PNum \rightarrow Hours \]
\[SIN \rightarrow EName \]
\[PNum \rightarrow PName, PLoc \]
\[PLoc, Hours \rightarrow Allowance \]
Example for computing attribute closure

Compute $Z^+ \left(\{PNum, Hours\}, \mathcal{F} \right)$:

\mathcal{F} includes:
- SIN, PNum \rightarrow Hours
- SIN \rightarrow EName
- PNum \rightarrow PName, PLoc
- PLoc, Hours \rightarrow Allowance

<table>
<thead>
<tr>
<th>FD</th>
<th>Z^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>PNum, Hours</td>
</tr>
<tr>
<td>PNum \rightarrow PName, PLoc</td>
<td>PNum, Hours, PName, PLoc</td>
</tr>
<tr>
<td>PLoc, Hours \rightarrow Allowance</td>
<td>PNum, Hours, PName, PLoc, Allowance</td>
</tr>
</tbody>
</table>

$PNum, Hours \rightarrow PName, PLoc, Allowance$
Using attribute closure

Given a relation R and set of FD’s \mathcal{F}

• Does another FD $X \rightarrow Y$ follow from \mathcal{F}?
 • Compute X^+ with respect to \mathcal{F}
 • If $Y \subseteq X^+$, then $X \rightarrow Y$ follows from \mathcal{F}

• Is K a key of R?
 • Compute K^+ with respect to \mathcal{F}
 • If K^+ contains all the attributes of R, K is a super key
 • Still need to verify that K is minimal (how?)
 • Hint: check the attribute closure of its proper subset.
 • i.e., Check that for no set X formed by removing attributes from K is K^+ the set of all attributes
Exercise I

Compute \(Z^+ (\{SIN, PNum\}, \mathcal{F}) \):

\[\mathcal{F} \text{ includes:}
\begin{align*}
SIN, PNum & \rightarrow \text{Hours} \\
SIN & \rightarrow \text{EName} \\
PNum & \rightarrow \text{PName}, PLoc \\
\text{PLoc}, \text{Hours} & \rightarrow \text{Allowance}
\end{align*}\]

<table>
<thead>
<tr>
<th>FD</th>
<th>(\mathcal{Z}^+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>({SIN, PNum})</td>
</tr>
<tr>
<td>(SIN \rightarrow \text{EName})</td>
<td>({SIN, PNum, \text{EName}})</td>
</tr>
<tr>
<td>(PNum \rightarrow \text{PName}, \text{PLoc})</td>
<td>({SIN, PNum, \text{EName}, \text{PName}, \text{PLoc}})</td>
</tr>
</tbody>
</table>

Compute \(Z^+ (\{SIN, PNum, Hours\}, \mathcal{F}) \)?

\(\{SIN, PNum, Hours, \text{EName}, \text{PName}, \text{PLoc}, \text{Allowance}\} \)

\(\rightarrow \text{A candidate key (why?)} \)
Exercise II

• R(A,B,C)
• F includes
 • FD1: A \rightarrow B
 • FD2: B \rightarrow C
 • FD3: A \rightarrow C
• ComputeZ^+({A}, F) = ?
 • {A,B,C}
• ComputeZ^+({B}, F) = ?
 • {B,C}
• ComputeZ^+({A,B,C}, F) = ?
 • {A,B,C}

• Super keys for R?
 • A, AB, AC, ABC
• Candidate keys for R?
 • A
Exercise III

• R(A,B,C)
• F includes
 • FD1: A \rightarrow B
• Compute Z^+({A}, F) = ?
 • \{A,B\}
• Super keys for R?
 • AC, ABC
• Candidate keys for R?
 • AC