SQL:
Indexes, Programming, Recursion

CS348 Spring 2024
Instructor: Sujaya Maiyya
Sections: 002 & 003 only

Announcements

* Assignment 1 due by 11:59PM tonight!
e Submit via CrowdMark/Marmoset

SQL features covered so far

* I[ndexes

Motivating examples of using indexes

SELECT * FROM User WHERE name = 'Bart’;

* Can we go “directly” to rows with name='Bart’ instead
of scanning the entire table?

- index on User.name

SELECT * FROM User, Member

WHERE User.uid = Member.uid AND Member.gid = ‘popgroup’;

* Can we find relevant Member rows “directly’?
—> index on Member.gid

* For each relevant Member row, can we “directly” look
up User rows with matching uid

- index on User.uid

Indexes

* An is an auxiliary persistent data structure that
helps with efficient searches

* Search tree (e.g., B*-tree), lookup table (e.g., hash table), etc.
®More on indexes later in this course!

* With UNIQUE, the DBMS will also enforce that
{columnname;, ..., columnname,} is a key of tablename

* Typically, the DBMS will automatically create indexes
for PRIMARY KEY and UNIQUE constraint declarations

Indexes

* Anindex on R. A can speed up accesses of the form

* R.A = value
* R.A > wvalue (sometimes; depending on the index type)

* Anindexon (R.A4,...,R. A,) can speed up
* R.A; = value; A---ANR.A,, = value,
* (R.Aq,...,R.A;) > (valuey, ..., value,,) (again depends)

Questions (lecture 12):

®Ordering of index columns is important—is an index on
(R.A,R.B) equivalent to oneon (R.B,R.A)?

® How about an index on R. A plus another on R. B?
“ More indexes = better performance?

sQL

* Basic SQL (queries, modifications, and constraints)

* Intermediate SQL
* Triggers
* Views
* Indexes

Motivation

* Pros and cons of SQL
* Very high-level, possible to optimize
* Not intended for general-purpose computation

* Can SQL and general-purpose programming
languages (PL) interact with each other?

/ YES!! \

Build SQL statements at SQL statements embedded in

runtime using APIs provided by general-purpose PL; identified
DBMS at compile time

A mismatch b/w SQL and PLs

* SQL operates on

* Typical low-level general-purpose
programming languages operate on

= Solution:
(a result table), ,

® Found in virtually every database language/API
* With slightly different syntaxes

Dynamic SQL: Working with SQL
through an API

* E.g.: Python psycopg2, JDBC, ODBC (C/C**)
* All based on the SQL/CLI (Call-Level Interface) standard

* The application program to
the DBMS

* Responses/results are converted to objects in the
application program

Example API: Python psycopg?2

Connect to the database
import psycopg2
conn = psycopg2.connect(host="db.uwaterloo.ca", port=5432
dbname="membership", user=*‘u?’, password=*‘passwd1’))

‘CUr = conn.cursor()]

An object used to query
db & get results

Example API: Python psycopg?2

import psycopg2
conn = psycopg2.connect(host="db.uwaterloo.ca", port=5432,

dbname="membership", user=‘u1’, password=*‘passwd1’)
cur = conn.cursor() You can iterate over cur

list all groups: M)/one tuple at a time
cur.execute('SELECT * FROM Gro

for gid, name in cur:] Placeholder for

H () R . , t
print(‘Group ’ + gid + “ has name ’ + name) query parameter

print users whose name contains “a”’: /
cur.execute('SELECT name, pop FROM User WHERE name LIKE(%q', ('a%’,)) |
for name, pop in cur:

print(‘{} has a popularity of {}'.format(name,pop))

conn.commit() Tuple of parameter values,
cur.close() one for each %s

conn.close() Commit the changes, if any, and

More psycopg2 examples

“commit” each change immediately—need to set this option just once at
the start of the session
conn.set_session(autocommit=True) Perform parsing,
T semantic analysis,
uid = input('Enter the user id to update: ').strip() optimization,
name = input('Enter the name to update: ').stfip() | compilation, and finally
pop = float(input('Enter new pop: ")) execution
try:
(cur.execute(”)
UPDATE User
SET pop = %s
_ WHERE uid = %s AND name = %s”, (pop, uid, name)))
print('{} row(s) updated'.format(cur.rowcount))
except Exception as e:
print(e)

More psycopg2 examples

Perform parsing,
semantic analysis,
optimization,
compilation, and finally
while true: execution

Input uid, name, pop...

/" cur.execute('”)
UPDATE User

SET pop = %s

WHERE uid = %s AND name = %s"’, (pop, uid, name)) D

-

Execute many times

Check result...
Can we reduce this overhead?

Prepared statements: example

.

cur.execute("" # Prepare once (in SQL). Prepare only once R
PREPARE update_pop AS # Name the prepared plan,
UPDATE User

SET pop =51 # and note the S1, S2, ... notation for

_ WHERE uid = $2 AND name = $3"") # parameter placeholders. -
while true:

Input uid, name, pop

cur.execute(’
[EXECUTE update_pop(%s, %s, %s)',\ # Execute many times. J
(pop, uid, name))....
Check result...

“Exploits of a mom”

HI, THIS 1S

WE'RE HAVING SOME
(OMPUTER TROUBLE.

\%m

YOUR SON'S SCHOOL.

* The school probably had somethin
SELECT * FROM Students

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY

%4

WHERE (name =‘Bart’)

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students; -~ 7

~OH.YES. UITTLE
ROBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.

!

AND I HOPE
- YOUVE LEARNED
L TOSANMIZE YOUR
DATABASE. INPUTS.

ttp://xked.com/327/

o |ike:

cur.execute("SELECT * FROM Students " + \

"WHERE (nhame =" +

+)")

where name is a string input by user

e Called an

Guarding against SQL injection

* Escape certain characters in a user input string, to
ensure that it remains a single string

* Luckily, most API’s provide ways to “sanitize” input
automatically when using prepared statements (%s)

 E.g., userinput for name=" Robert’);Drop table students;’
Robert\’;Drop table

)

students;
* Returns empty relation

* Some systems limit only one SQL query per API call

So far

* Basic SQL (queries, modifications, and constraints)
* Intermediate SQL(triggers, views, indexes)

* Programming

* (Optional slides on course website on Embedded and
Augmented SQL)

A motivating example

Parent (parent, child)

Orville
Homer Bart
Homer Lisa Abe
Marge Bart
M Li
LEEI s Homer Marge
Abe Homer
Orville Abe ><l
Bart Lisa

* Example: find Bart’s ancestors

* “Ancestor” has a recursive definition

e X is Y’s ancestor if
 XisY’s parent, or
 XisZ'sancestorand Z is Y’s ancestor

Recursion in SQL

* SQL2 had no recursion

* You can find Bart’s parents, grandparents, great
grandparents, etc.

SELECT p1l.parent AS grandparent
FROM Parent pl, Parent p2

WHERE p1.child = p2.parent
AND p2.child = 'Bart’;

* But you cannot find all his ancestors with a single query

* SQL3 introduced recursion
clause
* Many systems support recursion but limited functionality

Ancestor query in SQL3

WITH RECURSIVE
Ancestor(anc, desc) AS base case
([(SELECT parent, child FROM Parent)]
UNION
(SELECT al.anc, a2.desc
FROM Ancestor al, Ancestor a2 Detine
WHERE al.desc = a2.anc)) i relétlon
SELECT anc recursion step _ recursively
FROM Ancestor Query using the relation
WHERE desc = 'Bart"; defined in WITH clause

Finding ancestors

Parent table

WITH RECURSIVE

Homer Bart

Ancestor(anc, desc) AS base case -
((SELECT parent, child FROM Parent) Homer Lisa
UNION Marge Bart
(GELECT al.anc, a2.desc Marge Lisa
ROM Ancestor al, Ancestor a2| recursive e ——
HERE al.desc = a2.anc)) step
3 Orville Abe
Homer Bart
Homer Lisa
Homer Bart Marge Bart
Homer Lisa Marge Lisa
Ancestor table Homer Bart 8
; Marge Bart Abe Homer
Homer Lisa —
Marge Bart Marge Lisa Orville Abe
Marge Lisa Abe Homer Abe Bart
Abe Homer Orville Abe Abe Lisa
Orville Abe Abe Bart Orville Homer
Abe Lisa Orville Bart

Orville Homer Orville Lisa

Fixed point of a function

* If f:D — Disafunction from a type D to itself, a
of f is a value x such that f(x) = x
* Example: what is the fixed point of f(x) = x/2?
* Ans: 0, as f(0)=0

* To compute a fixed point of f
 Start with a “seed”: x « x,
* Compute f(x)
* If f(x) = x, stop; x is fixed point of f
 (Similar to in recursive prog.)
* Otherwise, x « f(x); repeat

Fixed point of a query

* A query q is just a function that maps an input table to
an output table, so a of g is a table T such
thatq(T) =T

* To compute fixed point of g
 Start with executing the base query: T « base query

* Evaluate g overT
* If theresultisidentical to T, stop; T is a fixed point
* Otherwise, let T be the new result; repeat

* Fixed point: there is no further change in the result of the
recursive query evaluation

* Fixed point indicates when the evaluation of the
recursive query terminates

Restrictions on recursive queries

Lecture 3

* Arecursive query g must be
* If input changes, old output should still be valid

* If more tuples are added to the recursive relation, g
must return
, and possibly return additional tuples

* The following is not allowed in g:
* Aggregation on the recursive relation
* NOT EXISTS/NOT IN in generating the recursive relation

» Set difference (EXCEPT) whose right-hand side uses the
recursive relation

Summary

* Basic SQL (queries, modifications, and constraints)
* Intermediate SQL(triggers, views, indexes)
* Programming

e Recursion

* Next 2 lectures: DB design (E/R diagrams)

