SQL:
Constraints, Schema
modifications, Indexes

CS348
Instructor: Sujaya Maiyya

SQL features covered so far

* Query
* SELECT-FROM-WHERE statements
* Set and bag operations
* Table expressions, subqueries
* Aggregation and grouping
* Ordering
* QOuterjoins (and NULL)

* Modification
 INSERT/DELETE/UPDATE

Constraints

 Restricts what data is allowed in a database

* In addition to the simple structure and type restrictions
imposed by the table definitions

* Why use constraints?

* Protect data integrity (catch errors)
* Tell the DBMS about the data (so it can optimize better)

* Declared as and enforced by the
DBMS

Types of SQL constraints

* NOT NULL

* Key

* Referential integrity (foreign key)
* Tuple- and attribute-based CHECK’s

NOT NULL constraint examples

CREATE TABLE User

(uid INT NOT NULL,

name VARCHAR(30) NOT NULL,
twitterid VARCHAR(15) NOT NULL,
age INT,

pop FLOAT);

CREATE TABLE Group
(gid CHAR(10) NOT NULL,
name VARCHAR(100) NOT NULL);

CREATE TABLE Member
(uid INT NOT NULL,
gid CHAR(10) NOT NULL);

Key declaration examples

CREATE TABLE User

(uid INT NOT NULL PRIMARY KEY,

name VARCHAR(30) NOT NULL,

twitterid VARCHAR(15) NOT NULL UNIQUE,
age INT,

pop FLOAT);

CREATE TABLE Group
(gid CHAR(10) NOT NULL PRIMARY KEY,
name VARCHAR(100) NOT NULL);

CREATE TABLE Member
(uid INT NOT NULL,

gid CHAR(].O) NOT NULL CREATE TABLE Member
PRIMARY KEY(uid,gid)); (uid INT NOT NULL PRIMARY KEY,

gid CHAR(10) NOT NULL PRIMARY KEY,

Referential integrity example

* If a uid appears in Member, it must appear in User
* Member.uid references User.uid

* If a gid appears in Member, it must appear in Group
* Member.gid references Group.gid

® That is, no “dangling pointers”

User Member Group

142 Bart 142 dps abc
123 Milhouse
857 Lisa

456 Ralph : 857 gov
789 Nelson \ 456 abc
456 gov

123 gov gov
857 abc dps

Referential integrity in SQL

» Referenced column(s) must be
 Referencing column(s) form a
* Example

CREATE TABLE Member

(uid INT NOT NULL REFERENCES User(uid),
gid CHAR(10) NOT NULL,

PRIMARY KEY(uid,gid),

FOREIGN KEY (gid) REFERENCES, Group(gid));

CREATE TABLE MemberBenefits

(.

FOREIGN KEY (uid,gid) REFERENCES Member(uid,gid));

Enforcing referential integrity

Example: Member.uid references User.uid

* Insert or update a Member row so it refers to a non-
existent uid

* Reject
User Member
Bart dps
123 Milhouse 123 gov
857 Lisa 857 abc

456 Ralph : 857 gov
789 Nelson \ 456 abc
456 gov

000 | gov I

Enforcing referential integrity

Example:
* Delete or update a User row whose uid is

CREATE TABLE Member
User Member N(l«RINgEN[OIMN[VIRE
REFERENCES User(uid)
142 Bart v - 142 dps ON DELETE CASCADE,
123 Milhouse R 123 gov cee)
ss@ptien 1: Reject :
pen JBEL ""%7 @ Qgption 2: Cascade
a5 R4Ipn 857 gov .
(ripple changes to all
789 Nelson

referring rows)

Enforcing referential integrity

Example:
* Delete or update a User row whose uid is
referenced by some Member row

CREATE TABLE Member
(uid INT

REFERENCES User(uid)
User Member ON DELETE SET NULL,

142 Bart 142 dps

Option 3: Set NULL

123 Milhouse S 123 gov ¢
e | L < ST P (set all references to NULL)
A58 Raipn 857 gov

789 Nelson abc

gov

Tuple- and attribute-based CHECK’s

* Associated with a single table

* Reject if condition evaluates to FALSE
* TRUE and UNKNOWN are fine

* Examples:

CREATE TABLE User(...
age INTEGER CHECK(age > 0),

o)

CREATE TABLE Member
(uid INTEGER NOT NULL,
CHECK(uid IN (SELECT uid FROM User)),

o)

Naming constraints

* |t is possible to name constraints

CREATE TABLE User(...

age INT, CONSTRAINT minAge CHECK(age > 0),

)}

EXQ rCiS es Member MemberBenefits

Consider this db instance: S
123 gov 857 dps 10
857 abc 123 gov 25
857 gov 857 abc 5
456 abc
456 gov

* MemberBenefits table references the Member table

* (uid,gid) forms the primary key of MemberBenefits table

* Assume discount is of type INT (and uid is INT and gid is
string with a max of 30 characters)

* Write a DDL to create the MemberBenefits table

EXQ I'C iS es Member MemberBenefits

Consider this db instance: .
123 gov 857 dps 10
857 abc 123 gov 25
857 gov 857 abc 5
456 abc
456 gov

* MemberBenefits table references the Member table

* (uid,gid) forms the primary key of MemberBenefits table

* Assume discount is of type INT (and uid is INT and gid is
string with a max of 30 characters)

CREATE TABLE MemberBenefits
(uid INT,
gid VARCHAR(30),

discount INT,
PRIMARY KEY (uid,gid),
FOREIGN KEY (uid,gid) REFERENCES Member(uid,gid));

Exercises Member

Consider this db instance: .
123 gov
857 abc
857 gov
456 abc
456 gov

* Assume all foreign key references are set to
* (Assume the db allows this, just for this exercise)

* What happens when user 857 is deleted from the User
table? (Recall Member table references uid of User table)

User (uid int, name string, age int, pop float)

Exe rc iS e S Group (gid string, name string)

Member (uid int, gid string)

* Assume the User table requires pop column values to

be between 0 and 1. Complete the following DDL
statement.

CREATE TABLE User
(uid INT PRIMARY KEY,
name VARCHAR(30),

age INT,
pop FLOAT ???);

User (uid int, name string, age int, pop float)

Exe rc iS e S Group (gid string, name string)

Member (uid int, gid string)

* Assume the User table requires pop column values to

be between 0 and 1. Complete the following DDL
statement.

CREATE TABLE User
(uid INT PRIMARY KEY,
name VARCHAR(30),

age INT,
pop FLOAT CHECK(pop IS NULL OR (pop >=0 AND pop < 1));

Schema modification

e How to add constraints once the schema is
defined??

* Add or Modify attributes/domains

* Add or Remove constraints

Add or Modify attributes/domains

* Alter table table_name Add column column_name

* Alter table table_name Rename column old_name to
nhew _name

* Alter table table_name Drop column column_name

Domain change:

* Alter table table_name Alter column column _name
datatype

Error if column

already has
conflicting data!

21

Add or Remove constraints

table name
constraint_name constraint_condition

ALTER TABLE Member

ADD CONSTRAINT fk_user FOREIGN KEY(uid)
REFERENCES User(uid)

table name
constraint_name

ALTER TABLE Member

DROP CONSTRAINT fk_user

SQL features covered so far

Basic & Intermediate SQL

* Query
 Modification
e Constraints

Motivating examples of using indexes

SELECT * FROM User WHERE name = 'Bart’;

* Can we go “directly” to rows with name='Bart’ instead
of scanning the entire table?

- index on User.name

SELECT * FROM User, Member

WHERE User.uid = Member.uid AND Member.gid = ‘popgroup’;

* Can we find relevant Member rows “directly’”?
—> index on Member.gid

* For each relevant Member row, can we “directly’” look
up User rows with matching Member.uid

- index on User.uid

Indexes

* An is an auxiliary persistent data structure that
helps with efficient searches

* Search tree (e.g., B*-tree), lookup table (e.g., hash table), etc.
® More on indexes later in this course!

 With UNIQUE, the DBMS will also enforce that
{columnname,, ..., columnname,} is a key of tablename

* Typically, the DBMS will automatically create indexes
for PRIMARY KEY and UNIQUE constraint declarations

Indexes

* Anindex on R. A can speed up accesses of the form

* R.A = value
* R.A > wvalue (sometimes; depending on the index type)

* Anindex on (R.A4,...,R.A,) can speed up

* R.A; =value; A---AR.A,, = value,
* (R.A4,...,R.A,) > (valuey, ..., value,,) (again depends)

Questions (lecture 12):

@ Ordering of index columns is important—is an index on
(R.A,R.B) equivalent to oneon (R.B,R.A)?

® How about anindex on R. A4 plus anotheron R. B?
® More indexes = better performance?

SQL features covered so far

Basic & Intermediate SQL

* Query
 Modification
e Constraints

* Indexes

“ Next: Views, Triggers

	Slide 1: SQL: Constraints, Schema modifications, Indexes
	Slide 2: SQL features covered so far
	Slide 3: Constraints
	Slide 4: Types of SQL constraints
	Slide 5: NOT NULL constraint examples
	Slide 6: Key declaration examples
	Slide 7: Referential integrity example
	Slide 8: Referential integrity in SQL
	Slide 9: Enforcing referential integrity
	Slide 10: Enforcing referential integrity
	Slide 11: Enforcing referential integrity
	Slide 13: Tuple- and attribute-based CHECK’s
	Slide 14: Naming constraints
	Slide 15: Exercises
	Slide 16: Exercises
	Slide 17: Exercises
	Slide 18: Exercises
	Slide 19: Exercises
	Slide 20: Schema modification
	Slide 21: Add or Modify attributes/domains
	Slide 22: Add or Remove constraints
	Slide 23: SQL features covered so far
	Slide 24: Motivating examples of using indexes
	Slide 25: Indexes
	Slide 26: Indexes
	Slide 27: SQL features covered so far

