SQL: Part |1

CS348 Spring 2024
Instructor: Sujaya Maiyya
Sections: 002 and 003 only

Announcements

* Assignment 1is released: Due

* Project description is released
* Milestone o: not graded but due on

, May 215t (Monday schedule)

SQL features covered so far

* Query
* SELECT-FROM-WHERE statements
* Set/bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))

% Next: practice questions
® Nested queries

& Aggregation and grouping
®Ordering and limiting

User (uid int, name string, age int, pop float)

I N CI adSsS exe rCiseS Group (gid string, name string)

Member (uid int, gid string)

* List user names whose popularity is b/w 0.5 and 0.9

SELECT name FROM User where pop > 0.5 or pop < 0.9;

* List the group ids that a user with id 134 belongs to

SELECT gid FROM Member where uid=134;

* List the group ids that Lisa belongs to

SELECT gid FROM Member m, User u where u.name="*Lisa’ and m.uid=u.uid;

User (uid int, name string, age int, pop float)

I N CI adSsS exe rCiseS Group (gid string, name string)

Member (uid int, gid string)

* List the group names that Lisa belongs to

SELECT g.name

FROM Member m, User u, Group g
WHERE u.name="‘Lisa’ and m.uid=u.uid and m.gid = g.gid;

* List user ids belonging to at least 2 groups

SELECT m1.uid
FROM Member m1, Member m2

WHERE m1.uid=m2.uid and m1.gid != m2.gid;

In class exercises

User
Consider this db instance:
142 Bart
123 Milhouse
857 Lisa
456 Ralph

 What is the output of these queries?

SELECT gid FROM Member m, User u where u.name=*‘Lisa’ and u.uid=m.uid

SELECT gid FROM Member m, User u where u.name=*‘Lisa’ and u.uid=m.uid

UNION

SELECT gid FROM Member m, User u where u.name="‘Ralph’ and u.uid=m.uid

SELECT gid FROM Member m, User u where u.name=*‘Lisa’ and u.uid=m.uid

UNION ALL

SELECT gid FROM Member m, User u where u.name="‘Ralph’ and u.uid=m.uid

10
10

0.9
0.2
0.7
0.3

Member
857 dps
123 gov
857 abc
857 gov
456 abc
456 gov

SQL features covered so far

* Query
* SELECT-FROM-WHERE statements
* Set/bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))

& Next: how to

Table subqueries

* Use as
* In set and bag operations, FROM clauses, etc.

* Example: names of

SELECT DISTINCT name
FROM User,
(SELECT m1.uid

FROM Member m1, Member m2
WHERE m1.uid=m2.uid and m1.gid != m2.gid)
AST

WHERE User.uid = T.uid;

Scalar subqueries

* A query that returns can be used as
, etc.

» Example: users at the same age as Bart (uid=142)

SELECT *
FROM User,

WHERE age = (SELECT age
FROM User
WHERE uid = 142);

* When can this query go wrong?
e Return more than 1 row
e Return no rows

WITH clause

* WITH clause provides a way of defining a
whose definition is
in which the with clause occurs

 Ex: List group ids of users with age > 10 and pop < 0.5

Table name Col name Table name Col name

WITH temp(uid) AS (SELECT u.uid FROM User
u WHERE u.age > 10 and u.pop < 0.5)

WITH temp AS (SELECT u.uid FROM User u
WHERE u.age > 10 and u.pop < 0.5)

SELECT gid FROM Member m, temp t
WHERE m.uid=t.uid

SELECT gid FROM Member m, temp t
WHERE m.uid=t.uid

* Supported by many but not all DBMSs
* Can be written using subqueries

IN subqueries

checks if x is in the result of
subquery

» Example: users that have the same age as (some)
Bart

SELECT *
FROM User,

WHERE age IN (SELECT age
FROM User
WHERE name = ‘Bart’);

EXISTS subqueries

checks if

* Example: users that have the same age as (some) Bart

SELECT *
FROM User AS u,

WHERE EXISTS (SELECT * FROM User
WHERE name = ‘Bart’
AND age = u.age);

* This happens to be a —a subquery that
references tuple variables in surrounding queries

Quantified subqueries

(for all):

* ... WHERE x op ALL(subquery) ...
* True iff for all t in the result of subquery, x op t

SELECT *
FROM User
WHERE pop >= ALL(SELECT pop FROM User);
(exists):
* ... WHERE x op (subquery) ...
* True iff there exists t in subqueryresults.t. x op t

SELECT *
FROM User

WHERE NOT
(pop < ANY(SELECT pop FROM User));

More ways to get the most popular

* Which users are the most popular?

Q1. SELECT *
FROM User
WHERE pop >= ALL(SELECT pop FROM User);

Q2. SELECT *
FROM User

WHERE NOT
(pop < ANY(SELECT pop FROM User

Q3. SELECT * Q4. SELECT * FROM Use
FROM User AS u WHERE uid NOT [EXISTS or IN?]
WHERE NOT [EXISTS or IN?] (SELECT u1.uid
(SELECT * FROM User FROM User AS u1, User AS u2
WHERE pop > u.pop); WHERE u1.pop < u2.pop);

In class exercises

User
Consider this db instance:
142 Bart
123 Milhouse
857 Lisa
456 Ralph

* What is the output of these queries?

SELECT name FROM User WHERE age <=ALL(SELECT age FROM User)

SELECT name FROM User WHERE pop < ANY (SELECT pop FROM User)

0.9
0.2
0.7
0.3

WITH temp AS (SELECT uid FROM User WHERE pop < ANY (
SELECT pop FROM User))

SELECT name FROM User WHERE uid NOT IN (SELECT uid FROM temp)

Member
857 dps
123 gov
857 abc
857 gov
456 abc
456 gov

SELECT uid FROM User u WHERE EXISTS (SELECT gid FROM Member m
WHERE m.uid = u.uid)

Take home exercises

* Using EXISTS, write a query to list user ids
belonging to at least 2 groups

* Using WITH-AS and (NOT) IN, write a query to list
group ids that Lisa belongs to but Ralph does not

* Write the same query but using EXCEPT (you may
or may not use any other keywords)

SQL features covered so far

* SELECT-FROM-WHERE statements
* Set and bag operations

* Subqueries

* Subqueries allow queries to be written in more
declarative ways (recall the “most popular’” query)

* Butin many cases, they don’t add expressive power

“ Next:

Aggregates

* Standard SQL aggregate functions: , ,

))

* Example: number of users under 18, and their
average popularity
 COUNT(*) counts the number of rows

SELECT COUNT(*), AVG(pop)

FROM User
WHERE age <18, 6 0.625

Aggregates with DISTINCT

* Example: How many users belong to groups?

SELECT COUNT(*)
FROM (SELECT DISTINCT uid FROM Member);

SELECT COUNT(DISTINCT uid)
FROM Member;

Grouping

* SELECT ... FROM ... WHERE ...

)

* Example: compute average popularity

SELECT age, AVG(pop)

FROM User
GROUP BY age;

Example of computing GROUP BY

SELECT age, AVG(pop) FROM User GROUP BY age;

Compute GROUP BY: group

142 Bart 10 0.9]
857 Lisa PR rows according to the values
123 Milhouse 10 0.2 of GROUP BY columns
456 Ralph 8 0.3
jl> 142 Bart 10 0.9
Compute SELECT 123 Milhouse 10 0.2
for each group 857 Lisa 8 07
< 456 Ralph 8 03
10 0.55

8 0.50

Semantics of GROUP BY

1. Compute FROM (X)
2. Compute WHERE (o)

3. Compute GROUP BY: group rows according to the
values of GROUP BY columns

4. Compute SELECT for each group ()
* For aggregation functions with DISTINCT inputs, first
eliminate duplicates within the group

“ Number of groups =
number of rows in the final output

Aggregates with no GROUP BY

* An aggregate query with no GROUP BY clause =
all rows go into one group

SELECT AVG(pop) FROM User;

142
857
123
456

Bart

Lisa
Milhouse
Ralph

10

10

Group all rows
into one group

0.9 142
0.7 |:> 857
0.2 123
0.3 456

Bart

Lisa
Milhouse
Ralph

10

10

Aggregate over
the whole group

0.9

0.7 |:> 0.525

0.2
0.3

Restriction on SELECT

* If a query uses aggregation/group by, then every
column referenced in SELECT must be either

* Aggregated, or
A GROUP BY column

Why?

® This restriction ensures that any SELECT expression
produces only one value for each group

SELECT uid, age FROM User GROUP BY age; .

SELECT uid, MAX(pop) FROM User;

HAVING

* Used to filter groups based on the group properties
(e.g., aggregate values, GROUP BY column values)

* SELECT ... FROM ... WHERE ... GROUP BY ...

. Compute FROM (X)
2. Compute WHERE (o)

3. Compute GROUP BY: group rows according to the
values of GROUP BY columns

5. Compute SELECT () for

HAVING examples

* List the average popularity for

SELECT age, AVG(pop)
FROM User

GROUP BY age
HAVING COUNT(*)>100;

* Can be written using WHERE and table subqueries

SELECT T.age, T.apop
FROM (SELECT age, AVG(pop) AS apop, COUNT(*) AS gsize

FROM User GROUP BY age) AST
WHERE T.gsize>100;

HAVING examples

* Find average popularity for each

SELECT age, AVG(pop)
FROM User

GROUP BY age
HAVING age >10;

* Can be written using WHERE table subqueries

SELECT age, AVG(pop)
FROM User

WHERE age >10
GROUP BY age;

SQL features covered so far

* SELECT-FROM-WHERE statements
* Set and bag operations
* Subqueries

* Aggregation and grouping
* More expressive power than relational algebra

® Next: ordering output rows

ORDER BY

* SELECT [DISTINCT] ...
FROM ... WHERE ... GROUP BY ... HAVING ...

* ASC = ascending, DESC = descending

* Semantics: After SELECT list has been computed
and optional duplicate elimination has been carried
out,

ORDER BY example

* List all users, sort them by

and
SELECT uid, name, age, pop
FROM User
ORDER BY pop DESC, name;
is the option
* Strictly speaking, only columns can appearin

ORDER BY clause (although some DBMS support more)

* Can use sequence numbers instead of names to refer to
output columns: ;

LIMIT

* The LIMIT clause specifies the number of rows to
return

* E.g., Return top 3 users with highest popularities

SELECT uid, name, age, pop
FROM User

ORDER BY pop DESC
LIMIT 3;

In class exercises

User
Consider this db instance:
142 Bart 10
123 Milhouse 10
857 Lisa 8
456 Ralph 7

* What is the output of these queries?

SELECT COUNT(DISTINCT gid) FROM Member;

SELECT AVG(pop) AS apop FROM User GROUP BY age
HAVING age>5 ORDER BY apop LIMIT 2;

SELECT AVG(pop) AS apop FROM User CROUP BY age

HAVING COUNT(*) >=2 ORDER BY apop LIMIT 2;

WITH temp AS (SELECT uid, COUNT(*) AS cnt FROM Member GROUP BY uid)
SELECT name FROM User u, temp t WHERE t.uid = u.uid and

0.9
0.2
0.7
0.6

Member
857 dps
123 gov
857 abc
857 gov
456 abc
456 gov

t.cnt = (SELECT MAX(cnt) FROM temp)

SQL features so far

* Query
* SELECT-FROM-WHERE statements
* Set/bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))
 Subqueries (table, scalar, IN, EXISTS, ALL, ANY)
* Aggregation and grouping (GROUP BY, HAVING)
* Ordering (ORDER)

Two ways to practice queries

e School servers have db2 installed

* Instructions in db2tutorial.pdf posted along with the
project description

* The JDBC example also provides instructions for the
same

* The textbook’s website has an SQLite db that runs
in the browser: https://www.db-
book.com/university-lab-dir/sgljs.html

35

https://www.db-book.com/university-lab-dir/sqljs.html
https://www.db-book.com/university-lab-dir/sqljs.html

