
SQL:
Constraints, Schema

modifications, Indexes
CS348

Instructor: Sujaya Maiyya

SQL features covered so far

• Query
• SELECT-FROM-WHERE statements

• Set and bag operations

• Table expressions, subqueries

• Aggregation and grouping

• Ordering

• Outerjoins (and NULL)

• Modification
• INSERT/DELETE/UPDATE

Today: Constraints, schema changes, indexes

2

Constraints

• Restricts what data is allowed in a database
• In addition to the simple structure and type restrictions

imposed by the table definitions

• Why use constraints?
• Protect data integrity (catch errors)

• Tell the DBMS about the data (so it can optimize better)

• Declared as part of the schema and enforced by the
DBMS

3

Types of SQL constraints

• NOT NULL

• Key

• Referential integrity (foreign key)

• Tuple- and attribute-based CHECK’s

4

NOT NULL constraint examples

5

CREATE TABLE User
(uid INT NOT NULL,
 name VARCHAR(30) NOT NULL,
 twitterid VARCHAR(15) NOT NULL,
 age INT,
 pop FLOAT);

CREATE TABLE Group
(gid CHAR(10) NOT NULL,
 name VARCHAR(100) NOT NULL);

CREATE TABLE Member
(uid INT NOT NULL,
 gid CHAR(10) NOT NULL);

Key declaration examples

6

CREATE TABLE User
(uid INT NOT NULL PRIMARY KEY,
 name VARCHAR(30) NOT NULL,
 twitterid VARCHAR(15) NOT NULL UNIQUE,
 age INT,
 pop FLOAT);

CREATE TABLE Group
(gid CHAR(10) NOT NULL PRIMARY KEY,
 name VARCHAR(100) NOT NULL);

CREATE TABLE Member
(uid INT NOT NULL,
 gid CHAR(10) NOT NULL,
PRIMARY KEY(uid,gid));

This form is
required for multi-
attribute keys

At most one
primary key per
table

Any number of
UNIQUE keys per
table

CREATE TABLE Member
(uid INT NOT NULL PRIMARY KEY,
 gid CHAR(10) NOT NULL PRIMARY KEY,

Referential integrity example

• If a uid appears in Member, it must appear in User
• Member.uid references User.uid

• If a gid appears in Member, it must appear in Group
• Member.gid references Group.gid

That is, no “dangling pointers”

7

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

gid name

abc …

gov …

dps …

… …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… …

User GroupMember

Referential integrity in SQL

• Referenced column(s) must be PRIMARY KEY

• Referencing column(s) form a FOREIGN KEY

• Example

8

CREATE TABLE Member
(uid INT NOT NULL REFERENCES User(uid),
 gid CHAR(10) NOT NULL,
PRIMARY KEY(uid,gid),
FOREIGN KEY (gid) REFERENCES Group(gid));

This form is required for multi-
attribute foreign keys

CREATE TABLE MemberBenefits
(…..
FOREIGN KEY (uid,gid) REFERENCES Member(uid,gid));

Some system allow them to be
non-PK but must be UNIQUE

Enforcing referential integrity

Example: Member.uid references User.uid

• Insert or update a Member row so it refers to a non-
existent uid
• Reject

9

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

User Member

000 gov

Enforcing referential integrity

Example: Member.uid references User.uid

• Delete or update a User row whose uid is
referenced by some Member row
• Multiple Options (in SQL)

10

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… ….

User Member

Option 1: Reject
Option 2: Cascade
(ripple changes to all
referring rows)

CREATE TABLE Member
(uid INT NOT NULL
REFERENCES User(uid)
ON DELETE CASCADE,
…..);

Enforcing referential integrity

Example: Member.uid references User.uid

• Delete or update a User row whose uid is
referenced by some Member row
• Multiple Options (in SQL)

11

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

uid gid

142 dps

123 gov

857 abc

857 gov

NULL abc

NULL gov

… ….

User Member

Option 3: Set NULL
(set all references to NULL)

CREATE TABLE Member
(uid INT NOT NULL
REFERENCES User(uid)
ON DELETE SET NULL,
…..);

Tuple- and attribute-based CHECK’s

13

• Associated with a single table

• Only checked when a tuple/attribute is
inserted/updated
• Reject if condition evaluates to FALSE

• TRUE and UNKNOWN are fine

• Examples:
CREATE TABLE User(...
 age INTEGER CHECK(age > 0),
 ...);

CREATE TABLE Member
(uid INTEGER NOT NULL,
 CHECK(uid IN (SELECT uid FROM User)),
 ...);

Checked when
new tuples are
added to Member
but not when User
is modified

Naming constraints

• It is possible to name constraints

14

CREATE TABLE User(...
 age INT, CONSTRAINT minAge CHECK(age > 0),
 ...);

Exercises

15

uid gid

857 dps

123 gov

857 abc

857 gov

456 abc

456 gov

Member

Consider this db instance:

• MemberBenefits table references the Member table
• (uid,gid) forms the primary key of MemberBenefits table
• Assume discount is of type INT (and uid is INT and gid is

string with a max of 30 characters)

• Write a DDL to create the MemberBenefits table

uid gid discount

857 dps 10

123 gov 25

857 abc 5

MemberBenefits

Exercises

16

uid gid

857 dps

123 gov

857 abc

857 gov

456 abc

456 gov

Member

Consider this db instance:

• MemberBenefits table references the Member table
• (uid,gid) forms the primary key of MemberBenefits table
• Assume discount is of type INT (and uid is INT and gid is

string with a max of 30 characters)

• Write a DDL to create the MemberBenefits table

uid gid discount

857 dps 10

123 gov 25

857 abc 5

MemberBenefits

CREATE TABLE MemberBenefits
(uid INT,
gid VARCHAR(30),
discount INT,
PRIMARY KEY (uid,gid),
FOREIGN KEY (uid,gid) REFERENCES Member(uid,gid));

Exercises

17

uid gid

857 dps

123 gov

857 abc

857 gov

456 abc

456 gov

Member

Consider this db instance:

• Assume all foreign key references are set to ON DELETE
SET NULL

• (Assume the db allows this, just for this exercise)

• What happens when user 857 is deleted from the User
table? (Recall Member table references uid of User table)

Exercises

• Assume the User table requires pop column values to
be between 0 and 1. Complete the following DDL
statement.

18

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

CREATE TABLE User
(uid INT PRIMARY KEY,
 name VARCHAR(30),
 age INT,
 pop FLOAT ???);

Exercises

• Assume the User table requires pop column values to
be between 0 and 1. Complete the following DDL
statement.

19

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

CREATE TABLE User
(uid INT PRIMARY KEY,
 name VARCHAR(30),
 age INT,
 pop FLOAT CHECK(pop IS NULL OR (pop >= 0 AND pop < 1));

Schema modification

• How to add constraints once the schema is
defined??

• Add or Modify attributes/domains

• Add or Remove constraints

20

Add or Modify attributes/domains

• Alter table table_name Add column column_name

• Alter table table_name Rename column old_name to
new_name

• Alter table table_name Drop column column_name

Domain change:

• Alter table table_name Alter column column_name
datatype

21

Error if column
already has

conflicting data!

Add or Remove constraints

• Alter table table_name Add constraint
constraint_name constraint_condition

• Alter table table_name Drop constraint
constraint_name

22

ALTER TABLE Member
ADD CONSTRAINT fk_user FOREIGN KEY(uid)
REFERENCES User(uid)

ALTER TABLE Member
DROP CONSTRAINT fk_user

SQL features covered so far

Basic & Intermediate SQL

• Query

• Modification

• Constraints

• Indexes

23

Motivating examples of using indexes

• Can we go “directly” to rows with name='Bart’ instead
of scanning the entire table?

 → index on User.name

• Can we find relevant Member rows “directly”?

 → index on Member.gid

• For each relevant Member row, can we “directly” look
up User rows with matching Member.uid

 → index on User.uid

24

SELECT * FROM User WHERE name = 'Bart';

SELECT * FROM User, Member
WHERE User.uid = Member.uid AND Member.gid = ‘popgroup';

Indexes

• An index is an auxiliary persistent data structure that
helps with efficient searches
• Search tree (e.g., B+-tree), lookup table (e.g., hash table), etc.
More on indexes later in this course!

• CREATE [UNIQUE] INDEX 𝑖𝑛𝑑𝑒𝑥𝑛𝑎𝑚𝑒 ON
𝑡𝑎𝑏𝑙𝑒𝑛𝑎𝑚𝑒(𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒1,…,𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒𝑛);
• With UNIQUE, the DBMS will also enforce that

𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒1, … , 𝑐𝑜𝑙𝑢𝑚𝑛𝑛𝑎𝑚𝑒𝑛 is a key of 𝑡𝑎𝑏𝑙𝑒𝑛𝑎𝑚𝑒

• DROP INDEX 𝑖𝑛𝑑𝑒𝑥𝑛𝑎𝑚𝑒;

• Typically, the DBMS will automatically create indexes
for PRIMARY KEY and UNIQUE constraint declarations

25

Indexes

• An index on 𝑅. 𝐴 can speed up accesses of the form
• 𝑅. 𝐴 = 𝑣𝑎𝑙𝑢𝑒
• 𝑅. 𝐴 > 𝑣𝑎𝑙𝑢𝑒 (sometimes; depending on the index type)

• An index on 𝑅. 𝐴1, … , 𝑅. 𝐴𝑛 can speed up
• 𝑅. 𝐴1 = 𝑣𝑎𝑙𝑢𝑒1 ∧ ⋯ ∧ 𝑅. 𝐴𝑛 = 𝑣𝑎𝑙𝑢𝑒𝑛

• 𝑅. 𝐴1, … , 𝑅. 𝐴𝑛 > 𝑣𝑎𝑙𝑢𝑒1, … , 𝑣𝑎𝑙𝑢𝑒𝑛 (again depends)

Questions (lecture 12):
Ordering of index columns is important—is an index on

𝑅. 𝐴, 𝑅. 𝐵 equivalent to one on 𝑅. 𝐵, 𝑅. 𝐴 ?
How about an index on 𝑅. 𝐴 plus another on 𝑅. 𝐵?
More indexes = better performance?

26

SQL features covered so far

Basic & Intermediate SQL

• Query

• Modification

• Constraints

• Indexes

Next: Views, Triggers

27

	Slide 1: SQL: Constraints, Schema modifications, Indexes
	Slide 2: SQL features covered so far
	Slide 3: Constraints
	Slide 4: Types of SQL constraints
	Slide 5: NOT NULL constraint examples
	Slide 6: Key declaration examples
	Slide 7: Referential integrity example
	Slide 8: Referential integrity in SQL
	Slide 9: Enforcing referential integrity
	Slide 10: Enforcing referential integrity
	Slide 11: Enforcing referential integrity
	Slide 13: Tuple- and attribute-based CHECK’s
	Slide 14: Naming constraints
	Slide 15: Exercises
	Slide 16: Exercises
	Slide 17: Exercises
	Slide 18: Exercises
	Slide 19: Exercises
	Slide 20: Schema modification
	Slide 21: Add or Modify attributes/domains
	Slide 22: Add or Remove constraints
	Slide 23: SQL features covered so far
	Slide 24: Motivating examples of using indexes
	Slide 25: Indexes
	Slide 26: Indexes
	Slide 27: SQL features covered so far

