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Views

• A view is like a “virtual” table
• Defined by a query, which describes how to compute 

the view contents on the fly

• Stored as a query by DBMS instead of query contents 

• Can be used in queries just like a regular table
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CREATE VIEW PopGroup AS
        SELECT * FROM User
        WHERE uid IN (SELECT uid 
                              FROM Member
                            WHERE gid = ‘popgroup');

DROP VIEW popGroup;

Base 
tables

SELECT AVG(pop) FROM PopGroup;

SELECT AVG(pop)
FROM (SELECT * FROM User
            WHERE uid IN
            (SELECT uid FROM Member
             WHERE gid = ‘popgroup'))
             AS popGroup;

SELECT MIN(pop) FROM PopGroup;

SELECT … FROM PopGroup;



Why use views?

• To hide complexity from users

• To hide data from users

• Logical data independence

• To provide a uniform interface
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Modifying views

• Does it even make sense, since views are virtual?

• It does make sense if we want users to really see 
views as tables

• Goal: modify the base tables such that the 
modification would appear to have been 
accomplished on the view
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A simple case
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CREATE VIEW UserPop AS
                SELECT uid, pop FROM User;

DELETE FROM UserPop WHERE uid = 123;

DELETE FROM User WHERE uid = 123;

translates to:



An impossible case

• No matter what we do on User, the inserted row 
will not be in PopularUser
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CREATE VIEW PopularUser AS
 SELECT uid, pop FROM User
 WHERE pop >= 0.8;

INSERT INTO PopularUser VALUES(987, 0.3);



A case with too many possibilities

• Set everybody’s pop to 0.5?

• Adjust everybody’s pop by the same amount?

• Just lower one user’s pop?
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CREATE VIEW AveragePop(pop) AS
 SELECT AVG(pop) FROM User;

UPDATE AveragePop SET pop = 0.5;

Renamed 
column



SQL92 updateable views

• More or less just single-table selection queries
• No join

• No aggregation or group by

• No subqueries

• Attributes not listed in SELECT must be nullable

• Arguably somewhat restrictive

• Still might get it wrong in some cases
• See the slide titled “An impossible case”

• Adding WITH CHECK OPTION to the end of the view 
definition will make DBMS reject such modifications
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Materialized views

• Some systems allow view relations to be stored in db
• If the actual relations used in the view definition change, 

the view is kept up-to-date

• Such views are called materialized views

• Used to enhance performance: avoid recomputing 
view each time

• View maintenance: updating the materialized view 
upon base table changes
• Immediately or lazily, up to the DBMS
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uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 7 0.3

Exercises
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uid gid

857 dps

123 gov

857 abc

857 gov

456 abc

456 gov

User

Member

Consider this db instance:

• What is the output of these queries?

SELECT * FROM ageGroups;

CREATE VIEW ageGroups(age,cnt) AS
 (SELECT age, COUNT(*) FROM User GROUP BY age)

SELECT age FROM ageGroups 
WHERE cnt = (SELECT MAX(cnt) FROM ageGroups); 



Exercises

• Create a view that captures all the users, groups, 
and their membership information is one master 
table. The view should show information of users 
who do not belong to a group and groups that have 
no members.

• From this view, find uid and names of users who 
belong to at least two groups.
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User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)



SQL

• Views

• Triggers
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Recall “referential integrity”

Example: Member.uid references User.uid

• Delete or update a User row whose uid is 
referenced by some Member row
• Multiple Options (in SQL)
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uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… ….

User Member

Option 1: Reject
Option 2: Cascade 
(ripple changes to all 
referring rows)

CREATE TABLE Member
(uid INT NOT NULL 
REFERENCES User(uid)
ON DELETE CASCADE,
…..);



Can we generalize it?
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Event

Condition

Action

Delete/update  a 
User row 

Whether its uid is 
referenced by some 

Member row

If yes: reject/ delete 
cascade/null

Referential constraints Data Monitoring

Some user’s 
popularity is updated

Whether the user is a 
member of  “Pop group” 
and pop drops below 0.5

If yes: kick that user out 
of Pop group!



Triggers

• A trigger is an event-condition-action (ECA) rule
• When event occurs, test condition; if condition is 

satisfied, execute action
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CREATE TRIGGER PickyPopGroup

 

  

Event 

Condition

Action

Transition variable
AFTER UPDATE OF pop ON User

REFERENCING NEW ROW AS newUser
FOR EACH ROW

WHEN (newUser.pop < 0.5)
  AND (newUser.uid IN (SELECT uid
                        FROM Member
                        WHERE gid = ‘popgroup'))

 DELETE FROM Member
  WHERE uid = newUser.uid AND gid = ‘popgroup';



Trigger option 1 – possible events

• Possible events include:
• INSERT ON table; DELETE ON table; UPDATE [OF column] 

ON table
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CREATE TRIGGER PickyPopGroup
AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW
 WHEN (newUser.pop < 0.5)
  AND (newUser.uid IN (SELECT uid
                        FROM Member
                        WHERE gid = ‘popgroup')) 
  DELETE FROM Member
  WHERE uid = newUser.uid AND gid = ‘popgroup';

Event 

Condition

Action



Trigger option 2 – timing

• Timing—action can be executed:
• AFTER or BEFORE the triggering event

• INSTEAD OF the triggering event on views (not covered 
in this course)
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CREATE TRIGGER NoFountainOfYouth
BEFORE UPDATE OF age ON User
REFERENCING OLD ROW AS o, NEW ROW AS n
FOR EACH ROW
 WHEN (n.age < o.age)
  SET n.age = o.age;

Event 

Condition

Action



Trigger option 3 – granularity

• Granularity—trigger can be activated:
• FOR EACH ROW modified
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CREATE TRIGGER PickyPopGroup
AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW
 WHEN (newUser.pop < 0.5)
  AND (newUser.uid IN (SELECT uid
                        FROM Member
                        WHERE gid = ‘popgroup')) 
  DELETE FROM Member
  WHERE uid = newUser.uid AND gid = ‘popgroup';

Event 

Condition

Action



Trigger option 3 – granularity

• Granularity—trigger can be activated:
• FOR EACH ROW modified

• FOR EACH STATEMENT that performs modification
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CREATE TRIGGER PickyPopGroup2
AFTER UPDATE OF pop ON User
REFERENCING NEW TABLE AS newUsers
FOR EACH STATEMENT
 DELETE FROM Member
  WHERE gid = ‘popgroup’
  AND uid IN (SELECT uid
               FROM newUsers
               WHERE pop < 0.5);

Event 

Condition 
& Action

Transition table: 
contains all the 
affected rows



Trigger option 3 – granularity

• Granularity—trigger can be activated:
• FOR EACH ROW modified

• FOR EACH STATEMENT that performs modification
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CREATE TRIGGER PickyPopGroup2
AFTER UPDATE OF pop ON User
REFERENCING NEW TABLE AS newUsers
FOR EACH STATEMENT
 DELETE FROM Member
  WHERE gid = ‘popgroup’
  AND uid IN (SELECT uid
               FROM newUsers
               WHERE pop < 0.5);

Transition table: 
contains all the 
affected rows

Can only be used 
with AFTER 

triggers



Statement- vs. row-level triggers

• Simple row-level triggers are easier to implement
• Statement-level triggers: require significant amount of 

state to be maintained in OLD TABLE and NEW TABLE

• However, in some cases a row-level trigger may be 
less efficient
• E.g., 4B rows and a trigger may affect 10% of the rows. 

Recording an action for 4 Million rows, one at a time, is not 
feasible due to resource constraints.

• Certain triggers are only possible at statement level
• E.g., ??
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Certain triggers are only possible at 
statement level
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CREATE TRIGGER MaintainAvgPop
AFTER UPDATE OF pop ON User
REFERENCING NEW TABLE AS newUsers
  OLD TBALE AS oldUsers
FOR EACH STATEMENT
 WHEN (0.5 > (SELECT AVG(pop) from User)
 BEGIN
  DELETE FROM User WHERE uid IN (SELECT uid 

 FROM newUsers)
  INSERT INTO User (SELECT * FROM oldUsers)
 END

Event 

Condition

Transition 
tables

Action



System issues

• Recursive firing of triggers
• Action of one trigger causes another trigger to fire

• Can get into an infinite loop

• Interaction with constraints (tricky to get right!)
• When to check if a triggering event violates constraints?

• After a BEFORE trigger

• Before an AFTER trigger

• (Typical but db dependent)

• Best to avoid when alternatives exist 

23



Exercises

• If a user with pop>0.5 is added to the User table, 
they must automatically belong to the ‘popgroup’. 
Create a trigger to achieve this behavior.
• Assume ‘popgroup’ already exists in the Group table

• Write the trigger once using FOR EACH ROW and 
once using FOR EACH STATEMENT
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User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)



Exercises– FOR EACH ROW

• If a user with pop>0.5 is added to the User table, they must 
automatically belong to the ‘popgroup’. Create a trigger to 
achieve this behavior.
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CREATE TRIGGER AddToPopgroup

 

Event 

Condition

Action

Transition variable
AFTER INSERT ON User

REFERENCING NEW ROW AS newUser
FOR EACH ROW

WHEN (newUser.pop > 0.5)

 INSERT INTO Member
  VALUES (newUser.uid, ‘popgroup’)



Exercises – FOR EACH STATEMENT

• If a user with pop>0.5 is added to the User table, they must 
automatically belong to the ‘popgroup’. Create a trigger to 
achieve this behavior.
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CREATE TRIGGER AddToPopgroup

 

Event 

Condition
 & Action

Transition variable
AFTER INSERT ON User

REFERENCING NEW TABLE AS newUsers
FOR EACH STATEMENT

 INSERT INTO Member
  (SELECT uid, ‘popgroup’ FROM newUsers n
   WHERE n.pop > 0.5)



Summary

• Triggers

• View

• Optional slides on programming + SQL and 
Recursion in SQL

• Next week: entity relationship modeling
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