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SQL features covered so far

• SELECT-FROM-WHERE statements

• Set and bag operations

• Subqueries
• Subqueries allow queries to be written in more 

declarative ways (recall the “most popular” query)

• But in many cases, they don’t add expressive power

Next: aggregation and grouping
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Aggregates

• Standard SQL aggregate functions: COUNT, SUM, 
AVG, MIN, MAX

• Example: number of users under 18, and their 
average popularity
• COUNT(*) counts the number of rows
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SELECT COUNT(*), AVG(pop)
FROM User
WHERE age <18;

COUNT
(*)

AVG
(pop)

6 0.625



Aggregates with DISTINCT

• Example: How many users belong to groups?
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SELECT COUNT(*)
FROM (SELECT DISTINCT uid FROM Member);

SELECT COUNT(DISTINCT uid)
FROM Member;

Is equivalent to



Grouping

• SELECT … FROM … WHERE …
GROUP BY list_of_columns;

• Example: compute average popularity for 
each age group
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SELECT age, AVG(pop)
FROM User
GROUP BY age;



Example of computing GROUP BY
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uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Compute GROUP BY: group 
rows according to the values 
of GROUP BY columns

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

Compute SELECT 
for each group 

age avg_pop

10 0.55

8 0.50

SELECT age, AVG(pop) FROM User GROUP BY age;



Semantics of GROUP BY

SELECT … FROM … WHERE … GROUP BY …;

1. Compute FROM (×)

2. Compute WHERE (𝜎)

3. Compute GROUP BY: group rows according to the 
values of GROUP BY columns

4. Compute SELECT for each group (𝜋)
• For aggregation functions with DISTINCT inputs, first 

eliminate duplicates within the group

Number of groups = 
 number of rows in the final output
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Aggregates with no GROUP BY

• An aggregate query with no GROUP BY clause = 
all rows go into one group

 SELECT AVG(pop) FROM User;
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uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Group all rows 
into one group

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Aggregate over 
the whole group

avg_pop

0.525

SELECT AVG(pop) FROM User;



Restriction on SELECT

• If a query uses aggregation/group by, then every 
column referenced in SELECT must be either
• Aggregated, or

• A GROUP BY column

Why?

This restriction ensures that any SELECT expression 
produces only one value for each group
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SELECT uid, age FROM User GROUP BY age;

SELECT uid, MAX(pop) FROM User;



HAVING

• Used to filter groups based on the group properties 
(e.g., aggregate values, GROUP BY column values)

• SELECT … FROM … WHERE … GROUP BY …
HAVING 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛;

1. Compute FROM (×)

2. Compute WHERE (𝜎)

3. Compute GROUP BY: group rows according to the 
values of GROUP BY columns

4. Compute HAVING (another 𝜎 over the groups)

5. Compute SELECT (𝜋) for each group that passes 
HAVING
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HAVING examples

• Find average popularity for each age group over 10

• Can be written using WHERE without table subqueries
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SELECT age, AVG(pop) 
FROM User 
GROUP BY age
HAVING age >10;

SELECT age, AVG(pop) 
FROM User 
WHERE age >10
GROUP BY age;



HAVING examples

• List the average popularity for each age group with 
more than a hundred users

• Can be written using WHERE and table subqueries
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SELECT age, AVG(pop) 
FROM User 
GROUP BY age
HAVING COUNT(*)>100;

SELECT T.age, T.apop
FROM (SELECT age, AVG(pop) AS apop, COUNT(*) AS gsize  
 FROM User GROUP BY age) AS T
WHERE T.gsize>100;



SQL features covered so far

• SELECT-FROM-WHERE statements

• Set and bag operations

• Subqueries

• Aggregation and grouping
• More expressive power than relational algebra

Next: ordering output rows
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ORDER BY

• SELECT [DISTINCT] …
FROM … WHERE … GROUP BY … HAVING …
ORDER BY output_column [ASC|DESC], …;

• ASC = ascending, DESC = descending

• Semantics: After SELECT list has been computed 
and optional duplicate elimination has been carried 
out, sort the output according to ORDER BY 
specification
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ORDER BY example

• List all users, sort them by popularity (descending) 
and name (ascending)

• ASC is the default option

• Strictly speaking, only output columns can appear in 
ORDER BY clause (although some DBMS support more)

• Can use sequence numbers instead of names to refer to
output columns: ORDER BY 4 DESC, 2;
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SELECT uid, name, age, pop
FROM User 
ORDER BY pop DESC, name;

Discouraged: 
hard to read! 



LIMIT

• The LIMIT clause specifies the number of rows to 
return

• E.g., Return top 3 users with highest popularities
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SELECT uid, name, age, pop
FROM User 
ORDER BY pop DESC
LIMIT 3;



SQL features so far

• Query
• SELECT-FROM-WHERE statements

• Set/bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))

• Subqueries (table, scalar, IN, EXISTS, ALL, ANY)

• Aggregation and grouping (GROUP BY, HAVING)

• Ordering (ORDER)

• Missing values
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Incomplete information

• Example: User (uid, name, age, pop)

• Value unknown
• We do not know Nelson’s pop

• Value not applicable
• Suppose pop is based on interactions with others on our 

social networking site

• Nelson is new to our site; what is their pop?
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Solution 1

• Dedicate a value from each domain (type)
• pop cannot be −1, so use −1 as a special value to 

indicate a missing or invalid pop

• Perhaps the value is not 
as special as you think!
• the Y2K bug
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http://www.90s411.com/images/y2k-cartoon.jpg

SELECT AVG(pop) FROM User;

SELECT AVG(pop) FROM User WHERE pop != -1;



Solution 2

• A valid-bit for every column
• User (uid, 

         name, name_is_valid,
         age, age_is_valid,
         pop, pop_is_valid)

• Complicates schema and queries
• Need almost double the number of columns
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SELECT AVG(pop) FROM User WHERE pop_is_valid=1;



Solution 3

• Decompose the table; missing row = missing value
• UserName (uid, name)

• UserAge (uid, age)

• UserPop (uid, pop)

• UserID (uid)

• Conceptually the cleanest solution

• Still complicates schema and queries
• How to get all information about users in a table?

• Natural join doesn’t work!
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Has a tuple for Nelson

Has a tuple for Nelson

No entry for Nelson

No entry for Nelson



SQL’s solution

• A special value NULL
• For every domain (i.e., any datatype)

• Example: User (uid, name, age, pop)
• 789, “Nelson”, NULL, NULL

• Special rules for dealing with NULL’s
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SELECT * FROM User WHERE name=‘Nelson’ AND pop > 0.5 ??



Three-valued logic

• Comparing a NULL with another value (including 
another NULL) using =, >, etc., the result is NULL

• WHERE and HAVING clauses only select rows for 
output if the condition evaluates to TRUE
• NULL is not enough

• Aggregate functions ignore NULL, except COUNT(*)
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TRUE = 1, FALSE = 0, UNKNOWN = 0.5
𝑥 AND 𝑦 = min(𝑥, 𝑦)
𝑥 OR 𝑦 = max(𝑥, 𝑦)

NOT 𝑥 = 1 − 𝑥



Will 789 be in the output?
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SELECT uid FROM User where name=‘Nelson’ AND pop>0.5;

789, “Nelson”, NULL, NULL



Unfortunate consequences

• Q1a = Q1b?

• Q2a = Q2b?

• Be careful: NULL breaks many equivalences
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Q1a. SELECT AVG(pop) FROM User;

Q1b. SELECT SUM(pop)/COUNT(*) FROM User;

Q2a. SELECT * FROM User;

Q2b SELECT * FROM User WHERE pop=pop;



Another problem

• Example: Who has NULL pop values?

• SQL introduced special, built-in predicates 
IS NULL and IS NOT NULL
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SELECT * FROM User WHERE pop = NULL;

(SELECT * FROM User)
EXCEPT
(SELECT * FROM USER WHERE pop=pop);

SELECT * FROM User WHERE pop IS NULL;



uid name age pop

142 Bart NULL 0.9

123 Milhouse 8 NULL

857 Lisa 8 0.7

456 Nelson 8 NULL

324 Ralph NULL 0.3

In class exercises
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uid gid

857 dps

123 gov

857 abc

857 gov

456 abc

456 gov

User Member

Consider this db instance:

• What is the output of these queries?

SELECT avg(pop), count(*) FROM User GROUP BY age;

SELECT uid FROM User where age > 5 OR pop < 0.5;

SELECT uid FROM User where age > 5 AND pop < 0.5;

SELECT name FROM User WHERE age IN (SELECT age FROM User 
    WHERE name = 'Bart');



Take home ex.

• For the previous db instance, what is the output for:

• Write a query to find all users (uids) with non-null 
popularity who belong to at least one group.
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User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

SELECT avg(pop), count(*) FROM User WHERE age IS NOT NULL 
GROUP BY age;

SELECT MAX(pop), count(*) FROM User GROUP BY age;



SQL features so far

• Query
• SELECT-FROM-WHERE statements

• Set/bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))

• Subqueries (table, scalar, IN, EXISTS, ALL, ANY)

• Aggregation and grouping (GROUP BY, HAVING)

• Ordering (ORDER)

• Missing values

• Outerjoins 

• Modification
• INSERT/DELETE/UPDATE

• Constraints
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