SQL: Part I

CS348
Instructor: Sujaya Maiyya

SQL features covered so far

* SELECT-FROM-WHERE statements
* Set and bag operations

* Subqueries

* Subqueries allow queries to be written in more
declarative ways (recall the “most popular” query)

* But in many cases, they don’t add expressive power

“ Next:

Aggregates

* Standard SQL aggregate functions: y ’

))

* Example: number of users under 18, and their
average popularity
« COUNT(*) counts the number of rows

SELECT COUNT(*), AVG(pop)

FROM User
WHERE age <18; 6 0.625

Aggregates with DISTINCT

* Example: How many users belong to groups?

SELECT COUNT(¥)
FROM (SELECT DISTINCT uid FROM Member);

SELECT COUNT(DISTINCT uid)
FROM Member;

Grouping

* SELECT ... FROM ... WHERE ...

’

* Example: compute average popularity

SELECT age, AVG(pop)

FROM User
GROUP BY age;

Example of computing GROUP BY

SELECT age, AVG(pop) FROM User CROUP BY age;

Compute GROUP BY: group

142 Bart 10 0.9]
857 Lisa P rows according to the values
123 Milhouse 10 0.2 of GROUP BY columns
456 Ralph 8 03
jl> 142 Bart 10 0.9
Compute SELECT 123 Milhouse 10 02
for each group 857 Lisa 8 07
< 456 Ralph 8 03
10 0.55

8 0.50

Semantics of GROUP BY

1. Compute FROM (X)
2. Compute WHERE (o)

3. Compute GROUP BY: group rows according to the
values of GROUP BY columns

4. Compute SELECT for each group ()
* For aggregation functions with DISTINCT inputs, first
eliminate duplicates within the group

“ Number of groups =
number of rows in the final output

Aggregates with no GROUP BY

* An aggregate query with no GROUP BY clause =
all rows go into one group

SELECT AVG(pop) FROM User;

142
857
123
456

Bart
Lisa
Milhouse

Ralph

10

10

Group all rows
into one group

0.9 142
0.7 |:> 857
0.2 123
0.3 456

Bart
Lisa
Milhouse

Ralph

10

10

Aggregate over
the whole group

0.9

0.7 |) 0.525

0.2
0.3

Restriction on SELECT

* If a query uses aggregation/group by, then every
column referenced in SELECT must be either
* Aggregated, or
* A GROUP BY column
Why?

“ This restriction ensures that any SELECT expression
produces only one value for each group

SELECT uid, age FROM User CROUP BY age;

SELECT uid, MAX(pop) FROM User; ~ONG!

HAVING

* Used to filter groups based on the group properties
(e.g., aggregate values, GROUP BY column values)

* SELECT ... FROM ... WHERE ... GROUP BY ...

1. Compute FROM (X)
2. Compute WHERE (o)

3. Compute GROUP BY: group rows according to the
values of GROUP BY columns

5. Compute SELECT () for

HAVING examples

* Find average popularity for each

SELECT age, AVG(pop)
FROM User

GROUP BY age
HAVING age >10;

* Can be written using WHERE table subqueries

SELECT age, AVG(pop)
FROM User

WHERE age >10
GROUP BY age;

HAVING examples

* List the average popularity for

SELECT age, AVG(pop)
FROM User

GROUP BY age
HAVING COUNT(*)>100;

* Can be written using WHERE and table subqueries

SELECT T.age, T.apop
FROM (SELECT age, AVG(pop) AS apop, COUNT(*) AS gsize

FROM User CROUP BY age) AST
WHERE T.gsize>100;

SQL features covered so far

* SELECT-FROM-WHERE statements
* Set and bag operations
* Subqueries

* Aggregation and grouping
* More expressive power than relational algebra

®Next: ordering output rows

ORDER BY

* SELECT [DISTINCT] ...
FROM ... WHERE ... GROUP BY ... HAVING ...

* ASC = ascending, DESC = descending

* Semantics: After SELECT list has been computed
and optional duplicate elimination has been carried
out,

ORDER BY example

* List all users, sort them by

and
SELECT uid, name, age, pop
FROM User
ORDER BY pop DESC, name;
is the option
* Strictly speaking, only columns can appearin

ORDER BY clause (although some DBMS support more)

* Can use sequence numbers instead of names to refer to
output columns: ;

LIMIT

* The LIMIT clause specifies the number of rows to
return

* E.g., Return top 3 users with highest popularities

SELECT uid, name, age, pop
FROM User

ORDER BY pop DESC
LIMIT 3;

SQL features so far

* Query
* SELECT-FROM-WHERE statements
» Set/bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))
 Subqueries (table, scalar, IN, EXISTS, ALL, ANY)
» Aggregation and grouping (GROUP BY, HAVING)
* Ordering (ORDER)

Incomplete information

* Example: User (uid, name, age, pop)

* Value
* We do not know Nelson’s pop

e Value

* Suppose pop is based on interactions with others on our
social networking site

* Nelsonis new to our site; what is their pop?

Solution 1

from each domain (type)

* pop cannot be —1, so use —1 as a special value to
indicate a missing or invalid pop

SELECT AVG(pop) FROM User;

JANUARY 1, 2000
12:01 AM

. : DECEMBER 31,1999
Perhaps the value is not 11:53 PM

as special as you think!
* the Y2Kbug

TNESTRAT Tomey Cwlry

http://www.90s411.com/images/y2k-cartoon.jpg

Solution 2

* A valid-bit for every column

* User (uid,
name, name_is valid,
age, age is valid,
pop, pop_is_valid)

SELECT AVG(pop) FROM User WHERE pop is valid=1;

* Complicates schema and queries
* Need almost double the number of columns

Solution 3

* Decompose the table; missing row = missing value
* UserName (uid, name)
* UserAge (uid, age) > No entry for Nelson

* UserPop (uid, pop) > No entry for Nelson
e UserlID (uid)

* Conceptually the cleanest solution

* Still complicates schema and queries
* How to get all information about users in a table?
* Natural join doesn’t work!

SQL’s solution

* A special value
* For every domain (i.e., any datatype)

» Example: User (uid, name, age, pop)
* (789, “Nelson”, NULL, NULL)

* Special rules for dealing with NULL’s

SELECT * FROM User WHERE name=‘Nelson” AND pop > 0.5 22

Three-valued logic

T Y zANDy xORy NOT =
— — _ TRUE TRUE TRUE TRUE FALSE
TRUE = 1, FALSE = 0, = 0.5 TRUE UNKNOWN | UNKNOWN ~TRUE FALSE
- TRUE FALSE | FALSE TRUE FALSE
x AND y = mln(x; y) UNKNOWN ~ TRUE UNKNOWN ~TRUE UNKNOWN
UNKNOWN UNKNOWN | UNKNOWN UNKNOWN ~UNKNOWN
x OR Yy = maX(x) y) UNKNOWN FALSE | FALSE UNKNOWN UNKNOWN
FALSE TRUE FALSE TRUE TRUE
NOTx=1—x FALSE UNKNOWN | FALSE UNKNOWN TRUE
FALSE FALSE | FALSE FALSE TRUE

» Comparing a with another value (including
another NULL) ., the result is

and clauses only select rows for
output if the condition evaluates to

* NULL is not enough

functions

Will 789 be in the output?

(789, “Nelson”, NULL, NULL)

SELECT uid FROM User where name="‘Nelson” AND pop>0.5;

Unfortunate consequences

e Qla =Qlb?

Q1a. SELECT AVG(pop) FROM User;

Q1b. SELECT SUM(pop)/COUNT(*) FROM User;

e Q2a =Q2b?

Q2a. SELECT * FROM User;

Q2b SELECT * FROM User WHERE pop=pop;

* Be careful: NULL breaks many equivalences

Another problem

* Example: Who has NULL pop values?

k!
L wor
SELECT * FROM User WHERE pop = NULL; ©

(SELECT * FROM User)

put ugly

EXCEPT
(SELECT * FROM USER WHERE pop=pop);

* SQL introduced special, built-in predicates
and

SELECT * FROM User WHERE pop IS NULL;

In class exercises

Consider this db instance: 142

123
857
456
324

User
Bart NULL
Milhouse 8
Lisa 8
Nelson 8
Ralph NULL

* What is the output of these queries?

SELECT uid FROM User where age > 5 OR pop < 0.5;

SELECT uid FROM User where age > 5 AND pop < 0.5;

0.9
NULL
0.7
NULL
0.3

Member
857 dps
123 gov
857 abc
857 gov
456 abc
456 gov

SELECT avg(pop), count(*) FROM User GROUP BY age;

SELECT name FROM User WHERE age IN (SELECT age FROM User

WHERE name = 'Bart');

User (uid int, name string, age int, pop float)

Ta ke h O m e e X. Group (gid string, name string)

Member (uid int, gid string)

* For the previous db instance, what is the output for:

SELECT avg(pop), count(*) FROM User WHERE age IS NOT NULL
GROUP BY age;

SELECT MAX(pop), count(*) FROM User GROUP BY age;

* Write a query to find all users (uids) with non-null
popularity who belong to at least one group.

SQL features so far

* Query
* SELECT-FROM-WHERE statements
» Set/bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))
 Subqueries (table, scalar, IN, EXISTS, ALL, ANY)
» Aggregation and grouping (GROUP BY, HAVING)
* Ordering (ORDER)
* Missing values

	Slide 1: SQL: Part II
	Slide 2: SQL features covered so far
	Slide 3: Aggregates
	Slide 4: Aggregates with DISTINCT
	Slide 5: Grouping
	Slide 6: Example of computing GROUP BY
	Slide 7: Semantics of GROUP BY
	Slide 8: Aggregates with no GROUP BY
	Slide 9: Restriction on SELECT
	Slide 10: HAVING
	Slide 11: HAVING examples
	Slide 12: HAVING examples
	Slide 13: SQL features covered so far
	Slide 14: ORDER BY
	Slide 15: ORDER BY example
	Slide 16: LIMIT
	Slide 17: SQL features so far
	Slide 18: Incomplete information
	Slide 19: Solution 1
	Slide 20: Solution 2
	Slide 21: Solution 3
	Slide 22: SQL’s solution
	Slide 23: Three-valued logic
	Slide 24: Will 789 be in the output?
	Slide 25: Unfortunate consequences
	Slide 26: Another problem
	Slide 27: In class exercises
	Slide 28: Take home ex.
	Slide 29: SQL features so far

