
SQL: Part I
CS348 Spring 2024

Instructor: Sujaya Maiyya
Sections: 002 and 003 only

SQL

• SQL: Structured Query Language
• Pronounced “S-Q-L” or “sequel”
• The standard query language supported by most DBMS
• Introduced in 1970s and standardized by ANSI since 1986

2

SQL
• Data-definition language (DDL): define/modify

schemas, delete relations

• Data-manipulation language (DML): query
information, and insert/delete/modify tuples

• Integrity constraints: specify constraints that the
data stored in the database must satisfy

• Intermediate/Advanced topics: (next week)
• E.g., triggers, views, indexes, programming, recursive

queries

3

this
week

DDL

• CREATE TABLE table_name
(…, column_name column_type, …);

• DROP TABLE table_name;

4

CREATE TABLE User(uid INT, name VARCHAR(30), age INT, pop DECIMAL(3,2));
CREATE TABLE Group (gid CHAR(10), name VARCHAR(100));
CREATE TABLE Member (uid INT, gid CHAR(10));

DROP TABLE User;
DROP TABLE Group;
DROP TABLE Member;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

-- everything from -- to the end of line is ignored.
-- SQL is insensitive to white space.
-- SQL is insensitive to case (e.g., ...CREATE... is equivalent to ...create...).

Drastic action:
deletes ALL info

about the table, not
just the contents

Basic queries for DML: SFW statement

• SELECT 𝐴!, 𝐴", …, 𝐴#
FROM 𝑅!, 𝑅", …, 𝑅$
WHERE 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛;

• Also called an SPJ (select-project-join) query

• Corresponds to (but not really equivalent to)
relational algebra query:

𝜋%!,%",…,%# 𝜎()#*+,+)# 𝑅!×𝑅"×⋯×𝑅$

5

Examples

• List all rows in the User table

• * is a short hand for “all columns”

• List name of users under 18 (selection, projection)

• When was Lisa born?

• SELECT list can contain expressions
• String literals (case sensitive) are enclosed in quotes

6

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

SELECT * FROM User;

SELECT name FROM User where age <18;

SELECT 2024-age FROM User where name = ‘Lisa’;

Example: join

• List IDs and names of groups with a user whose
name contains “Simpson”

7

SELECT Group.gid, Group.name
 FROM User, Member, Group
 WHERE User.uid = Member.uid
 AND Member.gid = Group.gid
 AND ….;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Example: join

• List ID’s and names of groups with a user whose
name contains “Simpson”

• LIKE matches a string against a pattern
• % matches any sequence characters

• Okay to omit table_name in table_name.column_name if
column_name is unique

8

SELECT Group.gid, Group.name
 FROM User, Member, Group
 WHERE User.uid = Member.uid
 AND Member.gid = Group.gid
 AND User.name LIKE ‘%Simpson%’;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Example: rename

• IDs of all pairs of users that belong to one group
• Relational algebra query:
𝜋!!.#$%,!".#$%
𝜌!!𝑀𝑒𝑚𝑏𝑒𝑟 ⋈!!.'$%(!".'$%	∧	!!.#$%+!".#$% 𝜌!"𝑀𝑒𝑚𝑏𝑒𝑟

• SQL (not exactly due to duplicates):
SELECT m1.uid AS uid1, m2.uid AS uid2
 FROM Member AS m1, Member AS m2
 WHERE m1.gid = m2.gid
 AND m1.uid > m2.uid;

• AS keyword is completely optional

9

SELECT m1.uid AS uid1, m2.uid AS uid2
 FROM Member AS m1, Member AS m2
 WHERE m1.gid = m2.gid
 AND m1.uid > m2.uid;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

A more complicated example

• Names of all groups that Lisa and Ralph are both in

Tip: Write the FROM clause first, then WHERE, and
then SELECT

10

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

A more complicated example

• Names of all groups that Lisa and Ralph are both in

11

SELECT g.name
 FROM User u1, …, Member m1, …
 WHERE u1.name = 'Lisa' AND …
 AND u1.uid = m1.uid AND …
 AND …;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

A more complicated example

• Names of all groups that Lisa and Ralph are both in

12

SELECT g.name
 FROM User u1, User u2, Member m1, Member m2, …
 WHERE u1.name = 'Lisa' AND u2.name = ‘Ralph’
 AND u1.uid = m1.uid AND u2.uid=m2.uid
 AND …;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

A more complicated example

• Names of all groups that Lisa and Ralph are both in

13

SELECT g.name
 FROM User u1, User u2, Member m1, Member m2, Group g
 WHERE u1.name = 'Lisa' AND u2.name = ‘Ralph’
 AND u1.uid = m1.uid AND u2.uid=m2.uid
 AND m1.gid = g.gid AND m2.gid = g.gid;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Why SFW statements?

• Many queries can be written using only selection,
projection, and cross product (or join)

• These queries can be written in a canonical form
which is captured by SFW:

𝜋- 𝜎. 𝑅!×⋯×𝑅$

• E.g.: 𝜋,.-,../ 𝑅 ⋈0! 𝑆 ⋈0" 𝜋1.2𝜎0#𝑇 	can	be	written	as

14

= 𝜋,.-,../,1.2𝜎0!∧0"∧0# 𝑅×𝑆×𝑇

Set versus bag

15

uid name age pop

142 Bart 10 0.9

123 Milhouse 10 0.2

857 Lisa 8 0.7

456 Ralph 8 0.3

… … … …

User

𝜋!"#𝑈𝑠𝑒𝑟

SELECT age
FROM User;

age

10

8

…

age

10

10

8

8

…

Set
• No duplicates
• Relational model and algebra use set

semantics

Bag
• Duplicates allowed
• Rows in output = rows in input (w/o

where clause)
• SQL uses bag semantics by default

A case for bag semantics

• Efficiency
• Saves time of eliminating duplicates

• Which one is more useful?

• The first query just returns all possible user ages in the
table
• The second query returns the user age distribution

• Besides, SQL provides the option of set semantics
with DISTINCT keyword

16

𝜋!"#𝑈𝑠𝑒𝑟
SELECT age
FROM User;

Forcing set semantics

• IDs of all pairs of users that belong to one group

àSay Lisa and Ralph are in both the book club and the
student government, their id pairs will appear twice

• Remove duplicate (uid1, uid2) pairs from the output

17

SELECT m1.uid AS uid1, m2.uid AS uid2
 FROM Member AS m1, Member AS m2
 WHERE m1.gid = m2.gid
 AND m1.uid > m2.uid;

SELECT DISTINCT m1.uid AS uid1, m2.uid AS uid2
 FROM Member AS m1, Member AS m2
 WHERE m1.gid = m2.gid;
 AND m1.uid > m2.uid;

Semantics of SFW
• SELECT [DISTINCT] 𝐸!, 𝐸", …, 𝐸#

FROM 𝑅!, 𝑅", …, 𝑅$
WHERE 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛;
• For each 𝑡! in 𝑅!:

 For each 𝑡" in 𝑅": … …
 For each 𝑡$ in 𝑅$:

 If 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is true over 𝑡!, 𝑡", …, 𝑡$:
 Compute and output 𝐸!, 𝐸", …, 𝐸# as a row
 If DISTINCT is present
 Eliminate duplicate rows in output
• 𝑡!, 𝑡", …, 𝑡$ are often called tuple variables

18

SQL set and bag operations

• Set: UNION, EXCEPT, INTERSECT
• Exactly like set ∪, −, and ∩ in relational algebra
• Duplicates in input tables, if any, are first eliminated
• Duplicates in result are also eliminated (for UNION)

19

fruit

apple

apple

orange

fruit

orange

orange

orange

Bag1 Bag2 (SELECT * FROM Bag1)
UNION
(SELECT * FROM Bag2);

fruit

apple

orange

(SELECT * FROM Bag1)
EXCEPT
(SELECT * FROM Bag2);

fruit

apple

(SELECT * FROM Bag1)
INTERSECT
(SELECT * FROM Bag2);

fruit

orange

SQL set and bag operations

• Set: UNION, EXCEPT, INTERSECT
• Exactly like set ∪, −, and ∩ in relational algebra

• Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL
• Think of each row as having an implicit count (the

number of times it appears in the table)

20

fruit

apple

apple

orange

fruit

apple

orange

orange

Bag1 Bag2

(SELECT * FROM Bag1)
UNION ALL
(SELECT * FROM Bag2);

fruit

apple

apple

orange

apple

orange

orange

sum up the counts
from two tables

apple: 2
orange:1

apple: 1
orange:2

apple: 3
orange:3

SQL set and bag operations

• Set: UNION, EXCEPT, INTERSECT
• Exactly like set ∪, −, and ∩ in relational algebra

• Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL
• Think of each row as having an implicit count (the

number of times it appears in the table)

21

fruit

apple

apple

orange

fruit

apple

orange

orange

Bag1 Bag2

(SELECT * FROM Bag1)
EXCEPT ALL
(SELECT * FROM Bag2);

fruit

apple

proper-subtract
the two counts

apple: 2
orange:1

apple: 1
orange:2

apple: 1
orange:0

SQL set and bag operations

• Set: UNION, EXCEPT, INTERSECT
• Exactly like set ∪, −, and ∩ in relational algebra

• Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL
• Think of each row as having an implicit count (the

number of times it appears in the table)

22

fruit

apple

apple

orange

fruit

apple

orange

orange

Bag1 Bag2

(SELECT * FROM Bag1)
INTERSECT ALL
(SELECT * FROM Bag2);

fruit

apple

orange

take the
minimum of the
two counts

apple: 2
orange:1

apple: 1
orange:2

apple: 1
orange:1

Set versus bag operations

Poke (uid1, uid2, timestamp)
• uid1 poked uid2 at timestamp

Question: How do these two queries differ?

23

Q1:
(SELECT uid1 FROM Poke)
EXCEPT
(SELECT uid2 FROM Poke);

Q2:
(SELECT uid1 FROM Poke)
EXCEPT ALL
(SELECT uid2 FROM Poke);

Set versus bag operations

Poke (uid1, uid2, timestamp)
• uid1 poked uid2 at timestamp

Question: How do these two queries differ?

24

Q1:
(SELECT uid1 FROM Poke)
EXCEPT
(SELECT uid2 FROM Poke);

Q2:
(SELECT uid1 FROM Poke)
EXCEPT ALL
(SELECT uid2 FROM Poke);

Users who poked others but
never got poked by others

Users who poked others
more than others poked them

SQL features covered so far

• Query
• SELECT-FROM-WHERE statements
• Set/bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))

FNext: how to nest SQL queries
• Subqueries (table, scalar, IN, EXISTS, ALL, ANY)
• Aggregation and grouping (GROUP BY, HAVING)
• Ordering (ORDER)
• Joins

25

