SQL: Views, Triggers

CS348

Instructor: Sujaya Maiyya

Views

- A view is like a "virtual" table
 - Defined by a query, which describes how to compute the view contents on the fly
 - Stored as a query by DBMS instead of query contents
 - Can be used in queries just like a regular table

```
CREATE VIEW PopGroup AS

SELECT * FROM User

WHERE uid IN (SELECT uid

FROM Member

WHERE gid = 'popgroup');
```

SELECT AVG(pop) FROM PopGroup;

✓

SELECT MIN(pop) FROM PopGroup;

SELECT ... FROM PopGroup;

SELECT AVG(pop)

FROM (SELECT * FROM User

WHERE uid IN

(SELECT uid FROM Member

WHERE gid = 'popgroup'))

AS popGroup;

DROP VIEW popGroup;

Why use views?

- To hide complexity from users
- To hide data from users
- Logical data independence
- To provide a uniform interface

Modifying views

Does it even make sense, since views are virtual?

 It does make sense if we want users to really see views as tables

 Goal: modify the base tables such that the modification would appear to have been accomplished on the view

A simple case

CREATE VIEW UserPop AS

SELECT uid, pop FROM User;

DELETE FROM UserPop WHERE uid = 123;

translates to:

DELETE FROM User WHERE uid = 123;

An impossible case

CREATE VIEW PopularUser AS

SELECT uid, pop FROM User

WHERE pop >= 0.8;

INSERT INTO PopularUser VALUES(987, 0.3);

 No matter what we do on User, the inserted row will not be in PopularUser

A case with too many possibilities

CREATE VIEW AveragePop(pop) AS
SELECT AVG(pop) FROM User;
Renamed
column

UPDATE AveragePop SET pop = 0.5;

- Set everybody's pop to 0.5?
- Adjust everybody's pop by the same amount?
- Just lower one user's pop?

SQL92 updateable views

- More or less just single-table selection queries
 - No join
 - No aggregation or group by
 - No subqueries
 - Attributes not listed in SELECT must be nullable
- Arguably somewhat restrictive
- Still might get it wrong in some cases
 - See the slide titled "An impossible case"
 - Adding WITH CHECK OPTION to the end of the view definition will make DBMS reject such modifications

Materialized views

- Some systems allow view relations to be stored in db
 - If the actual relations used in the view definition change, the view is kept up-to-date
- Such views are called materialized views

 Used to enhance performance: avoid recomputing view each time

- View maintenance: updating the materialized view upon base table changes
 - Immediately or lazily, up to the DBMS

Exercises

Member

Consider this db instance:

J	ser	-
_		

uid	name	age	рор
142	Bart	10	0.9
123	Milhouse	10	0.2
857	Lisa	8	0.7
456	Ralph	7	0.3

uid	gid
857	dps
123	gov
857	abc
857	gov
456	abc
456	gov

What is the output of these queries?

```
CREATE VIEW ageGroups(age,cnt) AS

(SELECT age, COUNT(*) FROM User GROUP BY age)
```

SELECT * FROM ageGroups;

SELECT age FROM ageGroups
WHERE cnt = (SELECT MAX(cnt) FROM ageGroups);

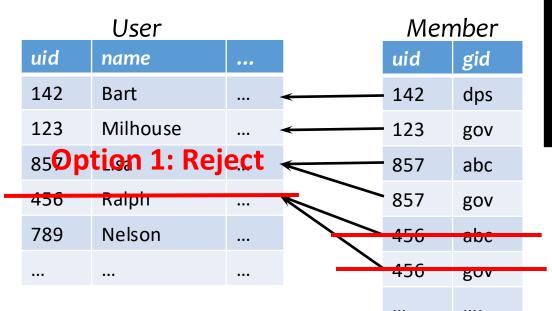
Exercises

User (<u>uid</u> int, name string, age int, pop float) Group (<u>gid</u> string, name string) Member (<u>uid</u> int, <u>gid</u> string)

 Create a view that captures all the users, groups, and their membership information is one master table. The view should show information of users who do not belong to a group and groups that have no members.

• From this view, find uid and names of users who belong to at least two groups.

SQL


Views

Triggers

Recall "referential integrity"

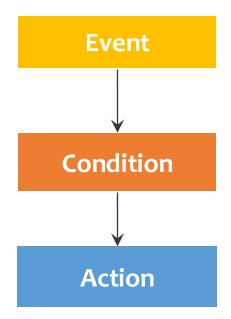
Example: Member.uid references User.uid

- Delete or update a User row whose uid is referenced by some Member row
 - Multiple Options (in SQL)

CREATE TABLE Member (uid INT NOT NULL REFERENCES User(uid) ON DELETE CASCADE,);

Option 2: Cascade (ripple changes to all referring rows)

Can we generalize it?


Referential constraints

Data Monitoring

Delete/update a User row

Whether its uid is referenced by some Member row

If yes: reject/ delete cascade/null

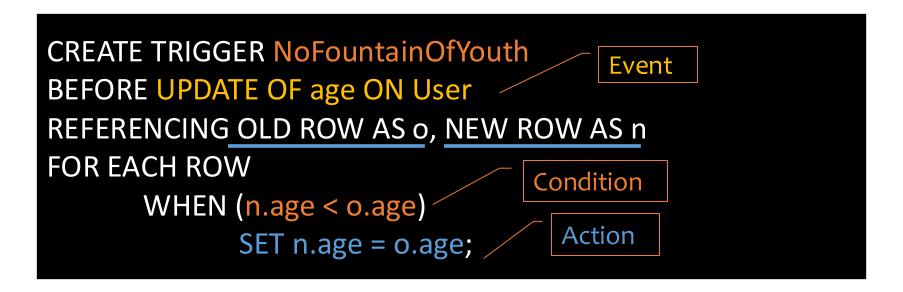
Some user's popularity is updated

Whether the user is a member of "Pop group" and pop drops below 0.5

If yes: kick that user out of Pop group!

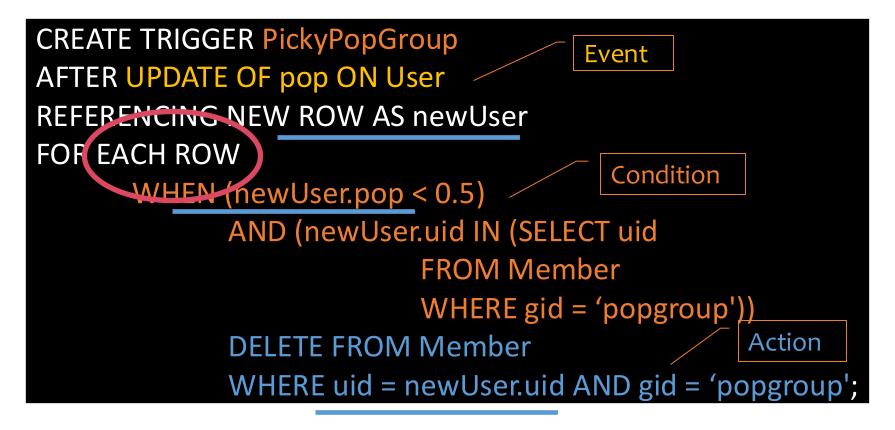
Triggers

- A trigger is an event-condition-action (ECA) rule
 - When event occurs, test condition; if condition is satisfied, execute action

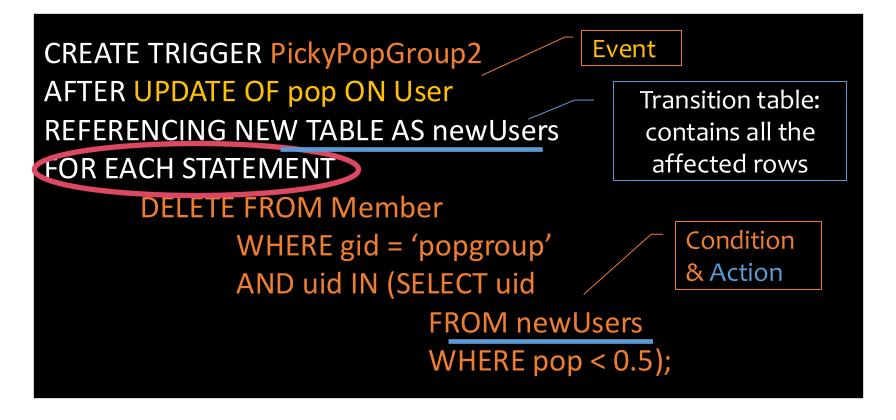

Trigger option 1 – possible events

- Possible events include:
 - INSERT ON table; DELETE ON table; UPDATE [OF column] ON table

```
CREATE TRIGGER PickyPopGroup
                                     Event
AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW
                                       Condition
      WHEN (newUser.pop < 0.5)
             AND (newUser.uid IN (SELECT uid
                          FROM Member
                          WHERE gid = 'popgroup')
             DELETE FROM Member
                                                 Action
             WHERE uid = newUser.uid AND gid = 'popgroup';
```


Trigger option 2 – timing

- Timing—action can be executed:
 - AFTER or BEFORE the triggering event
 - INSTEAD OF the triggering event on views (not covered in this course)

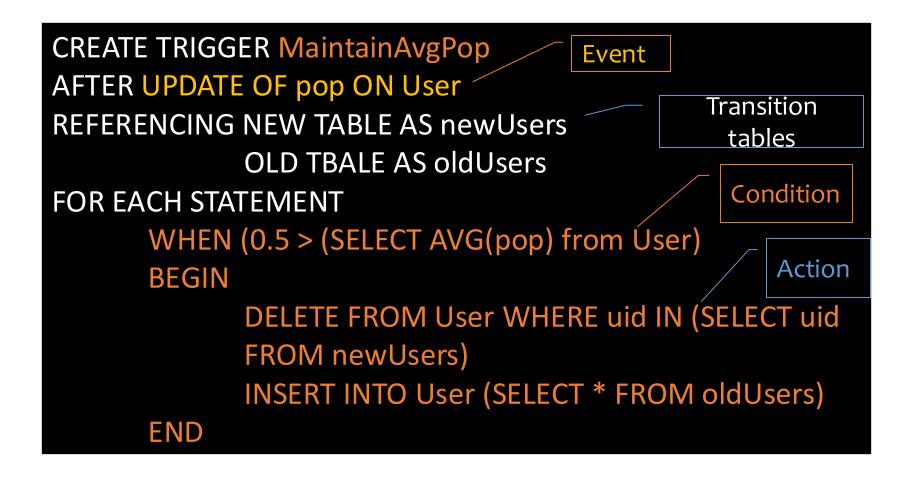

Trigger option 3 – granularity

- Granularity—trigger can be activated:
 - FOR EACH ROW modified

Trigger option 3 – granularity

- Granularity—trigger can be activated:
 - FOR EACH ROW modified
 - FOR EACH STATEMENT that performs modification

Trigger option 3 – granularity


- Granularity—trigger can be activated:
 - FOR EACH ROW modified
 - FOR EACH STATEMENT that performs modification

CREATE TRIGGER PickyPopGroup2 AFTER UPDATE OF pop ON User Transition table: REFERENCING NEW TABLE AS new Users contains all the affected rows FOR EACH STATEMENT **DELETE FROM Member** Can only be used with **AFTER** WHERE gid = 'popgroup' triggers AND uid IN (SELECT uid FROM newUsers WHERE pop < 0.5);

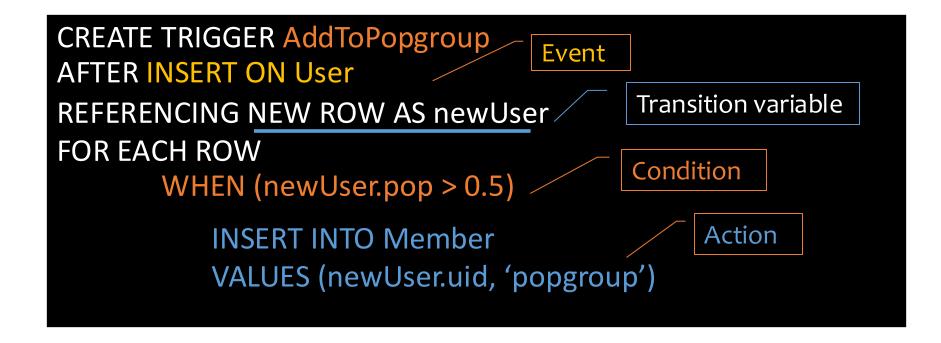
Statement- vs. row-level triggers

- Simple row-level triggers are easier to implement
 - Statement-level triggers: require significant amount of state to be maintained in OLD TABLE and NEW TABLE
- However, in some cases a row-level trigger may be less efficient
 - E.g., 4B rows and a trigger may affect 10% of the rows. Recording an action for 4 Million rows, one at a time, is not feasible due to resource constraints.
- Certain triggers are only possible at statement level
 - E.g., ??

Certain triggers are only possible at statement level

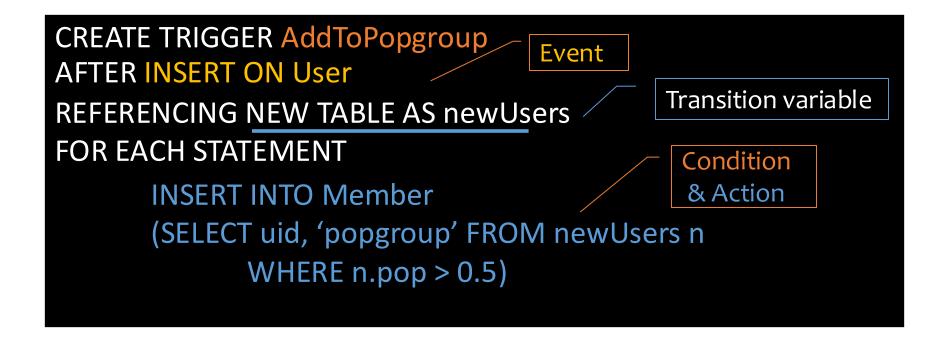
System issues

- Recursive firing of triggers
 - Action of one trigger causes another trigger to fire
 - Can get into an infinite loop
- Interaction with constraints (tricky to get right!)
 - When to check if a triggering event violates constraints?
 - After a BEFORE trigger
 - Before an AFTER trigger
 - (Typical but db dependent)
- Best to avoid when alternatives exist


Exercises

User (<u>uid</u> int, name string, age int, pop float) Group (<u>gid</u> string, name string) Member (<u>uid</u> int, <u>gid</u> string)

- If a user with pop>0.5 is added to the User table, they must automatically belong to the 'popgroup'. Create a trigger to achieve this behavior.
 - Assume 'popgroup' already exists in the Group table
- Write the trigger once using FOR EACH ROW and once using FOR EACH STATEMENT


Exercises – FOR EACH ROW

• If a user with pop>0.5 is added to the User table, they must automatically belong to the 'popgroup'. Create a trigger to achieve this behavior.

Exercises – FOR EACH STATEMENT

• If a user with pop>0.5 is added to the User table, they must automatically belong to the 'popgroup'. Create a trigger to achieve this behavior.

Summary

- Triggers
- View

 Optional slides on programming + SQL and Recursion in SQL

Next week: entity relationship modeling