
SQL:
Views, Triggers

CS348

Instructor: Sujaya Maiyya

Views

• A view is like a “virtual” table
• Defined by a query, which describes how to compute

the view contents on the fly

• Stored as a query by DBMS instead of query contents

• Can be used in queries just like a regular table

2

CREATE VIEW PopGroup AS
 SELECT * FROM User
 WHERE uid IN (SELECT uid
 FROM Member
 WHERE gid = ‘popgroup');

DROP VIEW popGroup;

Base
tables

SELECT AVG(pop) FROM PopGroup;

SELECT AVG(pop)
FROM (SELECT * FROM User
 WHERE uid IN
 (SELECT uid FROM Member
 WHERE gid = ‘popgroup'))
 AS popGroup;

SELECT MIN(pop) FROM PopGroup;

SELECT … FROM PopGroup;

Why use views?

• To hide complexity from users

• To hide data from users

• Logical data independence

• To provide a uniform interface

3

Modifying views

• Does it even make sense, since views are virtual?

• It does make sense if we want users to really see
views as tables

• Goal: modify the base tables such that the
modification would appear to have been
accomplished on the view

4

A simple case

5

CREATE VIEW UserPop AS
 SELECT uid, pop FROM User;

DELETE FROM UserPop WHERE uid = 123;

DELETE FROM User WHERE uid = 123;

translates to:

An impossible case

• No matter what we do on User, the inserted row
will not be in PopularUser

6

CREATE VIEW PopularUser AS
 SELECT uid, pop FROM User
 WHERE pop >= 0.8;

INSERT INTO PopularUser VALUES(987, 0.3);

A case with too many possibilities

• Set everybody’s pop to 0.5?

• Adjust everybody’s pop by the same amount?

• Just lower one user’s pop?

7

CREATE VIEW AveragePop(pop) AS
 SELECT AVG(pop) FROM User;

UPDATE AveragePop SET pop = 0.5;

Renamed
column

SQL92 updateable views

• More or less just single-table selection queries
• No join

• No aggregation or group by

• No subqueries

• Attributes not listed in SELECT must be nullable

• Arguably somewhat restrictive

• Still might get it wrong in some cases
• See the slide titled “An impossible case”

• Adding WITH CHECK OPTION to the end of the view
definition will make DBMS reject such modifications

8

Materialized views

• Some systems allow view relations to be stored in db
• If the actual relations used in the view definition change,

the view is kept up-to-date

• Such views are called materialized views

• Used to enhance performance: avoid recomputing
view each time

• View maintenance: updating the materialized view
upon base table changes
• Immediately or lazily, up to the DBMS

9

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 7 0.3

Exercises

10

uid gid

857 dps

123 gov

857 abc

857 gov

456 abc

456 gov

User

Member

Consider this db instance:

• What is the output of these queries?

SELECT * FROM ageGroups;

CREATE VIEW ageGroups(age,cnt) AS
 (SELECT age, COUNT(*) FROM User GROUP BY age)

SELECT age FROM ageGroups
WHERE cnt = (SELECT MAX(cnt) FROM ageGroups);

Exercises

• Create a view that captures all the users, groups,
and their membership information is one master
table. The view should show information of users
who do not belong to a group and groups that have
no members.

• From this view, find uid and names of users who
belong to at least two groups.

11

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

SQL

• Views

• Triggers

12

Recall “referential integrity”

Example: Member.uid references User.uid

• Delete or update a User row whose uid is
referenced by some Member row
• Multiple Options (in SQL)

13

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… ….

User Member

Option 1: Reject
Option 2: Cascade
(ripple changes to all
referring rows)

CREATE TABLE Member
(uid INT NOT NULL
REFERENCES User(uid)
ON DELETE CASCADE,
…..);

Can we generalize it?

14

Event

Condition

Action

Delete/update a
User row

Whether its uid is
referenced by some

Member row

If yes: reject/ delete
cascade/null

Referential constraints Data Monitoring

Some user’s
popularity is updated

Whether the user is a
member of “Pop group”
and pop drops below 0.5

If yes: kick that user out
of Pop group!

Triggers

• A trigger is an event-condition-action (ECA) rule
• When event occurs, test condition; if condition is

satisfied, execute action

15

CREATE TRIGGER PickyPopGroup

Event

Condition

Action

Transition variable
AFTER UPDATE OF pop ON User

REFERENCING NEW ROW AS newUser
FOR EACH ROW

WHEN (newUser.pop < 0.5)
 AND (newUser.uid IN (SELECT uid
 FROM Member
 WHERE gid = ‘popgroup'))

 DELETE FROM Member
 WHERE uid = newUser.uid AND gid = ‘popgroup';

Trigger option 1 – possible events

• Possible events include:
• INSERT ON table; DELETE ON table; UPDATE [OF column]

ON table

16

CREATE TRIGGER PickyPopGroup
AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW
 WHEN (newUser.pop < 0.5)
 AND (newUser.uid IN (SELECT uid
 FROM Member
 WHERE gid = ‘popgroup'))
 DELETE FROM Member
 WHERE uid = newUser.uid AND gid = ‘popgroup';

Event

Condition

Action

Trigger option 2 – timing

• Timing—action can be executed:
• AFTER or BEFORE the triggering event

• INSTEAD OF the triggering event on views (not covered
in this course)

17

CREATE TRIGGER NoFountainOfYouth
BEFORE UPDATE OF age ON User
REFERENCING OLD ROW AS o, NEW ROW AS n
FOR EACH ROW
 WHEN (n.age < o.age)
 SET n.age = o.age;

Event

Condition

Action

Trigger option 3 – granularity

• Granularity—trigger can be activated:
• FOR EACH ROW modified

18

CREATE TRIGGER PickyPopGroup
AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW
 WHEN (newUser.pop < 0.5)
 AND (newUser.uid IN (SELECT uid
 FROM Member
 WHERE gid = ‘popgroup'))
 DELETE FROM Member
 WHERE uid = newUser.uid AND gid = ‘popgroup';

Event

Condition

Action

Trigger option 3 – granularity

• Granularity—trigger can be activated:
• FOR EACH ROW modified

• FOR EACH STATEMENT that performs modification

19

CREATE TRIGGER PickyPopGroup2
AFTER UPDATE OF pop ON User
REFERENCING NEW TABLE AS newUsers
FOR EACH STATEMENT
 DELETE FROM Member
 WHERE gid = ‘popgroup’
 AND uid IN (SELECT uid
 FROM newUsers
 WHERE pop < 0.5);

Event

Condition
& Action

Transition table:
contains all the
affected rows

Trigger option 3 – granularity

• Granularity—trigger can be activated:
• FOR EACH ROW modified

• FOR EACH STATEMENT that performs modification

20

CREATE TRIGGER PickyPopGroup2
AFTER UPDATE OF pop ON User
REFERENCING NEW TABLE AS newUsers
FOR EACH STATEMENT
 DELETE FROM Member
 WHERE gid = ‘popgroup’
 AND uid IN (SELECT uid
 FROM newUsers
 WHERE pop < 0.5);

Transition table:
contains all the
affected rows

Can only be used
with AFTER

triggers

Statement- vs. row-level triggers

• Simple row-level triggers are easier to implement
• Statement-level triggers: require significant amount of

state to be maintained in OLD TABLE and NEW TABLE

• However, in some cases a row-level trigger may be
less efficient
• E.g., 4B rows and a trigger may affect 10% of the rows.

Recording an action for 4 Million rows, one at a time, is not
feasible due to resource constraints.

• Certain triggers are only possible at statement level
• E.g., ??

21

Certain triggers are only possible at
statement level

22

CREATE TRIGGER MaintainAvgPop
AFTER UPDATE OF pop ON User
REFERENCING NEW TABLE AS newUsers
 OLD TBALE AS oldUsers
FOR EACH STATEMENT
 WHEN (0.5 > (SELECT AVG(pop) from User)
 BEGIN
 DELETE FROM User WHERE uid IN (SELECT uid

 FROM newUsers)
 INSERT INTO User (SELECT * FROM oldUsers)
 END

Event

Condition

Transition
tables

Action

System issues

• Recursive firing of triggers
• Action of one trigger causes another trigger to fire

• Can get into an infinite loop

• Interaction with constraints (tricky to get right!)
• When to check if a triggering event violates constraints?

• After a BEFORE trigger

• Before an AFTER trigger

• (Typical but db dependent)

• Best to avoid when alternatives exist

23

Exercises

• If a user with pop>0.5 is added to the User table,
they must automatically belong to the ‘popgroup’.
Create a trigger to achieve this behavior.
• Assume ‘popgroup’ already exists in the Group table

• Write the trigger once using FOR EACH ROW and
once using FOR EACH STATEMENT

24

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Exercises– FOR EACH ROW

• If a user with pop>0.5 is added to the User table, they must
automatically belong to the ‘popgroup’. Create a trigger to
achieve this behavior.

25

CREATE TRIGGER AddToPopgroup

Event

Condition

Action

Transition variable
AFTER INSERT ON User

REFERENCING NEW ROW AS newUser
FOR EACH ROW

WHEN (newUser.pop > 0.5)

 INSERT INTO Member
 VALUES (newUser.uid, ‘popgroup’)

Exercises – FOR EACH STATEMENT

• If a user with pop>0.5 is added to the User table, they must
automatically belong to the ‘popgroup’. Create a trigger to
achieve this behavior.

26

CREATE TRIGGER AddToPopgroup

Event

Condition
 & Action

Transition variable
AFTER INSERT ON User

REFERENCING NEW TABLE AS newUsers
FOR EACH STATEMENT

 INSERT INTO Member
 (SELECT uid, ‘popgroup’ FROM newUsers n
 WHERE n.pop > 0.5)

Summary

• Triggers

• View

• Optional slides on programming + SQL and
Recursion in SQL

• Next week: entity relationship modeling

27

	Slide 1: SQL: Views, Triggers
	Slide 2: Views
	Slide 3: Why use views?
	Slide 4: Modifying views
	Slide 5: A simple case
	Slide 6: An impossible case
	Slide 7: A case with too many possibilities
	Slide 8: SQL92 updateable views
	Slide 9: Materialized views
	Slide 10: Exercises
	Slide 11: Exercises
	Slide 12: SQL
	Slide 13: Recall “referential integrity”
	Slide 14: Can we generalize it?
	Slide 15: Triggers
	Slide 16: Trigger option 1 – possible events
	Slide 17: Trigger option 2 – timing
	Slide 18: Trigger option 3 – granularity
	Slide 19: Trigger option 3 – granularity
	Slide 20: Trigger option 3 – granularity
	Slide 21: Statement- vs. row-level triggers
	Slide 22: Certain triggers are only possible at statement level
	Slide 23: System issues
	Slide 24: Exercises
	Slide 25: Exercises– FOR EACH ROW
	Slide 26: Exercises – FOR EACH STATEMENT
	Slide 27: Summary

