
SQL: Part II
CS348 Spring 2024

Instructor: Sujaya Maiyya
Sections: 002 and 003 only

Announcements

• Assignment 1 is released: Due June 4th

• Project description is released
• Milestone 0: not graded but due on May 23rd

• No class next Tuesday, May 21st (Monday schedule)

2

SQL features covered so far

• Query
• SELECT-FROM-WHERE statements
• Set/bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))

FNext: practice questions
F Nested queries
FAggregation and grouping
FOrdering and limiting

3

In class exercises

• List user names whose popularity is b/w 0.5 and 0.9

• List the group ids that a user with id 134 belongs to

• List the group ids that Lisa belongs to

4

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

SELECT name FROM User where pop > 0.5 or pop < 0.9;

SELECT gid FROM Member where uid=134;

SELECT gid FROM Member m, User u where u.name=‘Lisa’ and m.uid=u.uid;

In class exercises

• List the group names that Lisa belongs to

• List user ids belonging to at least 2 groups

5

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

SELECT g.name
FROM Member m, User u, Group g
WHERE u.name=‘Lisa’ and m.uid=u.uid and m.gid = g.gid;

SELECT m1.uid
FROM Member m1, Member m2
WHERE m1.uid=m2.uid and m1.gid != m2.gid;

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

In class exercises
6

uid gid

857 dps

123 gov

857 abc

857 gov

456 abc

456 gov

User

Member

Consider this db instance:

• What is the output of these queries?

SELECT gid FROM Member m, User u where u.name=‘Lisa’ and u.uid=m.uid
UNION
SELECT gid FROM Member m, User u where u.name=‘Ralph’ and u.uid=m.uid

SELECT gid FROM Member m, User u where u.name=‘Lisa’ and u.uid=m.uid

SELECT gid FROM Member m, User u where u.name=‘Lisa’ and u.uid=m.uid
UNION ALL
SELECT gid FROM Member m, User u where u.name=‘Ralph’ and u.uid=m.uid

SQL features covered so far

• Query
• SELECT-FROM-WHERE statements
• Set/bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))

FNext: how to nest SQL queries

7

• Use query result as a table
• In set and bag operations, FROM clauses, etc.

• Example: names of users belonging to at least two
groups

Table subqueries

8

SELECT DISTINCT name
FROM User,

 (SELECT m1.uid
 FROM Member m1, Member m2
 WHERE m1.uid=m2.uid and m1.gid != m2.gid)

AS T
WHERE User.uid = T.uid;

• A query that returns a single row can be used as a
value in WHERE, SELECT, etc.
• Example: users at the same age as Bart (uid=142)

• When can this query go wrong?
• Return more than 1 row (WHERE name = ‘Bart’)
• Return no rows

Scalar subqueries
9

SELECT *
FROM User,
WHERE age = (SELECT age
 FROM User
 WHERE uid = 142);

WITH clause
• WITH clause provides a way of defining a temporary

relation whose definition is available only to the
query in which the with clause occurs

• Ex: List group ids of users with age > 10 and pop < 0.5

• Supported by many but not all DBMSs
• Can be written using subqueries

10

WITH temp(uid) AS (SELECT u.uid FROM User
u WHERE u.age > 10 and u.pop < 0.5)

SELECT gid FROM Member m, temp t
 WHERE m.uid=t.uid

WITH temp AS (SELECT u.uid FROM User u
WHERE u.age > 10 and u.pop < 0.5)

SELECT gid FROM Member m, temp t
 WHERE m.uid=t.uid

Table name Col name Table name Col name

• 𝑥 IN (𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) checks if 𝑥 is in the result of
𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦

• Example: users that have the same age as (some)
Bart

IN subqueries
11

SELECT *
FROM User,
WHERE age IN (SELECT age
 FROM User
 WHERE name = ‘Bart’);

• EXISTS (𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) checks if the result of 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦 is
non-empty

• Example: users that have the same age as (some) Bart

• This happens to be a correlated subquery—a subquery that
references tuple variables in surrounding queries

EXISTS subqueries
12

SELECT *
FROM User AS u,
WHERE EXISTS (SELECT * FROM User
 WHERE name = ‘Bart’
 AND age = u.age);

Quantified subqueries

• Universal quantification (for all):
• … WHERE 𝑥 𝑜𝑝 ALL(𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) …
• True iff for all 𝑡 in the result of 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦, 𝑥	𝑜𝑝	𝑡

• Existential quantification (exists):
• … WHERE 𝑥 𝑜𝑝 ANY(𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦) …
• True iff there exists some 𝑡 in 𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦 result s.t. 𝑥	𝑜𝑝	𝑡

14

SELECT *
FROM User
WHERE NOT
 (pop < ANY(SELECT pop FROM User));

SELECT *
FROM User
WHERE pop >= ALL(SELECT pop FROM User);

More ways to get the most popular

• Which users are the most popular?

15

Q2. SELECT *
FROM User
WHERE NOT
 (pop < ANY(SELECT pop FROM User);

Q1. SELECT *
FROM User
WHERE pop >= ALL(SELECT pop FROM User);

Q3. SELECT *
FROM User AS u
WHERE NOT [EXISTS or IN?]
 (SELECT * FROM User
 WHERE pop > u.pop);

Q4. SELECT * FROM User
WHERE uid NOT [EXISTS or IN?]
 (SELECT u1.uid
 FROM User AS u1, User AS u2
 WHERE u1.pop < u2.pop);

EXISTS or IN?

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

In class exercises
16

uid gid

857 dps

123 gov

857 abc

857 gov

456 abc

456 gov

User

Member

Consider this db instance:

• What is the output of these queries?

SELECT name FROM User WHERE pop < ANY (SELECT pop FROM User)

SELECT name FROM User WHERE age <=ALL(SELECT age FROM User)

WITH temp AS (SELECT uid FROM User WHERE pop < ANY (
 SELECT pop FROM User))
SELECT name FROM User WHERE uid NOT IN (SELECT uid FROM temp)

SELECT uid FROM User u WHERE EXISTS (SELECT gid FROM Member m
 WHERE m.uid = u.uid)

Take home exercises

• Using EXISTS, write a query to list user ids
belonging to at least 2 groups

• Using WITH-AS and (NOT) IN, write a query to list
group ids that Lisa belongs to but Ralph does not

• Write the same query but using EXCEPT (you may
or may not use any other keywords)

17

SQL features covered so far

• SELECT-FROM-WHERE statements
• Set and bag operations
• Subqueries
• Subqueries allow queries to be written in more

declarative ways (recall the “most popular” query)
• But in many cases, they don’t add expressive power

FNext: aggregation and grouping

18

Aggregates

• Standard SQL aggregate functions: COUNT, SUM,
AVG, MIN, MAX

• Example: number of users under 18, and their
average popularity
• COUNT(*) counts the number of rows

19

SELECT COUNT(*), AVG(pop)
FROM User
WHERE age <18;

COUNT
(*)

AVG
(pop)

6 0.625

Aggregates with DISTINCT

• Example: How many users belong to groups?

20

SELECT COUNT(*)
FROM (SELECT DISTINCT uid FROM Member);

SELECT COUNT(DISTINCT uid)
FROM Member;

Is equivalent to

Grouping

• SELECT … FROM … WHERE …
GROUP BY list_of_columns;

• Example: compute average popularity for
each age group

21

SELECT age, AVG(pop)
FROM User
GROUP BY age;

Example of computing GROUP BY
22

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Compute GROUP BY: group
rows according to the values
of GROUP BY columns

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

Compute SELECT
for each group

age avg_pop

10 0.55

8 0.50

SELECT age, AVG(pop) FROM User GROUP BY age;

Semantics of GROUP BY

SELECT … FROM … WHERE … GROUP BY …;
1. Compute FROM (×)
2. Compute WHERE (𝜎)
3. Compute GROUP BY: group rows according to the

values of GROUP BY columns
4. Compute SELECT for each group (𝜋)
• For aggregation functions with DISTINCT inputs, first

eliminate duplicates within the group

FNumber of groups =
 number of rows in the final output

23

Aggregates with no GROUP BY

• An aggregate query with no GROUP BY clause =
all rows go into one group

 SELECT AVG(pop) FROM User;

24

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Group all rows
into one group

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Aggregate over
the whole group

avg_pop

0.525

SELECT AVG(pop) FROM User;

Restriction on SELECT

• If a query uses aggregation/group by, then every
column referenced in SELECT must be either
• Aggregated, or
• A GROUP BY column

Why?
FThis restriction ensures that any SELECT expression

produces only one value for each group

25

SELECT uid, age FROM User GROUP BY age;

SELECT uid, MAX(pop) FROM User;

WRONG!

WRONG!

HAVING

• Used to filter groups based on the group properties
(e.g., aggregate values, GROUP BY column values)

• SELECT … FROM … WHERE … GROUP BY …
HAVING 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛;

1. Compute FROM (×)
2. Compute WHERE (𝜎)
3. Compute GROUP BY: group rows according to the

values of GROUP BY columns
4. Compute HAVING (another 𝜎 over the groups)
5. Compute SELECT (𝜋) for each group that passes

HAVING

26

HAVING examples

• List the average popularity for each age group with
more than a hundred users

• Can be written using WHERE and table subqueries

27

SELECT age, AVG(pop)
FROM User
GROUP BY age
HAVING COUNT(*)>100;

SELECT T.age, T.apop
FROM (SELECT age, AVG(pop) AS apop, COUNT(*) AS gsize
 FROM User GROUP BY age) AS T
WHERE T.gsize>100;

HAVING examples

• Find average popularity for each age group over 10

• Can be written using WHERE without table subqueries

28

SELECT age, AVG(pop)
FROM User
GROUP BY age
HAVING age >10;

SELECT age, AVG(pop)
FROM User
WHERE age >10
GROUP BY age;

SQL features covered so far

• SELECT-FROM-WHERE statements
• Set and bag operations
• Subqueries
• Aggregation and grouping
• More expressive power than relational algebra

FNext: ordering output rows

29

ORDER BY

• SELECT [DISTINCT] …
FROM … WHERE … GROUP BY … HAVING …
ORDER BY output_column [ASC|DESC], …;

• ASC = ascending, DESC = descending

• Semantics: After SELECT list has been computed
and optional duplicate elimination has been carried
out, sort the output according to ORDER BY
specification

30

ORDER BY example

• List all users, sort them by popularity (descending)
and name (ascending)

• ASC is the default option
• Strictly speaking, only output columns can appear in

ORDER BY clause (although some DBMS support more)
• Can use sequence numbers instead of names to refer to

output columns: ORDER BY 4 DESC, 2;

31

SELECT uid, name, age, pop
FROM User
ORDER BY pop DESC, name;

Discouraged:
hard to read!

LIMIT

• The LIMIT clause specifies the number of rows to
return

• E.g., Return top 3 users with highest popularities

32

SELECT uid, name, age, pop
FROM User
ORDER BY pop DESC
LIMIT 3;

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 7 0.6

In class exercises
33

uid gid

857 dps

123 gov

857 abc

857 gov

456 abc

456 gov

User

Member

Consider this db instance:

• What is the output of these queries?

SELECT AVG(pop) AS apop FROM User GROUP BY age
 HAVING age>5 ORDER BY apop LIMIT 2;

SELECT COUNT(DISTINCT gid) FROM Member;

WITH temp AS (SELECT uid, COUNT(*) AS cnt FROM Member GROUP BY uid)
SELECT name FROM User u, temp t WHERE t.uid = u.uid and
 t.cnt = (SELECT MAX(cnt) FROM temp)

SELECT AVG(pop) AS apop FROM User GROUP BY age
 HAVING COUNT(*) >=2 ORDER BY apop LIMIT 2;

SQL features so far

• Query
• SELECT-FROM-WHERE statements
• Set/bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))
• Subqueries (table, scalar, IN, EXISTS, ALL, ANY)
• Aggregation and grouping (GROUP BY, HAVING)
• Ordering (ORDER)
• Outerjoins (and Nulls)

• Modification
• INSERT/DELETE/UPDATE

• Constraints

34

Lecture 5

Two ways to practice queries

• School servers have db2 installed
• Instructions in db2tutorial.pdf posted along with the

project description
• The JDBC example also provides instructions for the

same

• The textbook’s website has an SQLite db that runs
in the browser: https://www.db-
book.com/university-lab-dir/sqljs.html

35

https://www.db-book.com/university-lab-dir/sqljs.html
https://www.db-book.com/university-lab-dir/sqljs.html

