
SQL: Part II
CS348

Instructor: Sujaya Maiyya

SQL features covered so far

• SELECT-FROM-WHERE statements

• Set and bag operations

• Subqueries
• Subqueries allow queries to be written in more

declarative ways (recall the “most popular” query)

• But in many cases, they don’t add expressive power

Next: aggregation and grouping

2

Aggregates

• Standard SQL aggregate functions: COUNT, SUM,
AVG, MIN, MAX

• Example: number of users under 18, and their
average popularity
• COUNT(*) counts the number of rows

3

SELECT COUNT(*), AVG(pop)
FROM User
WHERE age <18;

COUNT
(*)

AVG
(pop)

6 0.625

Aggregates with DISTINCT

• Example: How many users belong to groups?

4

SELECT COUNT(*)
FROM (SELECT DISTINCT uid FROM Member);

SELECT COUNT(DISTINCT uid)
FROM Member;

Is equivalent to

Grouping

• SELECT … FROM … WHERE …
GROUP BY list_of_columns;

• Example: compute average popularity for
each age group

5

SELECT age, AVG(pop)
FROM User
GROUP BY age;

Example of computing GROUP BY
6

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Compute GROUP BY: group
rows according to the values
of GROUP BY columns

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

Compute SELECT
for each group

age avg_pop

10 0.55

8 0.50

SELECT age, AVG(pop) FROM User GROUP BY age;

Semantics of GROUP BY

SELECT … FROM … WHERE … GROUP BY …;

1. Compute FROM (×)

2. Compute WHERE (𝜎)

3. Compute GROUP BY: group rows according to the
values of GROUP BY columns

4. Compute SELECT for each group (𝜋)
• For aggregation functions with DISTINCT inputs, first

eliminate duplicates within the group

Number of groups =
 number of rows in the final output

7

Aggregates with no GROUP BY

• An aggregate query with no GROUP BY clause =
all rows go into one group

 SELECT AVG(pop) FROM User;

8

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Group all rows
into one group

uid name age pop

142 Bart 10 0.9

857 Lisa 8 0.7

123 Milhouse 10 0.2

456 Ralph 8 0.3

Aggregate over
the whole group

avg_pop

0.525

SELECT AVG(pop) FROM User;

Restriction on SELECT

• If a query uses aggregation/group by, then every
column referenced in SELECT must be either
• Aggregated, or

• A GROUP BY column

Why?

This restriction ensures that any SELECT expression
produces only one value for each group

9

SELECT uid, age FROM User GROUP BY age;

SELECT uid, MAX(pop) FROM User;

HAVING

• Used to filter groups based on the group properties
(e.g., aggregate values, GROUP BY column values)

• SELECT … FROM … WHERE … GROUP BY …
HAVING 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛;

1. Compute FROM (×)

2. Compute WHERE (𝜎)

3. Compute GROUP BY: group rows according to the
values of GROUP BY columns

4. Compute HAVING (another 𝜎 over the groups)

5. Compute SELECT (𝜋) for each group that passes
HAVING

10

HAVING examples

• Find average popularity for each age group over 10

• Can be written using WHERE without table subqueries

11

SELECT age, AVG(pop)
FROM User
GROUP BY age
HAVING age >10;

SELECT age, AVG(pop)
FROM User
WHERE age >10
GROUP BY age;

HAVING examples

• List the average popularity for each age group with
more than a hundred users

• Can be written using WHERE and table subqueries

12

SELECT age, AVG(pop)
FROM User
GROUP BY age
HAVING COUNT(*)>100;

SELECT T.age, T.apop
FROM (SELECT age, AVG(pop) AS apop, COUNT(*) AS gsize
 FROM User GROUP BY age) AS T
WHERE T.gsize>100;

SQL features covered so far

• SELECT-FROM-WHERE statements

• Set and bag operations

• Subqueries

• Aggregation and grouping
• More expressive power than relational algebra

Next: ordering output rows

13

ORDER BY

• SELECT [DISTINCT] …
FROM … WHERE … GROUP BY … HAVING …
ORDER BY output_column [ASC|DESC], …;

• ASC = ascending, DESC = descending

• Semantics: After SELECT list has been computed
and optional duplicate elimination has been carried
out, sort the output according to ORDER BY
specification

14

ORDER BY example

• List all users, sort them by popularity (descending)
and name (ascending)

• ASC is the default option

• Strictly speaking, only output columns can appear in
ORDER BY clause (although some DBMS support more)

• Can use sequence numbers instead of names to refer to
output columns: ORDER BY 4 DESC, 2;

15

SELECT uid, name, age, pop
FROM User
ORDER BY pop DESC, name;

Discouraged:
hard to read!

LIMIT

• The LIMIT clause specifies the number of rows to
return

• E.g., Return top 3 users with highest popularities

16

SELECT uid, name, age, pop
FROM User
ORDER BY pop DESC
LIMIT 3;

SQL features so far

• Query
• SELECT-FROM-WHERE statements

• Set/bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))

• Subqueries (table, scalar, IN, EXISTS, ALL, ANY)

• Aggregation and grouping (GROUP BY, HAVING)

• Ordering (ORDER)

• Missing values

17

Incomplete information

• Example: User (uid, name, age, pop)

• Value unknown
• We do not know Nelson’s pop

• Value not applicable
• Suppose pop is based on interactions with others on our

social networking site

• Nelson is new to our site; what is their pop?

18

Solution 1

• Dedicate a value from each domain (type)
• pop cannot be −1, so use −1 as a special value to

indicate a missing or invalid pop

• Perhaps the value is not
as special as you think!
• the Y2K bug

19

http://www.90s411.com/images/y2k-cartoon.jpg

SELECT AVG(pop) FROM User;

SELECT AVG(pop) FROM User WHERE pop != -1;

Solution 2

• A valid-bit for every column
• User (uid,

 name, name_is_valid,
 age, age_is_valid,
 pop, pop_is_valid)

• Complicates schema and queries
• Need almost double the number of columns

20

SELECT AVG(pop) FROM User WHERE pop_is_valid=1;

Solution 3

• Decompose the table; missing row = missing value
• UserName (uid, name)

• UserAge (uid, age)

• UserPop (uid, pop)

• UserID (uid)

• Conceptually the cleanest solution

• Still complicates schema and queries
• How to get all information about users in a table?

• Natural join doesn’t work!

21

Has a tuple for Nelson

Has a tuple for Nelson

No entry for Nelson

No entry for Nelson

SQL’s solution

• A special value NULL
• For every domain (i.e., any datatype)

• Example: User (uid, name, age, pop)
• 789, “Nelson”, NULL, NULL

• Special rules for dealing with NULL’s

22

SELECT * FROM User WHERE name=‘Nelson’ AND pop > 0.5 ??

Three-valued logic

• Comparing a NULL with another value (including
another NULL) using =, >, etc., the result is NULL

• WHERE and HAVING clauses only select rows for
output if the condition evaluates to TRUE
• NULL is not enough

• Aggregate functions ignore NULL, except COUNT(*)

23

TRUE = 1, FALSE = 0, UNKNOWN = 0.5
𝑥 AND 𝑦 = min(𝑥, 𝑦)
𝑥 OR 𝑦 = max(𝑥, 𝑦)

NOT 𝑥 = 1 − 𝑥

Will 789 be in the output?
24

SELECT uid FROM User where name=‘Nelson’ AND pop>0.5;

789, “Nelson”, NULL, NULL

Unfortunate consequences

• Q1a = Q1b?

• Q2a = Q2b?

• Be careful: NULL breaks many equivalences

25

Q1a. SELECT AVG(pop) FROM User;

Q1b. SELECT SUM(pop)/COUNT(*) FROM User;

Q2a. SELECT * FROM User;

Q2b SELECT * FROM User WHERE pop=pop;

Another problem

• Example: Who has NULL pop values?

• SQL introduced special, built-in predicates
IS NULL and IS NOT NULL

26

SELECT * FROM User WHERE pop = NULL;

(SELECT * FROM User)
EXCEPT
(SELECT * FROM USER WHERE pop=pop);

SELECT * FROM User WHERE pop IS NULL;

uid name age pop

142 Bart NULL 0.9

123 Milhouse 8 NULL

857 Lisa 8 0.7

456 Nelson 8 NULL

324 Ralph NULL 0.3

In class exercises
27

uid gid

857 dps

123 gov

857 abc

857 gov

456 abc

456 gov

User Member

Consider this db instance:

• What is the output of these queries?

SELECT avg(pop), count(*) FROM User GROUP BY age;

SELECT uid FROM User where age > 5 OR pop < 0.5;

SELECT uid FROM User where age > 5 AND pop < 0.5;

SELECT name FROM User WHERE age IN (SELECT age FROM User
 WHERE name = 'Bart');

Take home ex.

• For the previous db instance, what is the output for:

• Write a query to find all users (uids) with non-null
popularity who belong to at least one group.

28

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

SELECT avg(pop), count(*) FROM User WHERE age IS NOT NULL
GROUP BY age;

SELECT MAX(pop), count(*) FROM User GROUP BY age;

SQL features so far

• Query
• SELECT-FROM-WHERE statements

• Set/bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))

• Subqueries (table, scalar, IN, EXISTS, ALL, ANY)

• Aggregation and grouping (GROUP BY, HAVING)

• Ordering (ORDER)

• Missing values

• Outerjoins

• Modification
• INSERT/DELETE/UPDATE

• Constraints

29

	Slide 1: SQL: Part II
	Slide 2: SQL features covered so far
	Slide 3: Aggregates
	Slide 4: Aggregates with DISTINCT
	Slide 5: Grouping
	Slide 6: Example of computing GROUP BY
	Slide 7: Semantics of GROUP BY
	Slide 8: Aggregates with no GROUP BY
	Slide 9: Restriction on SELECT
	Slide 10: HAVING
	Slide 11: HAVING examples
	Slide 12: HAVING examples
	Slide 13: SQL features covered so far
	Slide 14: ORDER BY
	Slide 15: ORDER BY example
	Slide 16: LIMIT
	Slide 17: SQL features so far
	Slide 18: Incomplete information
	Slide 19: Solution 1
	Slide 20: Solution 2
	Slide 21: Solution 3
	Slide 22: SQL’s solution
	Slide 23: Three-valued logic
	Slide 24: Will 789 be in the output?
	Slide 25: Unfortunate consequences
	Slide 26: Another problem
	Slide 27: In class exercises
	Slide 28: Take home ex.
	Slide 29: SQL features so far

