Relational algebra
Part 2

CS348 Spring 2024
Instructor: Sujaya Maiyya
Sections: 002 and 003 only

Announcements

* Assignment 1 released today
 Due June 4th

Outline

* More examples of relational algebra

* Monotone operators

 Relational calculus

(Recap) Relational data model

* A database is a collection of relations (or tables)
* Each relation has a set of attributes (or columns)

* Each attribute has a unique name and a domain (or type)
* The domains are required to be atomic

Single, indivisible

piece of information

* Each relation contains a set of tuples (or rows)

* Each tuple has a value for each attribute of the relation

* Duplicate tuples are not allowed
* Two tuples are duplicates if they agree on all attributes

= Simplicity is a virtue!

(Recap) Integrity constraints

* Candidate key

* Set of K attributes that uniquely identify a row and has
only the necessary attributed (i.e., minimal)

* Primary key

* Foreign key

(Recap) RA operators

Core Operators
1. Selection: o, R

2. Projection: 7, R

3. Cross product: RXS

4. Union:RUS

5. Difference:R — S

6. Renaming: ps(4, 41 4,54},)R

Derived Operators

1. Join:R ™, §

2. Naturaljoin:R < S
3. Intersection:R NS

User (uid int, name string, age int, pop float)

M O re exa m p I e Group (gid string, name string)

Member (uid int, gid string)

* All groups (ids) that Lisa belongs to

M O re exa m p I e Group@ string, name string)

Member (uid int, gid string)

User (uid int, name string, age int, pop float)

* All groups (ids) that Lisa belongs to
Writing a query bottom-up:

mm-m
857 Lisa
Who’s Lisa? O'name="Lisa" Member
User uid | gid |
123
mm-m —
123 Milhouse 10
857 gov

857 Lisa 8 0.7

User (uid int, name string, age int, pop float)

M O re exa m p I e Group (gid string, name string)

Member (uid int, gid string)

* All groups (ids) that Lisa belongs to
Writing a query bottom-up:

id | name | age | pop | gid_

857 Lisa 8 0.7 abc
857 Lisa 8 0.7 gov

MUser.uid=Member.uid

raEmmEEEm - Member
857 Lisa 8 0.7 mm

WhO’S Lisa? O-nameT"LiSa" 123 gov
857 abc

USBT' 857 gov

M O re exa m p I e Group (gid string, name string)

Member (uid int, gid string)

User (uid int, name string, age int, pop float)

* All groups (ids) that Lisa belongs to

Writing a query bottom-up: | gid |
. 7-l'-gld abc
Lisa’s groups |
gov

id | name | age | pop | gid_

857 Lisa 8 0.7 abc
857 Lisa 8 0.7 gov

X User.uid=Member.uid

raEmmEEEm - Member
857 Lisa 8 0.7 mm

WhO’S Lisa? O-nameT"LiSa" 123 gov
857 abc

USBT' 857 gov

10

User (uid int, name string, age int, pop float)

Ta ke h O m e e X o Group (gid string, name string)

Member (uid int, gid string)

* All groups{idsy that Lisa belongs to
names:

Group names
P TThame

|
X
. y / \
Lisa’s groups Tyid Gr()up

|
Who's Lisa? _— X ~_

Oname="Lisa" Member
|
User

User (uid int, name string, age int, pop float)

M O re exa m p I e Group (gid string, name string)

Member (uid int, gid string)

* Names of users in Lisa’s groups

User (uid int, name string, age int, pop float)

M O re exa m p I e Group (gid string, name string)

Member (uid int, gid string)

* Names of users in Lisa’s groups
Their names T, sme

X
Users in / \

Lisa’s groups Tlyid User

X

o / \
Lisa’s groups Tgid Member

|
Who’s Lisa? _— X ~_

Oname="Lisa" Member
|
User

User (uid int, name string, age int, pop float)

M O re exa m p I e Group (gid string, name string)

Member (uid int, gid string)

* IDs of groups that Lisa doesn’t belong to

User (uid int, name string, age int, pop float)

M O re exa m p I e Group@ string, name string)

Member (uid int, gid string)

* IDs of groups that Lisa doesn’t belong to

All grcy Yusa s groups

T[gld T[gld
Group / [><1 \
Member 9name="Lisa"

User

User (uid int, name string, age int, pop float)

A trickier example | cow gidsting namesiing)

Member (uid int, gid string)

* Who are the most popular users?

\
o User \NRONG'

* Because it cannot be evaluated over a single row

User (uid int, name string, age int, pop float)

A trickier example | cow gidsting namesiing)

Member (uid int, gid string)

* Who are the most popular users?
* Who do NOT have the highest pop rating?
* Whose pop is lower than somebody else’s?

User (uid int, name string, age int, pop float)

A trickier example | cow gidsting namesiing)

Member (uid int, gid string)

* Who are the most popular users?
* Who do NOT have the highest pop rating?
* Whose pop is lower than somebody else’s?

e s

uid Userq,.uid
User MUserl.pop<User2.pop
pUser1 pUserz

User User

Non-monotone operators

N N .
S N I .
-RelOp What happens
Add more rows _____ to the output?
to the input... "™

* If some old output rows may become invalid = the
operator is non-monotone

* Example: difference operatorR — S

CEFTE @ CETE I | ol

becomes invalid

123 gov — 123 gov = 857 iye—
. 001 i because the new
857 abc e
row added to S

R S

19

Non-monotone operators

N I I .
- 1 1] |
What happens
Add more rows _____ to the output?
I N I .

to the input...

* If some old output rows may become invalid (causing some
row removal) = the operator is non-monotone

* Otherwise (old output rows always remain “correct”) = the
operator is monotone

This old row is

uid | gid__ uid | gid__ EERNEERR | always valid no

123 gov — 123 gov = 857 abc matter what
857 abc 901 edf 189 m rows are added
R o

R S

20

Classification of relational operators

* Selection: o, R Monotone
* Projection: T R Monotone
* Cross product: RXS Monotone
* JointR ™, § Monotone
* Naturaljoin:R ®S Monotone
* Union:tRUS Monotone

 Difference: R — S Monotone w.r.t. R; non-monotone w.r.t S
* Intersection: RNS Monotone

Why is “—"" needed for “highest’”?

* Composition of monotone operators produces a

* Old output rows remain “correct” when more rows are
added to the input
* Is the “highest” query monotone?
* No!
* Current highest pop is 0.9
* Add another row with pop 0.91
* Old answer is invalidated

&S0 it must use difference!

Why do we need core operator X?

* Difference

* The only operator
* Projection

* The only operator that

* Cross product
* The only operator that
* Union

o ?

e Selection

o ?

Extensions to relational algebra

* Duplicate handling (“bag algebra”)
* Grouping and aggregation

= All these will come up when we talk about SQL

& But for now we will stick to standard relational
algebra without these extensions

Relational Calculus (Optional)

* Relational Algebra: language
* An algebraic formalism in which queries are expressed
by to relations.

* Relational Calculus: declarative language

* Alogical formalism in which queries are expressed as
formulas of first-order logic.

* Codd’s Theorem: Relational Algebra and Relational
Calculus are essentially equivalent in terms of
expressive power.

User (uid int, name string, age int, pop float)

Relational calculus | crouw gistring name string)

Member (uid int, gid string)

* Use first-order logic (FOL) formulae to specify
properties of the query answer

* Example: Who are the most popular?

e {u.uid | u € User A
—(3u’ € User:u.pop < u'.pop)}, or

e {u.uid | u € User A
(Vu' € User:u.pop = u'.pop)}

Relational calculus

* Relational algebra = “safe” relational calculus

* Every query expressible as a safe relational calculus
query is also expressible as a relational algebra query

* And vice versa

* Example of an * "’ relational calculus query
* {u.name | =(u € User)} = users not in the database

* A queryis if, for all database instances
conforming to the schema, the query result can be
computed using

or in the query itself.

Turing machine

How does relational algebra compare with a Turing
machine?

* A conceptual device that can
execute any computer algorithm

* Approximates what general-
purpose programming languages
can do

* E.g., Python, Java, C++, ...

Alan Turing (1912-1954)

http://en.wikipedia.org/wiki/File:Alan_Turing_photo.jpg

28

Limits of relational algebra

* Relational algebra has

» Example: given relation Friend(uid1, uid2), who can Bart
reach in his social network with any number of hops?
* Writing this query in r.a. is impossible!
* Sor.a.is not as powerful as general-purpose languages

* But why not?
* Optimization becomes
= Simplicity is empowering
* Besides, you can always implement it at the application
level, and recursion is added to SQL nevertheless!

Summary

* Part 1: Relational data model
* Data model
* Database schema
* Integrity constraints ()
* Languages (relational algebra, relational calculus, SQL)

* Part 2: Relational algebra - basic language
* Core operators & derived operators

()

* V.s. relational calculus
* V.s. general programming language

* What’s next?
* SQL - query language used in practice (4 lectures)

