
SQL: Part III
CS348 Spring 2024

Instructor: Sujaya Maiyya
Sections: 002 and 003 only

Announcements

• Project Milestone 0: due May 25th !

• Assignment 1: Due June 4th

• Marmoset will be open tomorrow

2

Basic SQL features

• Query
• SELECT-FROM-WHERE statements
• Set/bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))
• Subqueries (table, scalar, IN, EXISTS, ALL, ANY)
• Aggregation and grouping (GROUP BY, HAVING)
• Ordering (ORDER)
• Outerjoins (and Nulls)

• Modification
• INSERT/DELETE/UPDATE

• Constraints

3

Lecture 5

Incomplete information

• Example: User (uid, name, age, pop)
• Value unknown
• We do not know Nelson’s pop

• Value not applicable
• Suppose pop is based on interactions with others on our

social networking site
• Nelson is new to our site; what is their pop?

4

Solution 1

• Dedicate a value from each domain (type)
• pop cannot be −1, so use −1 as a special value to

indicate a missing or invalid pop

• Perhaps the value is not
as special as you think!
• the Y2K bug

5

http://www.90s411.com/images/y2k-cartoon.jpg

SELECT AVG(pop) FROM User;

SELECT AVG(pop) FROM User WHERE pop != -1;

Incorrect answers

Complicated

Solution 2

• A valid-bit for every column
• User (uid,

 name, name_is_valid,
 age, age_is_valid,
 pop, pop_is_valid)

• Complicates schema and queries
• Need almost double the number of columns

6

SELECT AVG(pop) FROM User WHERE pop_is_valid=1;

Solution 3

• Decompose the table; missing row = missing value
• UserName (uid, name)
• UserAge (uid, age)
• UserPop (uid, pop)
• UserID (uid)

• Conceptually the cleanest solution
• Still complicates schema and queries
• How to get all information about users in a table?
• Natural join doesn’t work!

7

Has a tuple for Nelson

Has a tuple for Nelson

No entry for Nelson
No entry for Nelson

SQL’s solution

• A special value NULL
• For every domain (i.e., any datatype)

• Example: User (uid, name, age, pop)
• 789, “Nelson”, NULL, NULL

• Special rules for dealing with NULL’s

8

SELECT * FROM User WHERE name=‘Nelson’ AND pop > 0.5 ??

Three-valued logic

• Comparing a NULL with another value (including
another NULL) using =, >, etc., the result is NULL

• WHERE and HAVING clauses only select rows for
output if the condition evaluates to TRUE
• NULL is not enough

• Aggregate functions ignore NULL, except COUNT(*)

9

TRUE = 1, FALSE = 0, UNKNOWN = 0.5
𝑥 AND 𝑦 = min(𝑥, 𝑦)
𝑥 OR 𝑦 = max(𝑥, 𝑦)

NOT 𝑥 = 1 − 𝑥

Will 789 be in the output?
10

SELECT uid FROM User where name=‘Nelson’ AND pop>0.5;

789, “Nelson”, NULL, NULL

Unfortunate consequences

• Q1a = Q1b?

• Q2a = Q2b?

• Be careful: NULL breaks many equivalences

11

Q1a. SELECT AVG(pop) FROM User;

Q1b. SELECT SUM(pop)/COUNT(*) FROM User;

Q2a. SELECT * FROM User;

Q2b SELECT * FROM User WHERE pop=pop;

Another problem

• Example: Who has NULL pop values?

• SQL introduced special, built-in predicates
IS NULL and IS NOT NULL

12

SELECT * FROM User WHERE pop = NULL; Does not work!

(SELECT * FROM User)
EXCEPT
(SELECT * FROM USER WHERE pop=pop);

Works, but ugly

SELECT * FROM User WHERE pop IS NULL;

uid name age pop

142 Bart NULL 0.9

123 Milhouse 8 NULL

857 Lisa 8 0.7

456 Nelson 8 NULL

324 Ralph NULL 0.3

In class exercises
13

uid gid

857 dps

123 gov

857 abc

857 gov

456 abc

456 gov

User Member

Consider this db instance:

• What is the output of these queries?

SELECT avg(pop), count(*) FROM User GROUP BY age;

SELECT uid FROM User where age > 5 OR pop < 0.5;

SELECT uid FROM User where age > 5 AND pop < 0.5;

SELECT name FROM User WHERE age IN (SELECT age FROM User
 WHERE name = 'Bart');

Take home ex.

• For the previous db instance, what is the output for:

• Write a query to find all users (uids) with non-null
popularity who belong to at least one group.

14

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

SELECT avg(pop), count(*) FROM User WHERE age IS NOT NULL
GROUP BY age;

SELECT MAX(pop), count(*) FROM User GROUP BY age;

Need for a new join query

• Example: construct a master group membership list
with all groups and its members info

• What if a group is empty?
• It may be reasonable for the master list to include

empty groups as well
• For these groups, uid and uname columns would be

NULL

15

SELECT g.gid, g.name AS gname,
 u.uid, u.name AS uname
FROM Group g, Member m, User u
WHERE g.gid = m.gid AND m.uid = u.uid;

Outerjoin examples
16

gid name

abc Book Club

gov Student Government

dps Dead Putting Society

spr Sports Club

uid gid

142 dps

123 gov

857 abc

857 gov

789 foo

Group

Member

gid name uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

Group⟗Member

A full outerjoin between R and S:
• All rows in the result of 𝑅 ⋈ 𝑆, plus
• “Dangling” 𝑅 rows (those that do not join

with any 𝑆 rows) padded with NULL’s for
𝑆’s columns

• “Dangling” 𝑆 rows (those that do not join
with any 𝑅 rows) padded with NULL’s for
𝑅’s columns

spr Sports Club NULL

foo NULL 789

Outerjoin examples
17

gid name

abc Book Club

gov Student Government

dps Dead Putting Society

spr Sports Club

uid gid

142 dps

123 gov

857 abc

857 gov

789 foo

Group

Member

gid name uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

spr Sports Club NULL

Group⟕Member

gid name uid

abc Book Club 857

gov Student Government 123

gov Student Government 857

dps Dead Putting Society 142

foo NULL 789

Group⟖Member

• A left outerjoin (𝑅⟕𝑆) includes rows in 𝑅 ⋈ 𝑆
plus dangling 𝑅 rows padded with NULL’s

• A right outerjoin (𝑅⟖𝑆) includes rows in 𝑅 ⋈
𝑆 plus dangling 𝑆 rows padded with NULL’s

Outerjoin syntax

☞A similar construct exists for regular (“inner”) joins:

☞For natural joins, add keyword NATURAL; don’t use ON

18

SELECT * FROM Group LEFT OUTER JOIN Member
 ON Group.gid = Member.gid;

SELECT * FROM Group RIGHT OUTER JOIN Member
 ON Group.gid = Member.gid;

SELECT * FROM Group FULL OUTER JOIN Member
 ON Group.gid = Member.gid;

≈ 𝐺𝑟𝑜𝑢𝑝 ⟕
!"#$%.'()*+,-.,".'()

𝑀𝑒𝑚𝑏𝑒𝑟

≈ 𝐺𝑟𝑜𝑢𝑝 ⟖
!"#$%.'()*+,-.,".'()

𝑀𝑒𝑚𝑏𝑒𝑟

≈ 𝐺𝑟𝑜𝑢𝑝 ⟗
!"#$%.'()*+,-.,".'()

𝑀𝑒𝑚𝑏𝑒𝑟

SELECT * FROM Group JOIN Member ON Group.gid = Member.gid;

SELECT * FROM Group NATURAL JOIN Member;

Theta join: gid is
repeated

Natural join: gid
appears once

uid uname age pop

142 Bart 10 0.9

123 Milhouse 10 NULL

857 Lisa 8 0.7

456 Ralph 8 NULL

In class exercises
19

uid gid

857 dps

123 gov

857 abc

123 abc

User Member

Consider this db instance:

• What is the output of these queries?

SELECT COUNT(m.gid), COUNT(g.name) FROM Member m RIGHT OUTER JOIN
Group g ON g.gid=m.gid;

SELECT u.name as uname, g.name as gname FROM User u NATURAL JOIN
Member m NATURAL JOIN Group g;

SELECT u.name as uname, m.gid FROM User u LEFT OUTER JOIN Member m
ON u.uid=m.uid;

gid gname

abc Book Club

gov Student Government

dps Dead Putting Society

spr Sports Club

Group

SQL features covered so far

• SELECT-FROM-WHERE statements
• Set and bag operations
• Table expressions, subqueries
• Aggregation and grouping
• Ordering
• NULLs and outerjoins

FNext: data modification statements, constraints

20

INSERT

• Insert one row
• User 789 joins Dead Putting Society

• Insert the result of a query
• Everybody joins Dead Putting Society!

21

INSERT INTO Member VALUES (789, 'dps');

INSERT INTO Member
 (SELECT uid, 'dps' FROM User
 WHERE uid NOT IN (SELECT uid
 FROM Member
 WHERE gid = 'dps'));

INSERT INTO User (uid, name) VALUES (389, ‘Marge');

DELETE

• Delete everything from a table

• Delete according to a WHERE condition
• Example: User 789 leaves Dead Putting Society

• Example: Users over age 18 must be removed from Sports Club

22

DELETE FROM Member;

DELETE FROM Member
WHERE uid IN (SELECT uid FROM User WHERE age > 18)
 AND gid = ‘spr';

DELETE FROM Member WHERE uid=789 AND gid=‘dps’;

DELETE m FROM Member m NATURAL JOIN User u WHERE
u.age > 18 AND m.gid=‘spr’;

UPDATE

• Example: User 142 changes name to “Barney”

• Example: We are all popular!

• But won’t update of every row causes average pop to
change?

FSubquery is always computed over the old table

23

UPDATE User
SET name = 'Barney’
WHERE uid = 142;

UPDATE User
SET pop = (SELECT AVG(pop) FROM User);

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 NULL

857 Lisa 8 0.7

456 Ralph 8 NULL

In class exercises
24

uid gid

857 dps

123 gov

857 abc

123 abc

User Member

Consider this db instance:

• What is the output of these queries?

UPDATE User u NATURAL JOIN Member m SET u.age=11, u.pop=0.4, m.gid=‘spr’
WHERE u.uid=123 and m.gid=‘gov’;

INSERT INTO Member (SELECT u.uid, ‘spr’ FROM User u WHERE u.age >= 10
 AND u.pop IS NOT NULL);

DELETE m, g FROM Member m NATURAL JOIN Group g WHERE g.gid=‘dps’;

gid name

abc Book Club

gov Student Government

dps Dead Putting Society

spr Sports Club

Group

Constraints

• Restricts what data is allowed in a database
• In addition to the simple structure and type restrictions

imposed by the table definitions

• Why use constraints?
• Protect data integrity (catch errors)
• Tell the DBMS about the data (so it can optimize better)

• Declared as part of the schema and enforced by the
DBMS

25

Types of SQL constraints

• NOT NULL
• Key
• Referential integrity (foreign key)
• General assertion
• Tuple- and attribute-based CHECK’s

26

NOT NULL constraint examples
27

CREATE TABLE User
(uid INT NOT NULL,
 name VARCHAR(30) NOT NULL,
 twitterid VARCHAR(15) NOT NULL,
 age INT,
 pop DECIMAL(3,2));

CREATE TABLE Group
(gid CHAR(10) NOT NULL,
 name VARCHAR(100) NOT NULL);

CREATE TABLE Member
(uid INT NOT NULL,
 gid CHAR(10) NOT NULL);

Key declaration examples
28

CREATE TABLE User
(uid INT NOT NULL PRIMARY KEY,
 name VARCHAR(30) NOT NULL,
 twitterid VARCHAR(15) NOT NULL UNIQUE,
 age INT,
 pop DECIMAL(3,2));

CREATE TABLE Group
(gid CHAR(10) NOT NULL PRIMARY KEY,
 name VARCHAR(100) NOT NULL);

CREATE TABLE Member
(uid INT NOT NULL,
 gid CHAR(10) NOT NULL,
PRIMARY KEY(uid,gid));

This form is
required for multi-
attribute keys

At most one
primary key per
table

Any number of
UNIQUE keys per
table

CREATE TABLE Member
(uid INT NOT NULL PRIMARY KEY,
 gid CHAR(10) NOT NULL PRIMARY KEY,

Incorrect!

Referential integrity example

• If a uid appears in Member, it must appear in User
• Member.uid references User.uid

• If a gid appears in Member, it must appear in Group
• Member.gid references Group.gid

FThat is, no “dangling pointers”

29

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

gid name

abc …

gov …

dps …

… …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… …

User GroupMember

Referential integrity in SQL

• Referenced column(s) must be PRIMARY KEY
• Referencing column(s) form a FOREIGN KEY
• Example

30

CREATE TABLE Member
(uid INT NOT NULL REFERENCES User(uid),
 gid CHAR(10) NOT NULL,
PRIMARY KEY(uid,gid),
FOREIGN KEY (gid) REFERENCES Group(gid));

This form is required for multi-
attribute foreign keys

CREATE TABLE MemberBenefits
(…..
FOREIGN KEY (uid,gid) REFERENCES Member(uid,gid));

Some system allow them to be
non-PK but must be UNIQUE

Enforcing referential integrity

Example: Member.uid references User.uid
• Insert or update a Member row so it refers to a non-

existent uid
• Reject

31

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

User Member

Reject000 gov

Enforcing referential integrity

Example: Member.uid references User.uid
• Delete or update a User row whose uid is

referenced by some Member row
• Multiple Options (in SQL)

32

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

uid gid

142 dps

123 gov

857 abc

857 gov

456 abc

456 gov

… ….

User Member

Option 1: Reject Option 2: Cascade
(ripple changes to all
referring rows)

CREATE TABLE Member
(uid INT NOT NULL
REFERENCES User(uid)
ON DELETE CASCADE,
…..);

Enforcing referential integrity

Example: Member.uid references User.uid
• Delete or update a User row whose uid is

referenced by some Member row
• Multiple Options (in SQL)

33

uid name …

142 Bart …

123 Milhouse …

857 Lisa …

456 Ralph …

789 Nelson …

… … …

uid gid

142 dps

123 gov

857 abc

857 gov

NULL abc

NULL gov

… ….

User Member

Option 3: Set NULL
(set all references to NULL)

CREATE TABLE Member
(uid INT NOT NULL
REFERENCES User(uid)
ON DELETE SET NULL,
…..);

General assertion

• CREATE ASSERTION 𝑎𝑠𝑠𝑒𝑟𝑡𝑖𝑜𝑛_𝑛𝑎𝑚𝑒
CHECK assertion_condition;
• assertion_condition is checked for each

modification that could potentially violate it

• Example: Member.uid references User.uid

35

CREATE ASSERTION MemberUserRefIntegrity
CHECK (EXISTS
 (SELECT * FROM Member
 WHERE uid IN
 (SELECT uid FROM User)));

Assertions are
statements
that must

always be true

Can include
multiple

tables

Tuple- and attribute-based CHECK’s
36

• Associated with a single table
• Only checked when a tuple/attribute is

inserted/updated
• Reject if condition evaluates to FALSE
• TRUE and UNKNOWN are fine

• Examples:
CREATE TABLE User(...
 age INTEGER CHECK(age IS NULL OR age > 0),
 ...);

CREATE TABLE Member
(uid INTEGER NOT NULL,
 CHECK(uid IN (SELECT uid FROM User)),
 ...);

Checked when
new tuples are
added to Member
but not when User
is modified

Naming constraints

• It is possible to name constraints (similar to
assertions)

37

CREATE TABLE User(...
 age INT, constraint minAge check(age IS NULL OR age > 0),
 ...);

In class ex.

• Write a DDL statement to create the User table with a
Primary key constraint and check that pop is between
0 and 1.

38

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

In class ex.

• Write a DDL statement to create the User table with a
Primary key constraint and check that pop is between
0 and 1.

39

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

CREATE TABLE User
(uid INT PRIMARY KEY,
 name VARCHAR(30) NOT NULL,
 age INT,
 pop DECIMAL(3,2) CHECK(pop IS NULL OR (age >= 0 AND pop < 1));

In class ex.

• Say every user with pop >=0.9 must belong to the
Book Club (gid=‘abc’). Create as assertion to check
this constraint.

40

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

In class ex.

• Say every user with pop >=0.9 must belong to the
Book Club (gid=‘abc’). Create as assertion to check
this constraint.

41

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

CREATE ASSERTION BookClubMembership
CHECK (NOT EXISTS
 (SELECT uid FROM User WHERE pop >= 0.9 AND
 uid NOT IN (SELECT uid FROM Member WHERE gid=‘abc’)));

SQL features covered so far

• Query
• SELECT-FROM-WHERE statements
• Set and bag operations
• Table expressions, subqueries
• Aggregation and grouping
• Ordering
• Outerjoins (and NULL)

• Modification
• INSERT/DELETE/UPDATE

• Constraints
FNext lecture: schema changes, triggers, views,

indexes

42

