Intro to the Relational Model

CS348 Spring 2024

Instructor: Sujaya Maiyya

Sections: **002** and **003** only

Outline

• Part 1: Relational data model

• Part 2: Relational algebra

Relational data model

Modeling data as **relations** or **tables**, each storing logically related information together

STATE OF THE PARTY	The state of the s
Me	mber
	111501

THE RESERVE OF THE PARTY OF THE

uid	gid
142	dps
123	gov
857	abc
857	gov
456	abc
456	gov
•••	•••

Attributes

User uid name age pop 142 Bart 10 0.9 123 Milhouse 10 0.2 857 0.7 Lisa 8 0.3 456 Ralph 8 ••• ••• • • •

Group

gid	name
abc	A Book Club
gov	Student Government
dps	Dead Putting Society
•••	

Member

uid	gid
142	dps
123	gov
857	abc
857	gov
456	abc
456	gov
•••	•••

attributes (or columns)

Domain

User

uid	name	age	рор
142	Bart	10	0.9
123	Milhouse	10	0.2
857	Lisa	8	0.7
456	Ralph	8	0.3
	1	1.	
Str	ring I	nt	Floa

domain (or type)

Group

gid	name
abc	A Book Club
gov	Student Government
dps	Dead Putting Society
•••	

Member

uid	gid
142	dps
123	gov
857	abc
857	gov
456	abc
456	gov

Tuples

User

uid	name	age	рор	
142	Bart	10	0.9	
123	Milhouse	10	0.2	
857	Lisa	8	0.7	The state of the s
456	Ralph	8	0.3	
•••	•••	•••	•••	
		adinite ever of the state of th		

Group

gid	name
abc	A Book Club
gov	Student Government
dps	Dead Putting Society
•••	

Member

 uid
 gid

 142
 dps

 123
 gov

 857
 abc

 857
 gov

 456
 abc

 456
 gov

 ...
 ...

tuples (or rows)

Duplicates (all attr. have same val) are not allowed

Ordering of rows doesn't matter (even though output can be ordered)

Set representation of tuples

User

uid	name	age	рор
142	Bart	10	0.9
123	Milhouse	10	0.2
857	Lisa	8	0.7
456	Ralph	8	0.3

Group

gid	name
abc	A Book Club
gov	Student Government
edu	Dead Putting Society
•••	

Member

 uid
 gid

 142
 dps

 123
 gov

 857
 abc

 857
 gov

 456
 abc

 456
 gov

 ...
 ...

User: {(142, Bart, 10, 0.9),				
(857, Milhouse, 10, 0.2),				
<pre>Group: {\(abc, A Book Club \),</pre>				
(gov, Student Government),}				
Member: $\{\langle 142, dps \rangle, \langle 123, gov \rangle,\}$				

Relational data model

- A database is a collection of relations (or tables)
- Each relation has a set of attributes (or columns)
- Each attribute has a unique name and a domain (or type)
 - The domains are required to be atomic

Single, indivisible piece of information

- Each relation contains a set of tuples (or rows)
 - Each tuple has a value for each attribute of the relation
 - Duplicate tuples are not allowed
 - Two tuples are duplicates if they agree on all attributes

Simplicity is a virtue!

Schema vs. instance

- Schema (metadata)
 - Specifies the logical structure of data
 - Is defined at setup time, rarely changes

```
User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)
```

Instance

- Represents the data content
- Changes rapidly, but always conforms to the schema
- Typically has additional rules

```
User: \{\langle 142, Bart, 10, 0.9 \rangle, \langle 857, Milhouse, 10, 0.2 \rangle, ...\}
Group: \{\langle abc, A Book Club \rangle, \langle gov, Student Government \rangle, ...\}
Member: \{\langle 142, dps \rangle, \langle 123, gov \rangle, ...\}
```

Integrity constraints

- A set of rules that database instances should follow
- Example:
 - age cannot be negative
 - uid should be unique in the User relation
 - uid in Member must refer to a row in User

```
User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)
```

```
User: {(142) Bart, 10, 0.9), (857) Milhouse, 10, 0.2), ...}
Group: {(abc, A Book Club), (gov, Student Government), ...}
Member: {(142, dps), (857) gov), ...}
```

Integrity constraints

 An instance is only valid if it follows the schema and satisfies all the integrity constraints.

- Reasons to use constraints:
 - Address consistency challenges (last class: duplicate entry for Bob)
 - Ensure data entry/modification respects to database design
 - Protect data from bugs in applications

Types of integrity constraints

- Tuple-level
 - Domain restrictions, attribute comparisons, etc.
 - E.g. age cannot be negative
 - E.g. for flights table, arrival time > take off time
- Relation-level
 - Key constraints (focus in this lecture)
 - E.g. uid should be unique in the User relation
 - Functional dependencies (week 5/6)
- Database-level
 - Referential integrity foreign key (focus in this lecture)
 - uid in Member must refer to a row in User with the same uid

Key (Candidate Key)

Def: A set of attributes K for a relation R if

- Condition 1: In no instance of R will two different tuples agree on all attributes of K
 - That is, *K* can serve as a "tuple identifier"
- Condition 2: No proper subset of K satisfies the above condition
 - That is, *K* is minimal
- Example: User (uid, name, age, pop)
 - uid is a key of User
 - age is not a key (not an identifier)
 - {uid, name} is not a key (not minimal), but a superkey

Satisfies only Condition 1

Key (Candidate key)

uid	name	age	рор
142	Bart	10	0.9
123	Milhouse	10	0.2
857	Lisa	8	0.7
456	Ralph	8	0.3

- Is name a key of User?
 - Yes? Seems reasonable for this instance
 - No! User names are not unique in general
- Key declarations are part of the schema

More examples of keys

- Member (uid, gid)
- Only uid?
 - No, because of repeated entries

- Only gid?
 - No, again due to repeated entries

- Use both!
 - {uid, gid}
 - A key can contain multiple attributes

Member

uid	gid
142	dps
123	gov
857	abc
456	gov
857	dps
256	gov

More examples of keys

- Address (street_address, city, province, zip)
 - Key 1: {street_address, city, province}
 - Key 2: {street address, zip}
 - A relation can have multiple keys!
- Primary key: a designated candidate key in the schema declaration
 - <u>Underline</u> all its attributes, e.g., Address (<u>street_address</u>, city, province, <u>zip</u>)

Use of keys

- More constraints on data, fewer mistakes
- Look up a row by its key value
 - Many selection conditions are "key = value"
- "Pointers" to other rows (often across tables)

"Pointers" to other rows

 Foreign key: primary key of one relation appearing as attribute of another relation

"Pointers" to other rows

 Referential integrity: A tuple with a non-null value for a foreign key must match the primary key value of a tuple in the referenced relation

			Member	<u>uid</u>	gid	
			WEITIBEI	142	dps	
		Group		123	gov	
Les annual por	<u>gid</u>	name		857	ON X	
	abc	A Book Club		857	gov	
	gov	Student Government		456	abc	
	dps	Dead Putting Society		456	gov	
				130	801	
				•••	•••	

Referential integrity violation!

Outline

- Part 1: Relational data model
 - Data model
 - Database schema
 - Integrity constraints (keys)
 - Languages
 - Relational algebra (focus in this lecture)
 - SQL (next lecture)
 - Relational calculus (textbook, Ch. 27)
- Part 2: Relational algebra

Relational algebra

· A language for querying relational data based on "operators"

- Selection, projection, cross product, union, difference, and renaming
- Additional, derived operators:
 - Join, natural join, intersection, etc.
- Compose operators to make complex queries

Core operator 1: Selection σ

• Example query: Users with popularity higher than 0.5

$$\sigma_{pop>0.5}User$$

uid	name	age	рор		uid	name	age	рор
142	Bart	10	0.9		142	Bart	10	0.9
123	Milhouse	10	0.2	(June 0.5)				
857	Lisa	8	0.7	$\sigma_{pop>0.5}$	857	Lisa	8	0.7
456	Ralph	8	0.3					

Core operator 1: Selection

- Input: a table *R*
- Notation: $\sigma_p R$
 - p is called a selection condition (or predicate)
- Purpose: filter rows according to some criteria
- Output: same columns as R, but only rows of R that satisfy p

More on selection

- Selection condition can include any column of R, constants, comparison (=, \leq , etc.) and Boolean connectives (Λ : and, V: or, \neg : not)
 - Example: users with popularity at least 0.9 and age under 10 or above 12

 $\sigma_{pop\geq 0.9 \land (age<10 \lor age>12)} User$

- You must be able to evaluate the condition over each single row of the input table!
 - Example: the most popular user

 $\sigma_{pop \geq every pop in User} User WRONG!$

Core operator 2: Projection π

• Example: IDs and names of all users

$$\pi_{uid,name}$$
 User

uid	name	age	рор		uid	name
142	Bart	10	0.9		142	Bart
123	Milhouse	10	0.2	$\pi_{uid,name}$	123	Milhouse
857	Lisa	8	0.7	- dia, name	857	Lisa
456	Ralph	8	0.3		456	Ralph

Core operator 2: Projection

- Input: a table *R*
- Notation: $\pi_L R$
 - L is a list of columns in R
- Purpose: output chosen columns
- Output: "same" rows, but only the columns in L

More on projection

- Duplicate output rows are removed (by definition)
 - Example: user ages

$$\pi_{age}$$
 User

uid	name	age	рор
142	Bart	10	0.9
123	Milhouse	10	0.2
857	Lisa	8	0.7
456	Ralph	8	0.3
•••			•••

Core operator 3: Cross product ×

User×*Member*

Core operator 3: Cross product

- Input: two tables *R* and *S*
- Notation: $R \times S$
- Purpose: pairs rows from two tables
- Output: for each row r in R and each s in S, output a row rs (concatenation of r and s)

A note on column ordering

Ordering of columns is unimportant as far as contents are concerned

uid	name	age	рор	uid	gid
123	Milhouse	10	0.2	123	gov
123	Milhouse	10	0.2	857	abc
123	Milhouse	10	0.2	857	gov
857	Lisa	8	0.7	123	gov
857	Lisa	8	0.7	857	abc
857	Lisa	8	0.7	857	gov

uid	gid	uid	name	age	рор
123	gov	123	Milhouse	10	0.2
857	abc	123	Milhouse	10	0.2
857	gov	123	Milhouse	10	0.2
123	gov	857	Lisa	8	0.7
857	abc	857	Lisa	8	0.7
857	gov	857	Lisa	8	0.7

• So cross product is commutative, i.e., for any R and S, $R \times S = S \times R$ (up to the ordering of columns)

uid

gid

gov

abc

gov

Derived operator 1: Join ⋈

• Info about users, plus IDs of their groups $User \bowtie_{User.uid=Member.uid} Member$

123 Milhouse 10 0.2 857 Lisa 8 0.7
857 Lisa 8 0.7

uid	name	age	рор	uid	gid
123	Milhouse	10	0.2	123	gov
123	Milhouse	10	0.2	857	abc
123	Milhouse	10	0.2	857	gov
857	Lisa	8	0.7	123	gov
857	Lisa	8	0.7	857	abc
857	Lisa	8	0.7	857	gov
	•••				

Derived operator 1: Join ⋈

• Info about users, plus IDs of their groups $User \bowtie_{User\ uid=Member\ uid} Member$

	Use	r.uic	i = M e	ember.uic	l 1.1			uid
uid	name	age	рор					123
123	Milhouse	10	0.2					857
857	Lisa	8	0.7					857
				0	User: Membe	uid= er.uid		
					I			
			uid	name	age	рор	uid	gid
			123	Milhouse	10	0.2	123	gov
						0.12	110	801
			857	Lisa	8	0.7	857	abc
			857	Lisa	8	0.7	857	gov

Derived operator 1: Join ⋈

• Info about users, plus IDs of their groups $User\bowtie_{User.uid=Member.uid} Member$

uid	name	age	рор
123	Milhouse	10	0.2
857	Lisa	8	0.7
•••			•••

Prefix a column reference with table name and "." to disambiguate identically named columns from different tables

uid	name	age	рор	uid	gid					
123	Milhouse	10	0.2	123	gov					
857	Lisa	8	0.7	857	abc					
857	Lisa	8	0.7	857	gov					

Derived operator 1: Join

- Input: two tables *R* and *S*
- Notation: $R \bowtie_{p} S$
 - p is called a join condition (or predicate)
- Purpose: relate rows from two tables according to some criteria
- Output: for each row r in R and each row s in S, output a row rs if r and s satisfy p
- Shorthand for $\sigma_p(R \times S)$
- (A.k.a. "theta-join")

Derived operator 2: Natural join

$User \bowtie Member$

 $= \pi_{uid,name,age,pop,gid} \left(User \bowtie_{User.uid=} Member \right)$ $\underset{Member.uid}{Member.uid}$

				1.1 6 1	ILDC	i .aca		
uid	name	age	рор				uid	gid
123	Milhouse	10	0.2				123	gov
857	Lisa	8	0.7				857	abc
				7	×		857	gov
					T			
			• •		V			
			uid	name	age	рор	gid	
			123	Milhouse	10	0.2	gov	
			857	Lisa	8	0.7	abc	
			857	Lisa	8	0.7	gov	

Derived operator 2: Natural join

- Input: two tables *R* and *S*
- Notation: $R \bowtie S$
- Purpose: relate rows from two tables, and
 - Enforce equality between identically named columns
 - Eliminate one copy of identically named columns
- Shorthand for $\pi_L(R \bowtie_p S)$, where
 - p equates each pair of columns common to R and S
 - L is the union of column names from R and S (with duplicate columns removed)

Core operator 4: Union

• Input: two tables *R* and *S*

• Notation: $R \cup S$

R and S must have identical schema

• Output:

- Has the same schema as R and S
- Contains all rows in R and all rows in S (with duplicate rows removed)

uid	gid
123	gov
857	abc

U

uid	gid
123	gov
901	edf

=

gid
gov
abc
edf

Core operator 5: Difference

- Input: two tables *R* and *S*
- Notation: R S
 - R and S must have identical schema
- Output:
 - Has the same schema as R and S
 - Contains all rows in R that are not in S

uid	gid		uid	gid		uid	gid
123	gov	_	123	gov	=	857	abc
857	abc		901	edf			

Derived operator 3: Intersection

- Input: two tables R and S
- Notation: $R \cap S$
 - R and S must have identical schema
- Output:
 - Has the same schema as R and S
 - Contains all rows that are in both R and S
- Shorthand for R (R S)
- Also equivalent to S (S R)
- And to $R \bowtie S$

- 1. Find tuples in R not in S
- 2. Remove those tuples from R

Core operator 6: Renaming

- Input: a table (or an expression) R
- Notation: $\rho_S R$, $\rho_{(A_1 \to A_1', \dots)} R$, or $\rho_{S(A_1 \to A_1', \dots)} R$
- Purpose: "rename" a table and/or its columns
- Output: a table with the same rows as R, but called differently

Member

uid	gid
123	gov
857	abc

 $\rho_{M1(uid \rightarrow uid_1,gid \rightarrow gid_1)} Member$

M1	
uid1	gid1
123	gov
857	abc

9. Core operator: Renaming

- As with all other relational operators, it doesn't modify the database
 - Think of the renamed table as a copy of the original
- Used to: Avoid confusion caused by identical column names

9. Core operator: Renaming

200

COV

200

COV

IDs of users who belong to at least two groups

Renaming example

• IDs of users who belong to at least two groups *Member* ⋈_? *Member*

$$\pi_{uid} \left(\substack{Member.uid = Member.uid \land Member.uid \land Member.gid \neq Member.gid} \land \substack{Member.gid \neq Member.gid} \right)$$

$$\pi_{uid_1} \begin{pmatrix} \rho_{(uid \rightarrow uid_1, gid \rightarrow gid_1)} Member \\ \bowtie_{uid_1 = uid_2 \land gid_1 \neq gid_2} \\ \rho_{(uid \rightarrow uid_2, gid \rightarrow gid_2)} Member \end{pmatrix}$$

Expression tree notation

Take-home Exercises

• Exercise 1: IDs of groups who have at least 2 users?

 Exercise 2: IDs of users who belong to at least three groups?

Summary of operators

Core Operators

- 1. Selection: $\sigma_p R$
- 2. Projection: $\pi_L R$
- 3. Cross product: $R \times S$
- 4. Union: *R* ∪ *S*
- 5. Difference: R S
- 6. Renaming: $\rho_{S(A_1 \rightarrow A'_1, A_2 \rightarrow A'_2, \dots)} R$

Derived Operators

- 1. Join: $R \bowtie_{p} S$
- 2. Natural join: $R \bowtie S$
- 3. Intersection: $R \cap S$

Note: Only use these operators for assignments & exams

User (<u>uid</u> int, name string, age int, pop float) Group (<u>gid</u> string, name string) Member (<u>uid</u> int, <u>gid</u> string)

• All groups (ids) that Lisa belongs to

User (<u>uid</u> int, name string, age int, pop float) Group (<u>gid</u> string, name string) Member (<u>uid</u> int, <u>gid</u> string)

All groups (ids) that Lisa belongs to

Writing a query bottom-up:

uid	name	age	pop
857	Lisa	8	0.7

Who's Lisa? $\sigma_{name="Lisa"}$ User

uid	name	age	рор
123	Milhouse	10	0.2
857	Lisa	8	0.7

Member

uid	gid
123	gov
857	abc
857	gov

User (<u>uid</u> int, name string, age int, pop float) Group (<u>gid</u> string, name string) Member (<u>uid</u> int, <u>gid</u> string)

All groups (ids) that Lisa belongs to

Writing a query bottom-up:

uid	name	age	pop	gid
857	Lisa	8	0.7	abc
857	Lisa	8	0.7	gov

User (<u>uid</u> int, name string, age int, pop float) Group (<u>gid</u> string, name string) Member (<u>uid</u> int, <u>gid</u> string)

All groups (ids) that Lisa belongs to

Take home ex.

User (<u>uid</u> int, name string, age int, pop float) Group (<u>gid</u> string, name string) Member (<u>uid</u> int, <u>gid</u> string)

• All groups (ids) that Lisa belongs to names?

Summary

- Part 1: Relational data model
 - Data model
 - Database schema
 - Integrity constraints (keys)
 - Languages (relational algebra, relational calculus, SQL)
- Part 2: Relational algebra basic language
 - Core operators & derived operators (how to write a query)
- What's next?
 - More examples in RA
 - Relational calculus
 - SQL