SQL:
Constraints, Triggers

CS348 Spring 2024
Instructor: Sujaya Maiyya
Sections: 002 and 003 only

SQL features covered so far

* Query
* SELECT-FROM-WHERE statements
* Set and bag operations
* Table expressions, subqueries
* Aggregation and grouping
* Ordering
* QOuterjoins (and NULL)

* Modification
 INSERT/DELETE/UPDATE

Constraints

e Restricts what data is allowed in a database

* In addition to the simple structure and type restrictions
imposed by the table definitions

* Why use constraints?

* Protect data integrity (catch errors)
* Tell the DBMS about the data (so it can optimize better)

* Declared as and enforced by the
DBMS

Types of SQL constraints

* NOT NULL

* Key

» Referential integrity (foreign key)
* General assertion

* Tuple- and attribute-based CHECK’s

NOT NULL constraint examples

CREATE TABLE User

(uid INT NOT NULL,

name VARCHAR(30) NOT NULL,
twitterid VARCHAR(15) NOT NULL,
age INT,

pop DECIMAL(3,2));

CREATE TABLE Group
(gid CHAR(10) NOT NULL,
name VARCHAR(100) NOT NULL);

CREATE TABLE Member
(uid INT NOT NULL,
gid CHAR(10) NOT NULL);

Key declaration examples

CREATE TABLE User

(uid INT NOT NULL PRIMARY KEY,

name VARCHAR(30) NOT NULL,

twitterid VARCHAR(15) NOT NULL UNIQUE,
age INT,

pop DECIMAL(3,2));

CREATE TABLE Group
(gid CHAR(10) NOT NULL PRIMARY KEY,
name VARCHAR(100) NOT NULL);

CREATE TABLE Member
(uid INT NOT NULL,

gld CHAR(].O) NOT NULL CREATE TABLE Member
PRIMARY KEY(uid, gid)); (uid INT NOT NULL PRIMARY KEY,

gid CHAR(10) NOT NULL PRIMARY KEY,

Referential integrity example

* If a uid appears in Member, it must appear in User
* Member.uid references User.uid

* If a gid appears in Member, it must appear in Group
* Member.gid references Group.gid

® That is, no “dangling pointers”

User Member Group
142 Bart 142 dps abc
123 Milhouse 123 gov gov
857 Lisa 857 abc dps

456 Ralph : 857 gov
789 Nelson \ 456 abc
456 gov

Referential integrity in SQL

» Referenced column(s) must be
» Referencing column(s) form a
* Example

CREATE TABLE Member

(uid INT NOT NULL REFERENCES User(uid),
gid CHAR(10) NOT NULL,

PRIMARY KEY/(uid,gid),

FOREIGN KEY (gid) REFERENCES, Group(gid));

CREATE TABLE MemberBenefits

o
FOREIGN KEY (uid,gid) REFERENCES l\/\ember(uid,gid));

Enforcing referential integrity

Example: Member.uid references User.uid

* Insert or update a Member row so it refers to a non-
existent uid

* Reject
User Member
Bart dps
123 Milhouse 123 gov

857 Lisa 857 abc

456 Ralph : 857 gov
789 Nelson X 456 abc
456 gov

EEHETE Reject

Enforcing referential integrity

Example:
* Delete or update a User row whose uid is

CREATE TABLE Member

User Member NQRINsMN{O2WNV]RE
REFERENCES User(uid)

142 Bart S 142 dps ON DELETE CASCADE,
123 Milhouse . -— 123 gov ;

856ptlQ;n 1: REjeCt (< 857 abc Option 2: Cascade

%456 =Rttt 857 gov)
o (ripple changes to all
789 Nelson .
referring rows)

Enforcing referential integrity

Example:

* Delete or update a User row whose uid is
referenced by some Member row

CREATE TABLE Member
(uid INT

REFERENCES User(uid)
User Member ON DELETE SET NULL,

)}

142 Bart 142 dps
123 Milhouse 123 gov

857 Lisa <<857 abc
A56—Raipih 857

gov
789 Nelson abc
gOV

Option 3: Set NULL
(set all references to NULL)

General assertion

e assertion conditionis checked for each
modification that could potentially violate it

* Example: Member.uid references User.uid

CREATE ASSERTION MemberUserReflntegrity
CHECK (NOT EXISTS

(SELECT * FROM Member
WHERE uid NOT IN
(SELECT uid FROM User)));

Tuple- and attribute-based CHECK’s

* Associated with a single table

* Reject if condition evaluates to FALSE
 TRUE and UNKNOWN are fine

* Examples:

CREATE TABLE User(...
age INTEGER CHECK(age IS NULL OR age > 0),

n);

CREATE TABLE Member
(uid INTEGER NOT NULL,
CHECK(uid IN (SELECT uid FROM User)),

n);

Naming constraints

* It is possible to name constraints (similar to
assertions)

CREATE TABLE User(...

age INT, constraint minAge check(age IS NULL OR age > 0),

)

INn class exercises Xme embersencfits

Consider this db instance: ——
123 gov 857 dps 10
857 abc 123 gov 25
857 gov 857 abc 5
456 abc
456 gov

* MemberBenefits table references the Member table

* (uid,gid) forms the primary key of MemberBenefits table

* Assume discount is of type INT (and uid is INT and gid is
string with a max of 30 characters)

* Write a DDL to create the MemberBenefits table

INn class exercises Xme embersencfits

Consider this db instance: ——
123 gov 857 dps 10
857 abc 123 gov 25
857 gov 857 abc 5
456 abc
456 gov

* MemberBenefits table references the Member table

* (uid,gid) forms the primary key of MemberBenefits table

* Assume discount is of type INT (and uid is INT and gid is
string with a max of 30 characters)

CREATE TABLE MemberBenefits
(uid INT,
gid VARCHAR(30),

discount INT,
PRIMARY KEY (uid,gid),
FOREIGN KEY (uid,gid) REFERENCES Member(uid,gid));

INn class exercises Memee

Consider this db instance: ——
123 gov
857 abc
857 gov
456 abc
456 gov

* Assume all foreign key references are set to
* (Assume the db allows this, just for this exercise)

* What happens when user 857 is deleted from the User
table? (Recall Member table references uid of User table)

User (uid int, name string, age int, pop float)

I n CI a S S eX . Group (gid string, name string)

Member (uid int, gid string)

* Assume the User table requires pop column values to
be between 0 and 1. Complete the following DDL
statement.

CREATE TABLE User
(uid INT PRIMARY KEY,

name VARCHAR(30),
age INT,
pop DECIMAL(3,2) ???);

User (uid int, name string, age int, pop float)

I n CI a S S eX . Group (gid string, name string)

Member (uid int, gid string)

* Assume the User table requires pop column values to
be between 0 and 1. Complete the following DDL
statement.

CREATE TABLE User
(uid INT PRIMARY KEY,

name VARCHAR(30),
age INT,
pop DECIMAL(3,2) CHECK(pop IS NULL OR (pop >=0 AND pop < 1));

User (uid int, name string, age int, pop float)

Ta ke h O me ex. Group (gid string, name string)

Member (uid int, gid string)

* Say every user with pop >=0.9 must belong to the
Book Club (gid=‘abc’). Create as assertion to check
this constraint.

Schema modification

* How to add constraints once the schema is
defined??

* Add or Modify attributes/domains

 Add or Remove constraints

Add or Modify attributes/domains

* Alter table table_name Add column column_name

* Alter table table_name Rename column old_name to
hew_name

* Alter table table_name Drop column column_name

Domain change:

* Alter table table_name Alter column column _name
datatype

Error if column

already has
conflicting data!

24

Add or Remove constraints

table name
constraint_name constraint_condition

ALTER TABLE Member

ADD CONSTRAINT fk_user FOREIGN KEY/(uid)
REFERENCES User(uid)

table name
constraint_name

ALTER TABLE Member

DROP CONSTRAINT fk_user

sQL

e Constraints

* Schema changes

Recall “referential integrity”

Example:
* Delete or update a User row whose uid is

CREATE TABLE Member

User Member NQRINsMN{O2WNV]RE
REFERENCES User(uid)

142 Bart S 142 dps ON DELETE CASCADE,
123 Milhouse . -— 123 gov ;

856ptlQ;n 1: REjeCt (< 857 abc Option 2: Cascade

%456 =Rttt 857 gov)
o (ripple changes to all
789 Nelson .
referring rows)

Can we generalize it?

Referential constraints Data Monitoring

Delete/update a Some user’s
User row popularity is updated
Whether its uid is l Whether the user is a
referenced by some member of “Pop group”

Member row and pop drops below 0.5

If yes: reject/ delete
cascade/null

If yes: kick that user out
of Pop group!

28

Triggers

* A is an event-condition-action (ECA) rule

* When occurs, test ; if condition is
satisfied, execute

CREATE TRIGGER PickyPopGroup

Event
AFTER UPDATE OF pop ON User "
REFERENCING NEW ROW AS newUser

FOR EACH ROW

WHEN (newUser.pop < 0.5) /

AND (newUser.uid IN (SELECT uid
FROM Member

WHERE gid = ‘popgroup’
DELETE FROM Member e

WHERE uid = newUser.uid AND gid = ‘popgroup’

Trigger option 1 — possible events

 Possible events include:

table; table; [OF column]
table

CREATE TRIGGER PickyPopGroup /

AFTER UPDATE OF pop ON User
REFERENCING NEW ROW AS newUser
FOR EACH ROW

Conditi
WHEN (newUser.pop < 0.5) /

AND (newUser.uid IN (SELECT uid

FROM Member

WHERE gid = ‘popgroup’
DELETE FROM Member e
WHERE uid = newUser.uid AND gid = ‘popgroup’;

Trigger option 2 — timing

* Timing—action can be executed:
or the triggering event
the triggering event on views (more later)

CREATE TRIGGER NoFountainOfYouth/

BEFORE UPDATE OF age ON User
REFERENCING OLD ROW AS o, NEW ROW AS n

FOR EACH ROW /

WHEN (n.age < o.age)

SET n.age = 0.age; /

Trigger option 3 — granularity

* Granularity—trigger can be activated:
modified

CREATE TRIGGER PickyPopGroup

Event
AFTER UPDATE OF pop ON User " [Event |

REFERERCINGNEW ROW AS newUser
FOR EACH ROW

, Condition
\WHENANhewUser.pop < 0.5) /

AND (newUser.uid IN (SELECT uid

FROM Member

WHERE gid = ‘popgroup’
DELETE FROM Member e
WHERE uid = newUser.uid AND gid = ‘popgroup’;

Trigger option 3 — granularity

* Granularity—trigger can be activated:
modified
that performs modification

CREATE TRIGGER PickyPopGroup2

AFTER UPDATE OF pop ON User o~
REFERENCING NEW TABLE AS newUsers
FOR EACH STATEMENT

DELETE FROM Member

WHERE gid = ‘popgroup’

AND uid IN (SELECT uid /
FROM newUsers
WHERE pop < 0.5);

Trigger option 3 — granularity

* Granularity—trigger can be activated:
modified

that performs modification

CREATE TRIGGER PickyPopGroup?2

AFTER UPDATE OF pop ON User | Transition table:
REFERENCING NEW TABLE AS newUsers contains all the
FOR EACH STATEMENT affected rows

DELETE FROM Member Can only be used
WHERE gid = ‘popgroup’ with AFTER
AND uid IN (SELECT uid triggers
FROM newUsers

WHERE pop < 0.5);

Transition variables/tables

OLD ROW: the modified row before the triggering event

NEW ROW: the modified row after the triggering event

OLD TABLE: a read-only table containing all old rows
modified by the triggering event

NEW TABLE: a table containing all modified rows after the
triggering event

Event [Row __|statement il Event |Row | tatement_

Delete oldr;oldt old t Update | old/newr -
Insert new r; new t new t Insert new r
Update old/newr; old/newt old/newt Delete |oldr

AFTER Trigger BEFORE Trigger

35

Statement- vs. row-level triggers

 Simple row-level triggers are easier to implement

* Statement-level triggers: require significant amount of
state to be maintained in OLD TABLE and NEW TABLE

* However, in some cases a row-level trigger may be
less efficient

* E.g., 4B rows and a trigger may affect 10% of the rows.
Recording an action for 4 Million rows, one at a time, is not
feasible due to resource constraints.

* Certain triggers are only possible at statement level
. E.g., 2

Certain triggers are only possible at
statement level

CREATE TRIGGER I\/IaintainAngoV

AFTER UPDATE OF pop ON User

Transiti
REFERENCING NEW TABLE AS newUsers ~

OLD TBALE AS oldUsers

FOR EACH STATEMENT /

WHEN (0.5 > (SELECT AVG(pop) from User)
BEGIN / Action

DELETE FROM User WHERE uid IN (SELECT uid
FROM newUsers)

INSERT INTO User (SELECT * FROM oldUsers)

END

System issues

* Recursive firing of triggers
* Action of one trigger causes another trigger to fire
* Can get into an infinite loop

* Interaction with constraints (tricky to get right!)

* When to check if a triggering event violates constraints?
* After a BEFORE trigger
* Before an AFTER trigger
* (based on db2, other DBMS may differ)

e Best to avoid when alternatives exist

SQL features covered so far

Basic & Intermediate SQL
* Query

* Modification

* Constraints

* Triggers

® Next: Views, Indexes, Programming & recursion

