
SQL:
Indexes, Programming, Recursion

CS348 Spring 2024
Instructor: Sujaya Maiyya
Sections: 002 & 003 only

Announcements

• Assignment 1 due by 11:59PM tonight!
• Submit via CrowdMark/Marmoset

2

SQL features covered so far

• Basic SQL

• Intermediate SQL
• Triggers
• Views
• Indexes

• Advanced SQL
• Programming
• Recursion

3

Motivating examples of using indexes

• Can we go “directly” to rows with name='Bart’ instead
of scanning the entire table?

 à index on User.name

• Can we find relevant Member rows “directly”?
 à index on Member.gid
• For each relevant Member row, can we “directly” look

up User rows with matching uid
 à index on User.uid

4

SELECT * FROM User WHERE name = 'Bart';

SELECT * FROM User, Member
WHERE User.uid = Member.uid AND Member.gid = ‘popgroup';

Indexes
• An index is an auxiliary persistent data structure that

helps with efficient searches
• Search tree (e.g., B+-tree), lookup table (e.g., hash table), etc.
FMore on indexes later in this course!

• CREATE [UNIQUE] INDEX 𝑖𝑛𝑑𝑒𝑥𝑛𝑎𝑚𝑒 ON
𝑡𝑎𝑏𝑙𝑒𝑛𝑎𝑚𝑒(𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒!,…,𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒");
• With UNIQUE, the DBMS will also enforce that
𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒!, … , 𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒" is a key of 𝑡𝑎𝑏𝑙𝑒𝑛𝑎𝑚𝑒

• DROP INDEX 𝑖𝑛𝑑𝑒𝑥𝑛𝑎𝑚𝑒;

• Typically, the DBMS will automatically create indexes
for PRIMARY KEY and UNIQUE constraint declarations

5

Indexes
• An index on 𝑅. 𝐴 can speed up accesses of the form
• 𝑅. 𝐴	 = 	𝑣𝑎𝑙𝑢𝑒
• 𝑅. 𝐴	 > 	𝑣𝑎𝑙𝑢𝑒 (sometimes; depending on the index type)

• An index on 𝑅. 𝐴!, … , 𝑅. 𝐴" can speed up
• 𝑅. 𝐴! = 𝑣𝑎𝑙𝑢𝑒! ∧ ⋯∧ 𝑅. 𝐴" = 𝑣𝑎𝑙𝑢𝑒"
• 𝑅. 𝐴!, … , 𝑅. 𝐴" > 𝑣𝑎𝑙𝑢𝑒!, … , 𝑣𝑎𝑙𝑢𝑒" (again depends)

Questions (lecture 12):
FOrdering of index columns is important—is an index on
𝑅. 𝐴, 𝑅. 𝐵 equivalent to one on 𝑅. 𝐵, 𝑅. 𝐴 ?

FHow about an index on 𝑅. 𝐴 plus another on 𝑅. 𝐵?
FMore indexes = better performance?

6

SQL

• Basic SQL (queries, modifications, and constraints)

• Intermediate SQL
• Triggers
• Views
• Indexes

• Advanced SQL
• Programming
• Recursion

7

Motivation

• Pros and cons of SQL
• Very high-level, possible to optimize
• Not intended for general-purpose computation

• Can SQL and general-purpose programming
languages (PL) interact with each other?

 YES!!

8

Dynamic SQL
Build SQL statements at

runtime using APIs provided by
DBMS

Embedded SQL
SQL statements embedded in
general-purpose PL; identified

at compile time

A mismatch b/w SQL and PLs

• SQL operates on a set of records at a time
• Typical low-level general-purpose

programming languages operate on one
record at a time

FSolution: cursor
• Open (a result table), Get next, Close
FFound in virtually every database language/API

• With slightly different syntaxes

9

Dynamic SQL: Working with SQL
through an API

• E.g.: Python psycopg2, JDBC, ODBC (C/C++)
• All based on the SQL/CLI (Call-Level Interface) standard

• The application program sends SQL commands to
the DBMS at runtime

• Responses/results are converted to objects in the
application program

10

import psycopg2
conn = psycopg2.connect(host="db.uwaterloo.ca", port=5432,
dbname="membership", user=‘u1’, password=‘passwd1’))
cur = conn.cursor()
…..

Example API: Python psycopg2

11

Connect to the database

An object used to query
db & get results

import psycopg2
conn = psycopg2.connect(host="db.uwaterloo.ca", port=5432,
dbname="membership", user=‘u1’, password=‘passwd1’)
cur = conn.cursor()
list all groups:
cur.execute('SELECT * FROM Group')
for gid, name in cur:
 print(‘Group ’ + gid + ‘ has name ’ + name)
print users whose name contains “a”:
cur.execute('SELECT name, pop FROM User WHERE name LIKE %s', ('a%’,))
for name, pop in cur:
 print(‘{} has a popularity of {}'.format(name,pop))
conn.commit()
cur.close()
conn.close()

Example API: Python psycopg2

12

Tuple of parameter values,
one for each %s

You can iterate over cur
one tuple at a time

Placeholder for
query parameter

Commit the changes, if any, and
close the cursor and the DB

connection

More psycopg2 examples

13

“commit” each change immediately—need to set this option just once at
the start of the session
conn.set_session(autocommit=True)
...
uid = input('Enter the user id to update: ').strip()
name = input('Enter the name to update: ').strip()
pop = float(input('Enter new pop: '))
try:
 cur.execute(“
 UPDATE User
 SET pop = %s
 WHERE uid = %s AND name = %s”, (pop, uid, name))
 print('{} row(s) updated'.format(cur.rowcount))
except Exception as e:
 print(e)

Perform parsing,
semantic analysis,
optimization,
compilation, and finally
execution

More psycopg2 examples

14

….
while true:
Input uid, name, pop…

cur.execute('‘’
 UPDATE User
 SET pop = %s
 WHERE uid = %s AND name = %s'’’, (pop, uid, name))
….
Check result...

Perform parsing,
semantic analysis,
optimization,
compilation, and finally
execution

Execute many times
Can we reduce this overhead?

Prepared statements: example

15

cur.execute(''' # Prepare once (in SQL).
 PREPARE update_pop AS # Name the prepared plan,
 UPDATE User
 SET pop = $1 # and note the $1, $2, … notation for
 WHERE uid = $2 AND name = $3''') # parameter placeholders.
while true:
Input uid, name, pop

 cur.execute(‘
 EXECUTE update_pop(%s, %s, %s)',\ # Execute many times.
 (pop, uid, name))….
Check result...

Prepare only once

“Exploits of a mom”

• The school probably had something like:

 where name is a string input by user
• Called an SQL injection attack

17

http://xkcd.com/327/

cur.execute("SELECT * FROM Students " + \
 "WHERE (name = ‘" + name +" ’)")

SELECT * FROM Students
WHERE (name =‘Bart’)

Guarding against SQL injection

• Escape certain characters in a user input string, to
ensure that it remains a single string

• Luckily, most API’s provide ways to “sanitize” input
automatically when using prepared statements (%s)
• E.g., user input for name= " Robert’);Drop table students; ”

• SELECT * FROM Students WHERE (name =‘Robert\’;Drop table
students;’)

• Returns empty relation

• Some systems limit only one SQL query per API call
18

So far

• Basic SQL (queries, modifications, and constraints)
• Intermediate SQL(triggers, views, indexes)
• Programming
• (Optional slides on course website on Embedded and

Augmented SQL)

• Recursion

19

A motivating example

• Example: find Bart’s ancestors
• “Ancestor” has a recursive definition
• 𝑋 is 𝑌’s ancestor if

• 𝑋 is 𝑌’s parent, or
• 𝑋 is Z′s ancestor and 𝑍 is 𝑌’s ancestor

20

Parent (parent, child)
parent child

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Orville Abe

Bart Lisa

MargeHomer

Abe

Orville

Recursion in SQL

• SQL2 had no recursion
• You can find Bart’s parents, grandparents, great

grandparents, etc.

• But you cannot find all his ancestors with a single query

• SQL3 introduced recursion
• WITH RECURSIVE clause
• Many systems support recursion but limited functionality

21

SELECT p1.parent AS grandparent
FROM Parent p1, Parent p2
WHERE p1.child = p2.parent
 AND p2.child = 'Bart';

WITH RECURSIVE
Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
 UNION
 (SELECT a1.anc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.desc = a2.anc))
SELECT anc
FROM Ancestor
WHERE desc = 'Bart';

base case

Ancestor query in SQL3

22

Query using the relation
defined in WITH clause

Define
a relation

recursivelyrecursion step

a1.anc (X) à a1.desc(Z)
a2.anc (Z) à a2.desc (Y)

Finding ancestors

23

parent child

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Orville Abe

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Orville Abe

anc desc

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Orville Abe

Abe Bart

Abe Lisa

Orville Homer

anc desc

Homer Bart

Homer Lisa

Marge Bart

Marge Lisa

Abe Homer

Orville Abe

Abe Bart

Abe Lisa

Orville Homer

Orville Bart

Orville Lisa

WITH RECURSIVE
Ancestor(anc, desc) AS
((SELECT parent, child FROM Parent)
 UNION
 (SELECT a1.anc, a2.desc
 FROM Ancestor a1, Ancestor a2
 WHERE a1.desc = a2.anc))
…..;

base case

recursive
step

Parent table

Ancestor table

Fixed point of a function

• If 𝑓: 𝐷 → 𝐷 is a function from a type 𝐷 to itself, a
fixed point of 𝑓 is a value 𝑥 such that 𝑓 𝑥 = 𝑥
• Example: what is the fixed point of f(x) = x/2?
• Ans: 0, as f(0)=0

• To compute a fixed point of 𝑓
• Start with a “seed”: 𝑥 ← 𝑥#
• Compute 𝑓 𝑥

• If 𝑓 𝑥 = 𝑥, stop; 𝑥 is fixed point of 𝑓
• (Similar to base case in recursive prog.)

• Otherwise, 𝑥 ← 𝑓 𝑥 ; repeat

24

Fixed point of a query
• A query 𝑞 is just a function that maps an input table to

an output table, so a fixed point of 𝑞 is a table 𝑇 such
that 𝑞 𝑇 = 𝑇

• To compute fixed point of 𝑞
• Start with executing the base query: 𝑇 ← 𝑏𝑎𝑠𝑒	𝑞𝑢𝑒𝑟𝑦
• Evaluate 𝑞 over 𝑇

• If the result is identical to 𝑇, stop; 𝑇 is a fixed point
• Otherwise, let 𝑇 be the new result; repeat

• Fixed point: there is no further change in the result of the
recursive query evaluation
• Fixed point indicates when the evaluation of the

recursive query terminates
25

Restrictions on recursive queries

• A recursive query q must be monotonic
• If input changes, old output should still be valid

• If more tuples are added to the recursive relation, q
must return at least the same set of tuples as
before, and possibly return additional tuples

• The following is not allowed in q:
• Aggregation on the recursive relation
• NOT EXISTS/NOT IN in generating the recursive relation
• Set difference (EXCEPT) whose right-hand side uses the

recursive relation

26

Lecture 3

Summary

• Basic SQL (queries, modifications, and constraints)
• Intermediate SQL(triggers, views, indexes)
• Programming

• Recursion

• Next 2 lectures: DB design (E/R diagrams)

27

