SQL:
Views, Triggers

CS348
Instructor: Sujaya Maiyya

Views

* A is like a “virtual” table
* Defined by a query, which describes

 Stored as a query by DBMS instead of query contents
* Can be used in queries just like a regular table

CREATE VIEW PopGroup AS SELECT AVG(pop)
SELECT * FROM User tables FROM (SELECT * FROM User
WHERE uid IN (SELECT ui WHERE uid IN
FROM Member (SELECT uid FROM Member
WHERE gid = ‘popgroup’); WHERE gid = ‘popgroup'))

AS popGroup;
SELECT AVG(pop) FROM PopGroup;

SELECT MIN(pop) FROM PopGroup; DROP VIEW popGroup;

SELECT ... FROM PopGroup;

Why use views?
* To from users
*To from users

data independence

* To provide a

Modifying views

* Does it even make sense, since views are virtual?

* [t does make sense if we want users to really see
views as tables

e Goal: such that the
modification would

A simple case

CREATE VIEW UserPop AS
SELECT uid, pop FROM User;

DELETE FROM UserPop WHERE uid = 123;

translates to:

DELETE FROM User WHERE uid = 123;

An impossible case

CREATE VIEW PopularUser AS
SELECT uid, pop FROM User
WHERE pop >= 0.8;

INSERT INTO PopularUser VALUES(987, 0.3);

 No matter what we do on User, the inserted row
will not be in PopularUser

A case with too many possibilities

CREATE VIEW AveragePop(pop)}AS
SELECT AVG(pop) FROM User;

UPDATE AveragePop SET pop =0.5;

* Set everybody’s pop to 0.5?

* Adjust everybody’s pop by the same amount?
* Just lower one user’s pop?

SQL92 updateable views

* More or less just single-table selection queries
* Nojoin
* No aggregation or group by
* No subqueries
 Attributes not listed in SELECT must be nullable

* Arguably somewhat restrictive

e Still might get it wrong in some cases

* See the slide titled “An impossible case”

* Adding to the end of the view
definition will make DBMS reject such modifications

Materialized views

* Some systems allow view relations to be stored in db

* If the actual relations used in the view definition change,
the view is kept up-to-date

 Such views are called materialized views

* Used to enhance performance: avoid recomputing
view each time

* View maintenance: updating the materialized view
upon base table changes
* Immediately or lazily, up to the DBMS

EXxercises
User
Consider this db instance:
142 Bart
123 Milhouse
857 Lisa
456 Ralph

* What is the output of these queries?

CREATE VIEW ageGroups(age,cnt) AS

10
10

~

0.9
0.2
0.7
0.3

(SELECT age, COUNT(*) FROM User GROUP BY age)

Member

857
123
857
857
456
456

dps
gov
abc
gov
abc

gov

SELECT * FROM ageGroups;

SELECT age FROM ageGroups
WHERE cnt = (SELECT MAX(cnt) FROM ageGroups);

User (uid int, name string, age int, pop float)

Exe rc iS e S Group (gid string, name string)

Member (uid int, gid string)

* Create a view that captures all the users, groups,
and their membership information is one master
table. The view should show information of users
who do not belong to a group and groups that have
no members.

* From this view, find uid and names of users who
belong to at least two groups.

SQL

* Views

Recall “referential integrity”

Example:
* Delete or update a User row whose uid is

CREATE TABLE Member
User Member N(l«RINgEN[OIMN[VIRE
REFERENCES User(uid)
142 Bart v - 142 dps ON DELETE CASCADE,
123 Milhouse R 123 gov cee)
ss@ptien 1: Reject :
pen JBEL ""%7 @ Qgption 2: Cascade
a5 R4Ipn 857 gov .
(ripple changes to all
789 Nelson

referring rows)

Can we generalize it?

Referential constraints Data Monitoring

Delete/update a Some user’s
User row popularity is updated
Whether its uid is l Whether the useris a
referenced by some member of “Pop group”

Member row and pop drops below 0.5

If yes: reject/ delete
cascade/null

If yes: kick that user out
of Pop group!

14

Triggers

* A is an event-condition-action (ECA) rule

 When occurs, test ; if condition s
satisfied, execute

CREATE TRIGGER PickyPopGroup —
AFTER UPDATE OF pop ON User "
REFERENCING NEW ROW AS newUser -~

FOR EACH ROW

WHEN (newUser.pop < 0.5) /

AND (newUser.uid IN (SELECT uid
FROM Member

WHERE gid = ‘popgroup'
DELETE FROM Member e

WHERE uid = newUser.uid AND gid = ‘popgroup'

Trigger option 1 — possible events

* Possible events include:

table; table; [OF column]
table

CREATE TRIGGER PickyPopGroup /

AFTER UPDATE OF pop ON User

REFERENCING NEW ROW AS newUser
FOR EACH ROW

Conditi
WHEN (newUser.pop < 0.5) /

AND (newUser.uid IN (SELECT uid
FROM Member

WHERE gid = ‘popgroup’
DELETE FROM Member e h

WHERE uid = newUser.uid AND gid = ‘popgroup’;

Trigger option 2 — timing

* Timing—action can be executed:

or the triggering event

the triggering event on views (not covered
in this course)

CREATE TRIGGER NoFountainOfYouth/

BEFORE UPDATE OF age ON User
REFERENCING OLD ROW AS o, NEW ROW AS n

FOR EACH ROW /

WHEN (n.age < o0.age)

Trigger option 3 — granularity

* Granularity—trigger can be activated:
modified

CREATE TRIGGER PickyPopGroup /

AFTER UPDATE OF pop ON User

REFERENCINGNEW ROW AS newUser
FOR EACH ROW

Condition
WHENAhewUser.pop < 0.5) e

AND (newUser.uid IN (SELECT uid
FROM Member

WHERE gid = ‘popgroup’
DELETE FROM Member e h

WHERE uid = newUser.uid AND gid = ‘popgroup’;

Trigger option 3 — granularity

* Granularity—trigger can be activated:
modified
that performs modification

CREATE TRIGGER PickyPopGroup2

AFTER UPDATE OF pop ON User | Transition table:
REFERENCING NEW TABLE AS newUsers contains all the
FOR EACH STATEMENT affected rows

DELETE FROM Member

WHERE gid = ‘popgroup’
AND uid IN (SELECT uid

FROM newUsers
WHERE pop < 0.5);

Trigger option 3 — granularity

* Granularity—trigger can be activated:
modified
that performs modification

CREATE TRIGGER PickyPopGroup?2
AFTER UPDATE OF pop ON User | Transition table:

REFERENCING NEW TABLE AS newUsers contains all the
FOR EACH STATEMENT affected rows

DELETE FROM Member Can only be used
WHERE gid = ‘popgroup’ with AFTER
AND uid IN (SELECT uid triggers
FROM newUsers

WHERE pop < 0.5);

Statement- vs. row-level triggers

* Simple row-level triggers are easier to implement

* Statement-level triggers: require significant amount of
state to be maintained in OLD TABLE and NEW TABLE

* However, in some cases a row-level trigger may be
less efficient

* E.g., 4B rows and a trigger may affect 10% of the rows.
Recording an action for 4 Million rows, one at a time, is not
feasible due to resource constraints.

* Certain triggers are only possible at statement level
« Eg., 22

Certain triggers are only possible at
statement level

CREATE TRIGGER I\/IaintainAngoV

AFTER UPDATE OF pop ON User

Ty
REFERENCING NEW TABLE AS newUsers ~
OLD TBALE AS oldUsers

FOR EACH STATEMENT /

WHEN (0.5 > (SELECT AVG(pop) from User)

DELETE FROM User WHERE uid IN (SELECT uid
FROM newUsers)

INSERT INTO User (SELECT * FROM oldUsers)

END

System issues

* Recursive firing of triggers
* Action of one trigger causes another trigger to fire
* Can get into an infinite loop

* Interaction with constraints (tricky to get right!)

* When to check if a triggering event violates constraints?

* After a BEFORE trigger
* Before an AFTER trigger
* (Typical but db dependent)

e Best to avoid when alternatives exist

User (uid int, name string, age int, pop float)

Exe rc iS e S Group (gid string, name string)

Member (uid int, gid string)

* If 2 user with pop>0.5 is added to the User table,
they must automatically belong to the ‘popgroup’.
Create a trigger to achieve this behavior.

* Assume ‘popgroup’ already exists in the Group table

* Write the trigger once using FOR EACH ROW and
once using FOR EACH STATEMENT

Exercises— FOR EACH ROW

* If a user with pop>0.5is added to the User table, they must

automatically belong to the ‘popgroup’. Create a trigger to
achieve this behavior.

CREATE TRIGGER AddToPopgroup
E t
AFTER INSERT ON User
REFERENCING NEW ROW AS newUser ~~ | Transition variable

FOR EACH ROW

WHEN (newUser.pop > 0.5) e
INSERT INTO Member /

VALUES (newUser.uid, ‘popgroup’)

Exercises - FOR EACH STATEMENT

* If a user with pop>0.5is added to the User table, they must

automatically belong to the ‘popgroup’. Create a trigger to
achieve this behavior.

CREATE TRIGGER AddToPopgroup

E t
AFTER INSERT ON User e
REFERENCING NEW TABLE AS newUsers =~
FOR EACH STATEMENT

INSERT INTO Member

(SELECT uid, ‘popgroup” FROM newUsers n
WHERE n.pop > 0.5)

Summary

* Triggers
* View

* Optional slides on programming + SQL and
Recursion in SQL

* Next week: entity relationship modeling

	Slide 1: SQL: Views, Triggers
	Slide 2: Views
	Slide 3: Why use views?
	Slide 4: Modifying views
	Slide 5: A simple case
	Slide 6: An impossible case
	Slide 7: A case with too many possibilities
	Slide 8: SQL92 updateable views
	Slide 9: Materialized views
	Slide 10: Exercises
	Slide 11: Exercises
	Slide 12: SQL
	Slide 13: Recall “referential integrity”
	Slide 14: Can we generalize it?
	Slide 15: Triggers
	Slide 16: Trigger option 1 – possible events
	Slide 17: Trigger option 2 – timing
	Slide 18: Trigger option 3 – granularity
	Slide 19: Trigger option 3 – granularity
	Slide 20: Trigger option 3 – granularity
	Slide 21: Statement- vs. row-level triggers
	Slide 22: Certain triggers are only possible at statement level
	Slide 23: System issues
	Slide 24: Exercises
	Slide 25: Exercises– FOR EACH ROW
	Slide 26: Exercises – FOR EACH STATEMENT
	Slide 27: Summary

