SQL: Part |

CS348
Instructor: Sujaya Maiyya



SQL

* SQL:
* Pronounced “S-Q-L” or “sequel”
* The standard query language supported by most DBMS
* Introduced in 1970s and standardized by ANSI since 1986



SQL

define/modify
schemas, delete relations

query
information, and insert/delete/modify tuples

specify constraints that the
data stored in the database must satisfy

* Intermediate/Advanced topics:

* E.g., triggers, views, indexes, programming, recursive
queries



User (uid int, name string, age int, pop float)

Group (gid string, name string)
D D L Member (uid int, gid string)

table name
(..., column_name column_type, ...);

CREATE TABLE User(uid INT, name VARCHAR(30), age INT, pop DECIMAL(3,2));
CREATE TABLE Group (gid CHAR(10), name VARCHAR(100));

CREATE TABLE Member (uid INT, gid CHAR(10));

table name;

DROP TABLE User;

DROP TABLE Group;
DROP TABLE Member;




Basic queries for DML: SFW statement

Ay, Ay, .. Ay
R{,R,,...R,
condition;

* Also called an SPJ (select-project-join) query

* Corresponds to ( )
relational algebra query:

7-[Al,Az,...,An(O-condition(Rl X RZ Xoeee X Rm))



Why SFW statements?

* Many queries can be written using only

* These queries can be written in a canonical form
which is captured by SFW:

* E.8.:TMrasB (R M. S) X, (ﬂT.cUp3T) can be written as

— T[R.A,S.B,T.Co-pl/\pz/\pg (R X S X T)



User (uid int, name string, age int, pop float)

Exa m p I e S Group (gid string, name string)

Member (uid int, gid string)

e List all rows in the User table
SELECT * FROM User;

is a short hand for “all columns”’

* List name of users under 18 (selection, projection)
SELECT name FROM User where age <18;

e When was Lisa born?

SELECT 2025-age FROM User where name = ‘Lisa’;

* SELECT list can contain expressions
» String literals (case sensitive) are enclosed in



User (uid int, name string, age int, pop float)

Exa m p I e : jo i n Group (gid string, name string)

Member (uid int, gid string)

* List
contains “Simpson”

SELECT Group.gid, Group.name
FROM User, Member, Group

WHERE User.uid = Member.uid
AND Member.gid = Group.gid
AND ....;




User (uid int, name string, age int, pop float)

Exa m p I e : jo i n Group (gid string, name string)

Member (uid int, gid string)

* List ID’s and names of groups with a user whose
name 7

SELECT Group.gid, Group.name
FROM User, Member, Group

WHERE User.uid = Member.uid
AND Member.gid = Group.gid
AND User.name LIKE ‘%Simpson%’;

matches a string against a pattern
* % matches any sequence characters

* Okay to omit table_ namein table name.column_name if
column_nameis unique



User (uid int, name string, age int, pop float)

Exa m ple: rename Group (gid string, name string)

Member (uid int, gid string)

* IDs of all pairs of users that belong to one group
* Relational algebra query:

7-[11'11.1,Ll'd,”mz.uid
(pmlMember le.gid=m2.gid AN mquid+m,.uid pmz Member)

* SQL (not exactly due to duplicates):

SELECT m1.uid AS uid1, m2.uid AS uid2
FROM Member AS m1, Member AS m2

WHERE m1.gid = m2.gid
AND mi1.uid # ma2.uid;

keyword is completely optional



A more complicated example

* Names of all groups that Lisa and Ralph are both in

Tip: Write the FROM clause first, then WHERE, and
then SELECT

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)



A more complicated example

* Names of all and Ralph are both in

SELECT g.name
FROM User ut, ..., Member mi, ...

WHERE u1.name ="Lisa' AND...
AND ut.uid = m1.uid AND ...
AND ...;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)



A more complicated example

* Names of all Lisa and are both in

SELECT g.name
FROM User u1, User u2, Member m1, Member m2, ...

WHERE u1.name = 'Lisa' AND u2.name = ‘Ralph’
AND u1.uid = m1.uid AND u2.uid=m2.uid
AY\\ DI

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)



A more complicated example

that Lisa and Ralph are

SELECT g.name
FROM User u1, User u2, Member m1, Member m2, Group g

WHERE u1.name = 'Lisa' AND u2.name = ‘Ralph’
AND ut.uid = m1.uid AND u2.uid=m2.uid
AND m1.gid = g.gid AND m2.gid = g.gid;

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)



Set versus bag

User
10
T er 8
142  Bart 10 0.9 Lg/e Us
123 Milhouse 10 0.2
857 Lisa 8 0.7 Set
456 Ralph 8 0.3 e NoO duplicates

use
semantics

SELECT age Bag
FROM User; 10 * Duplicates allowed

10 * Rows in output = rows in input (w/o
where clause)
uses semantics




A case for bag semantics

* Efficiency
* Saves time of eliminating duplicates

* Which one is more useful?
SELECT age
Mage User FROM User,;

* The first query just returns all possible user ages in the
table

* The second query returns the user age distribution

* Besides, SQL provides the option of set semantics
with keyword



Forcing set semantics

* IDs of all pairs of users that belong to one group

SELECT m1.uid AS uid1, m2.uid AS uid2
FROM Member AS m1, Member AS m2

WHERE m1.gid = m2.gid
AND m1l.uid # m2.uid;

—>Say Lisa and Ralph are in both the book club and the
student government, their id pairs will appear twice

* Remove duplicate (uid1, uid2) pairs from the output

SELECT DISTINCT m1.uid AS uidl, m2.uid AS uid2
FROM Member AS m1, Member AS m2

WHERE m1.gid = m2.gid;
AND m1l.uid #= m2.uid;




SQL set and bag operations

* Set: UNION, EXCEPT, INTERSECT
* Exactly like set U, —, and n in relational algebra
* Duplicates in input tables, if any, are first eliminated
* Duplicates in result are also eliminated (for UNION)

Bagl Bag2 (SELECT * FROM Bag1l) (SELECT * FROM Bag1) (SELECT * FROM Bag1)
. : UNION EXCEPT INTERSECT
(SELECT * FROM Bag2); (SELECT * FROM Bag2);  (SELECT * FROM Bag2);
apple  orange
apple orange apple apple orange

orange orange orange

18



SQL set and bag operations

* Set: UNION, EXCEPT, INTERSECT
* Exactly like set U, —, and N in relational algebra

* Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL

* Think of each row as having an implicit count (the
number of times it appears in the table)

(SELECT * FROM Bag1)
UNION ALL

(SELECT * FROM ;
Bagl Bag2

sum up the counts

apple

apple apple from two tables
apple

apple orange
orange

orange orange

apple

apple: 2 apple: 1 orange apple: 3
orange:1 orange:2 . orange:3

19



SQL set and bag operations

* Set: UNION, EXCEPT, INTERSECT

* Exactly like set U, —, and N in relational algebra

* Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL

* Think of each row as having an implicit count (the
number of times it appears in the table)

(SELECT * FROM Bag1)

EXCEPT ALL
Bag]_ Bagz (SELECT * FROM Bag2);
apple apple apple

apple orange

orange orange

apple: 2 apple: 1
orange:1 orange:2

apple: 1
orange:0

proper-subtract
the two counts




SQL set and bag operations

* Set: UNION, EXCEPT, INTERSECT
* Exactly like set U, —, and N in relational algebra

* Bag: UNION ALL, EXCEPT ALL, INTERSECT ALL

* Think of each row as having an implicit count (the
number of times it appears in the table)

(SELECT * FROM Bag1l)
INTERSECT ALL

Bagl Bag2 (SELECT * FROM Bag2);
: : \ take the

minimum of the

apple apple apple two counts
apple orange orange
orange orange

apple: 2 apple: 1 apple: 1
orange:1 orange:2 orange:1

21



Set versus bag operations

Poke (uid1, uid2, timestamp)
* uid1 poked uid2 at timestamp

Question: How do these two queries differ?

Q1l: Q2:
(SELECT uid1 FROM Poke) (SELECT uid1 FROM Poke)

EXCEPT EXCEPT ALL
(SELECT uid2 FROM Poke); (SELECT uid2 FROM Poke);




Set versus bag operations

Poke (uid1, uid2, timestamp)
* uid1 poked uid2 at timestamp

Question: How do these two queries differ?

Q1l: Q2:
(SELECT uid1 FROM Poke) (SELECT uid1 FROM Poke)

EXCEPT EXCEPT ALL
(SELECT uid2 FROM Poke); (SELECT uid2 FROM Poke);

Users who poked others but Users who poked others
never got poked by others more than others poked them



In class exercises

User
Consider this db instance:
142 Bart
123 Milhouse
857 Lisa
456 Ralph

* What is the output of these queries?

SELECT gid FROM Member m, User u where u.name="‘Lisa’ and u.uid=m.uid

SELECT gid FROM Member m, User u where u.name="‘Lisa’ and u.uid=m.uid

UNION

SELECT gid FROM Member m, User u where u.name=‘Ralph’ and u.uid=m.uid

SELECT gid FROM Member m, User u where u.name="‘Lisa’ and u.uid=m.uid

UNION ALL

SELECT gid FROM Member m, User u where u.name=‘Ralph’ and u.uid=m.uid

10
10

(00e}

0.9
0.2
0.7
0.3

Member
857 dps
123 gov
857 abc
857 gov
456 abc
456 gov




Semantics of SFW

* Foreacht; in Ry:
Foreacht, inR,:... ...
Foreacht,, inR,,:

If condition is true over t4, t,, ...
Compute and output Ey, E,, ..

If DISTINCT is present
Eliminate duplicate rows in output

* ty, ty,..., t,, are often called

y b
., E,, asarow



SQL features covered so far

* Query
* SELECT-FROM-WHERE statements
« Set/bag (DISTINCT, UNION/EXCEPT/INTERSECT (ALL))

® Next: how to
 Subqueries (table, scalar, IN, EXISTS, ALL, ANY)
* Aggregation and grouping (GROUP BY, HAVING)
* Ordering (ORDER)
* Joins



Table subqueries

* Use as
* In set and bag operations, FROM clauses, etc.

* Example: names of

SELECT DISTINCT name
FROM User,
(SELECT m1.uid

FROM Member m1, Member m2
WHERE m1.uid=m2.uid and m1.gid != m2.gid)
AST

WHERE User.uid = T.uid;




Scalar subqueries

* A query that returns can be used as
, etc.

* Example: users at the same age as Bart (uid=142)

SELECT *
FROM User,

WHERE age = (SELECT age
FROM User
WHERE uid = 142);

* When can this query go wrong?
e Return more than 1 row
e Return no rows



WITH clause

* WITH clause provides a way of defining a
whose definition is
in which the with clause occurs

* Ex: List group ids of users with age > 10 and pop < 0.5

Table name Col name Table name Col name

WITH temp(uid) AS (SELECT u.uid FROM User
u WHERE u.age > 10 and u.pop < 0.5)

WITH temp AS (SELECT u.uid FROM User u
WHERE u.age >10 and u.pop < 0.5)

SELECT gid FROM Member m, temp t
WHERE m.uid=t.uid

SELECT gid FROM Member m, temp t
WHERE m.uid=t.uid

* Supported by many but not all DBMSs
* Can be written using subqueries



IN subqueries

checks if x is in the result of
subquery

* Example: users that have the same age as (some)
Bart

SELECT *
FROM User,

WHERE age IN (SELECT age
FROM User
WHERE name = ‘Bart’);




EXISTS subqueries

checks if

» Example: users that have the same age as (some) Bart

SELECT *
FROM User AS u,

WHERE EXISTS (SELECT * FROM User
WHERE name = ‘Bart’
AND age = u.age);

* This happens to be a —a subquery that
references tuple variables in surrounding queries



User (uid int, name string, age int, pop float)

An Other example Group (gid string, name string)

Member (uid int, gid string)

* Users who join at least two groups

SELECT * FROM User u
WHERE EXISTS
(SELECT * FROM Mémbey m1 Use
WHERE m1.uid = u.uid table name.column _name
AND EXISTS notation when
(SELECT * FROM Meynber m2 igg;jg;‘ite to avoid
WHERE m2.uid = u.tid
AND m2.gid != m1.gid));

* How to find which table a column belongs to?

* Start with the immediately surrounding query

* If not found, look in the one surrounding that; repeat if
necessary



Quantified subqueries

(for all):

* ... WHERE x op ALL(subquery) ...
* Trueiff for all t in the result of subquery, x op t

SELECT *
FROM User
WHERE pop >= ALL(SELECT pop FROM User);
(exists):
* ... WHERE x op (subquery) ...
* True iff there exists t in subqueryresults.t.xopt

SELECT *
FROM User

WHERE NOT
(pop < ANY(SELECT pop FROM User));




More ways to get the most popular

* Which users are the most popular?

Q1. SELECT *
FROM User
WHERE pop >= ALL(SELECT pop FROM User);

Q2. SELECT *
FROM User

WHERE NOT
pop < ANY(SELECT pop FROM User)

Q3.SELECT * Q4. SELECT * FROM Use
FROM User AS u WHERE uid NOT [EXISTS 'or IN?]
WHERE NOT [EXISTS or IN?] (SELECT ut.uid
(SELECT * FROM User FROM User AS u1, User AS u2
WHERE pop > u.pop); WHERE ut.pop < u2.pop);




In class exercises

User
Consider this db instance:
142 Bart
123 Milhouse
857 Lisa
456 Ralph

* What is the output of these queries?

SELECT name FROM User WHERE age <=ALL(SELECT age FROM User)

SELECT name FROM User WHERE pop < ANY (SELECT pop FROM User)

10
10

(00e}

0.9
0.2
0.7
0.3

WITH temp AS (SELECT uid FROM User WHERE pop < ANY (
SELECT pop FROM User))

SELECT name FROM User WHERE uid NOT IN (SELECT uid FROM temp)

SELECT uid FROM User u WHERE EXISTS (SELECT gid FROM Member m

WHERE m.uid = u.uid)

Member
857 dps
123 gov
857 abc
857 gov
456 abc
456 gov



Take home exercises

* Using EXISTS, write a query to list user ids
belonging to at least 2 groups

* Using WITH-AS and (NOT) IN, write a query to list
group ids that Lisa belongs to but Ralph does not

* Write the same query but using EXCEPT (you may
or may not use any other keywords)



SQL features covered so far

* SELECT-FROM-WHERE statements
* Set and bag operations

* Subqueries

* Subqueries allow queries to be written in more
declarative ways (recall the “most popular” query)

* But in many cases, they don’t add expressive power

“ Next:



	Slide 1: SQL: Part I
	Slide 2: SQL
	Slide 3: SQL
	Slide 4: DDL
	Slide 5: Basic queries for DML: SFW statement
	Slide 6: Why SFW statements?
	Slide 7: Examples
	Slide 8: Example: join
	Slide 9: Example: join
	Slide 10: Example: rename
	Slide 11: A more complicated example
	Slide 12: A more complicated example
	Slide 13: A more complicated example
	Slide 14: A more complicated example
	Slide 15: Set versus bag
	Slide 16: A case for bag semantics
	Slide 17: Forcing set semantics
	Slide 18: SQL set and bag operations
	Slide 19: SQL set and bag operations
	Slide 20: SQL set and bag operations
	Slide 21: SQL set and bag operations
	Slide 22: Set versus bag operations
	Slide 23: Set versus bag operations
	Slide 24: In class exercises
	Slide 25: Semantics of SFW
	Slide 26: SQL features covered so far
	Slide 27: Table subqueries
	Slide 28: Scalar subqueries
	Slide 29: WITH clause
	Slide 30: IN subqueries
	Slide 31: EXISTS subqueries
	Slide 32: Another example
	Slide 33: Quantified subqueries
	Slide 34: More ways to get the most popular
	Slide 35: In class exercises
	Slide 36: Take home exercises
	Slide 37: SQL features covered so far

