SQL: Part |

CS348 Spring 2024
Instructor: Sujaya Maiyya
Sections: 002 and 003 only

sQL

* SQL:
* Pronounced “S-Q-L” or “sequel”
* The standard query language supported by most DBMS
* Introduced in 1970s and standardized by ANSI since 1986

sQL

define/modify
schemas, delete relations

query
information, and insert/delete/modify tuples

specify constraints that the
data stored in the database must satisfy

* Intermediate/Advanced topics:

* E.g., triggers, views, indexes, programming, recursive
queries

User (uid int, name string, age int, pop float)
Group (gid string, name string)

D D L Member (uid int, gid string)

table_ name
(..., column_name column_type, ...);

CREATE TABLE User(uid INT, name VARCHAR(30), age INT, pop DECIMAL(3,2));
CREATE TABLE Group (gid CHAR(10), name VARCHAR(100));

CREATE TABLE Member (uid INT, gid CHAR(10));

table name;

DROP TABLE User;
DROP TABLE Group;

DROP TABLE Member;

Basic queries for DML: SFW statement

A, Ay, ..., A,
R{,R,, ..., R,
condition;

* Also called an SPJ (select-project-join) query

* Corresponds to ()
relational algebra query:

TTp, As,... Ap (O-condition (Rl ><RZ X XRm))

User (uid int, name string, age int, pop float)

Exa m p I e S Group (gid string, name string)

Member (uid int, gid string)

e List all rows in the User table

SELECT * FROM Users;

is a short hand for “all columns”’

* List name of users under 18 (selection, projection)
SELECT name FROM User where age <18;

* When was Lisa born?

SELECT 2024-age FROM User where name = ‘Lisa’;

* SELECT list can contain expressions
» String literals (case sensitive) are enclosed in

User (uid int, name string, age int, pop float)

Exa m p I e : jO i n Group (gid string, name string)

Member (uid int, gid string)

* List
contains “Simpson”

SELECT Group.gid, Group.name
FROM User, Member, Group

WHERE User.uid = Member.uid
AND Member.gid = Group.gid
AND;

User (uid int, name string, age int, pop float)

Exa m p I e : jO i n Group (gid string, name string)

Member (uid int, gid string)

* List ID’s and names of groups with a user whose
name ”’

SELECT Group.gid, Group.name
FROM User, Member, Group

WHERE User.uid = Member.uid
AND Member.gid = Group.gid
AND User.name LIKE ‘%ZSimpson?%’;

matches a string against a pattern
* % matches any sequence characters

* Okay to omit table_namein table name.column_name if
column_nameis unique

User (uid int, name string, age int, pop float)

Exa m p I e:.rename Group (gid string, name string)

Member (uid int, gid string)

* IDs of all pairs of users that belong to one group
* Relational algebra query:

T, uid,m,.uid
(pm1 Member Nom,.gid=m,.gid A m,.uid>m,.uid Pm, Member)

* SQL (not exactly due to duplicates):

SELECT m1.uid AS uid1, m2.uid AS uid2
FROM Member AS m1, Member AS m2

WHERE m1.gid = m2.gid
AND mf1.uid > m2.uid;

keyword is completely optional

A more complicated example

* Names of all groups that Lisa and Ralph are both in

Tip: Write the FROM clause first, then WHERE, and
then SELECT

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

A more complicated example

* Names of all and Ralph are both in

SELECT g.name
FROM User ut, ..., Member m1, ...

WHERE ui.name ="Lisa' AND ...
AND u1.uid = m1.uid AND ...
AND ...;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

A more complicated example

* Names of all Lisa and are both in

SELECT g.name
FROM User ut, User u2, Member m1, Member m2, ...

WHERE ut.name = 'Lisa' AND u2.name = ‘Ralph’
AND u1.uid = m1.uid AND u2.uid=m2.uid
AND ...;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

A more complicated example

that Lisa and Ralph are

SELECT g.name
FROM User u1, User u2, Member m1, Member m2, Group g

WHERE ut.name = 'Lisa' AND u2.name = ‘Ralph’
AND u1.uid = m1.uid AND u2.uid=m2.uid
AND m1.gid = g.gid AND m2.gid = g.gid;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Why SFW statements?

* Many queries can be written using only

* These queries can be written in a canonical form
which is captured by SFW:

* E.g:mgasp(R ™y, S) X, (770, T) can be written as

= TCR.A,5.B,T.COpy Ay Aps (RXSXT)

Set versus bag

User
10
r 8
142 Bart 10 0.9 Tage Use
123 Milhouse 10 0.2
857 Lisa 8 0.7 Set
456 Ralph 8 0.3 ° NO duplicates
use
semantics
SELECT age Bag
FROM User; 10 * Duplicates allowed
10 * Rows in output = rows in input (w/o
g where clause)
uses semantics

A case for bag semantics

* Efficiency
* Saves time of eliminating duplicates

 Which one is more useful?
SELECT age
MageUser FROM User;

* The first query just returns all possible user ages in the
table

* The second query returns the user age distribution

* Besides, SQL provides the option of set semantics
with keyword

Forcing set semantics

* IDs of all pairs of users that belong to one group

SELECT m1.uid AS uid1, m2.uid AS uid2
FROM Member AS m1, Member AS m2

WHERE m1.gid = m2.gid
AND m1l.uid > m2.uid;

—>Say Lisa and Ralph are in both the book club and the
student government, their id pairs will appear twice

* Remove duplicate (uid1, uid2) pairs from the output

SELECT DISTINCT m1.uid AS uidl, m2.uid AS uid2
FROM Member AS m1, Member AS m2

WHERE m1.gid = m2.gid;
AND m1l.uid > m2.uid;

Semantics of SFW

* Foreach t; in Ry:
Foreacht, inR,:
Foreach t,, in R,,:

If condition is true over t4, t,, ...
Compute and output Ey, E,, ..

If DISTINCT is present
Eliminate duplicate rows in output

* ty, ty,..., t,, are often called

y tms
., E,, asarow

SQL set and bag operations

* Set: UNION, EXCEPT, INTERSECT
* Exactly like set U, —, and n in relational algebra
* Duplicates in input tables, if any, are first eliminated
* Duplicates in result are also eliminated (for UNION)

Bagl Bag2 (SELECT * FROM Bag1) (SELECT * FROM Bag1) (SELECT * FROM Bagl)
; UNION EXCEPT INTERSECT
(SELECT * FROM Bag2); (SELECT * FROM Bag2); (SELECT * FROM Bag2);
apple orange apple apple orange

orange orange orange

19

SQL set and bag operations

* Set: UNION, EXCEPT, INTERSECT
* Exactly like set U, —, and n in relational algebra

* Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL

* Think of each row as having an implicit count (the
number of times it appears in the table)

(SELECT * FROM Bagl)
UNION ALL

(SELECT * FROM ;
Bagl Bag2

sum up the counts

apple

apple apple from two tables
apple

apple orange
orange

orange orange

apple

apple: 2 apple: 1 orange apple: 3
1 2 :
orange orange orange orange:3

20

SQL set and bag operations

* Set: UNION, EXCEPT, INTERSECT
* Exactly like set U, —, and n in relational algebra

* Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL

* Think of each row as having an implicit count (the
number of times it appears in the table)

(SELECT * FROM Bag1)

EXCEPT ALL
Bagl Bag?2 (SELECT * FROM Bag2);

proper-subtract

apple apple apple the two counts
apple orange
orange orange

apple: 2 apple: 1 apple: 1
orange:1 orange:2 orange:o

21

SQL set and bag operations

* Set: UNION, EXCEPT, INTERSECT
* Exactly like set U, —, and n in relational algebra

* Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL

* Think of each row as having an implicit count (the
number of times it appears in the table)

(SELECT * FROM Bagl)
INTERSECT ALL

Bagl Bag2 (SELECT * FROM Bm et
ake the
minimum of the

apple apple apple two counts
apple orange orange
orange orange

apple: 2 apple: 1 apple: 1
orange:1 orange:2 orange:1

Set versus bag operations

Poke (uid1, uid2, timestamp)
* uid1 poked uid2 at timestamp

Question: How do these two queries differ?

Q1l: Q2:
(SELECT uid1 FROM Poke) (SELECT uid1 FROM Poke)

EXCEPT EXCEPT ALL
(SELECT uid2 FROM Poke); (SELECT uid2 FROM Poke);

Set versus bag operations

Poke (uid1, uid2, timestamp)
* uid1 poked uid2 at timestamp

Question: How do these two queries differ?

Q1l: Q2:
(SELECT uid1 FROM Poke) (SELECT uid1 FROM Poke)

EXCEPT EXCEPT ALL
(SELECT uid2 FROM Poke); (SELECT uid2 FROM Poke);

Users who poked others but Users who poked others
never got poked by others more than others poked them

SQL features covered so far

* Query
* SELECT-FROM-WHERE statements
* Set/bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))

“ Next: how to
 Subqueries (table, scalar, IN, EXISTS, ALL, ANY)
* Aggregation and grouping (GROUP BY, HAVING)
* Ordering (ORDER)
* Joins

