
Introduction
Introduction to Database Management

CS348 Spring 2024

Instructor: Sujaya Maiyya
Sections: 002 and 003 only

Outline For Today
1. Overview of DBMSs

2. Course & Administrative Information

2

Outline For Today
1. Overview of DBMSs:

1. Challenges with data management

2. How DBMSs help overcome these challenges

2. Course & Administrative Information

3

What is a Database Management System (DBMS)?

4

DBMS

Applications

OS

Queries/modifications Answers/responses

File system interface

Storage system interface

Disk(s)

Why Do App Developers Need a DBMS?

Challenges to overcome if we do NOT use a DBMS:

1. Physical record design

2. Efficient query algorithms

3. Scalability

4. Data integrity/consistency

5. Concurrent requests

6. Failure & recovery

Why Do App Developers Need a DBMS?

6

Ø Application: Order & Inventory Management in E-commerce

Ø E.g.: Amazon or Alibaba
Customers &
End Devices

Product
Shipments & Arrivals

Managers &
Analytics Apps

App Software/
Servers

Storage Software
Server & Device

Let’s simplify the design: assume a single server will accept requests from app software to
keep track of and serve your records: orders, new products, etc.

Service Requirement

Ø Thousands of requests/sec

Bad Idea: Write Storage Software in Java/C++

Orders.txt

Ø Possible Approach: Directly use the file system of the OS.

Ø E.g: one or more files for orders, customers, products etc.

Customers.txt Products.txt

Ø Problem: Physical Record Design?

Ø For each customer store name, birthdate

Ø How many bytes for each fact?

Ø E.g.: Encoding of string names? Fixed or variable length?

Ø Many sub-problems: E.g.: How to quickly find a record?

PR1: Example Physical Record Designs (1)

name-len (bytes) name payload birthdate (fixed 4 bytes)

Ø Variable-length design

11 Alice Smith 2001/09/08

6 Ali Jo 1992/02/25

19 Alexander Desdemona 2002/05/20

26 Montgomery Cambridgeshire 1992/02/25

… … … … … … … … …

Customers.txt

Ø Fixed-length design

null 11 Alice Smith ---------- 2001/09/08

Overflow ptr len name (16 byte) birthdate (4 bytes)

Customers.txt Customer-overflow.txt

0 19 Alexander Desdem 2002/05/20

null 19 Ali Jo ------------------ 1992/02/25

1 26 Montgomery Cambr 1992/02/25

ona idgeshire ….

… … ….

PR1: Example Physical Record Designs (2)

name-leng (bytes) name payload birthdate (fixes 4 bytes) prev ptr next ptr

Ø Chained Design: Maybe to keep in sorted alphabetical order

r0 11 Alice. 2001/09/08 r0 r3

r2 6 Ali Jo 1992/02/25 r1 r0 r3 26 Montgom. 1992/02/25 r0 r7

Customers.txt

Takeaway 1: Many design options & difficult for app developers!

Takeaway 2: Bytes not the right data abstraction to program apps.

r1 19 Alexander. 2002/05/20 null r2

r4 … … … … … r5 … … … … …
`

PR2: Efficient Query/Analytics Algorithms

Ø Managers Ask: Who are top paying customers?

Ø Task: Compute total sales by customer (assume fixed len records)

Ø Problem: App developer needs to implement an algorithm.

Orders.txt

O1 Cust1 BookA $20

O2 Cust2 WatchA $120

O3 Cust1 DiapersB $30

O4 Cust3 MasksA $15

… … … …

… … … …

Possible Algorithm 1:
file = open(“Orders.txt”)
HashTable ht;
for each line in file:
// some code to parse custID and price
 if (ht.contains(custID))
 ht.put(custID, ht.get(custID) + price)
 else: ht.put(custID, price);
file.close();

Should one parallelize this? How?
Do this again if query is repeated?

PR2: Efficient Query/Analytics Algorithms

Ø That is only for 1 question. There will be many questions:

Ø List of Orders that bought a product that cost > $500

Ø Last Order from Cust4?

Ø Who are closest co-purchasers of Cust4?

Ø Many many more (thousands) important business questions:

Ø For each question numerous possible algorithms and

implementations.

Takeaway 1: Many algs & implementations. Difficult to choose.

Takeaway 2: Writing an algorithm for each task won’t scale!

PR3: Scalability

Ø Large-scale Data: Data > Memory

Ø E.g. Orders.txt grows to terabytes & does not fit in memory.

Ø Often the case for data-intensive applications

Ø Need disk to scale

Ø Hard to write such algorithms. Challenge:
Ø Read in batches? Where to store intermediate results?

Ø Scale to: 10K~100Ks of requests/sec

Ø Hard to write code that efficiently supports such workloads.

Takeaway: Hard to implement & has nothing to do w/ the app logic!

App developers should focus on the app!

PR4: Integrity/Consistency of The Data (1)

Ø Many ways data can be corrupted:
Ø Often: Wrong application logic or bugs in application

Ø E.g: Checkout App’s “Checkout As Guest”

Ø Writes the Order record

Ø And the Customer record

Ø Assume Bob shops again

Ø (Bob, 1999/05/07) is duplicated!

Orders.txt
Customers.txt Products.txt

O7 Bob BookC $17

Likely an inconsistency.

We’d want to enforce the invariant:

No duplicate cust records!

Bob 1999/05/07

O8 Bob TVA $90

PR4: Integrity/Consistency of The Data (2)

Ø E.g: Checkout App’s “Checkout As Guest”

Ø Writes the Order record

Ø But not the Customer record

Ø (Bob, 1999/05/07) is not in Customers.txt.

Orders.txt Customers.txt Products.txt

O7 Bob BookC $17

X
Likely an inconsistency.
We’d want to enforce the invariant:
Every order’s cust record exists!

Take away: Incorrectly handling

consistency requirements violates

data integrity/consistency!

PR5: Concurrency: Multiple Conflicting Requests

Ø Alice & Bob concurrently order BookA: suppose 1 left in stock.
Product NumInStock

… …

BookA 1
… …

Buy_Product_Subroutine(string prodName):
(prod, numInStock) = readProduct(prodName)
if (numInStock > 0):
 writeProduct(prod, numInStock - 1)
else throw(“Cannot buy product!”);

r: (A, 1)

tim
e

r: (A, 0)
w: (A, 0)

r: (A,1)

w:(A,0)
r:(A,0)

r: (A,1)r: (A,1)

w:(A,0)

w:(A,0)

No Book

X
No Book

✓ ✓

Concurrency Questions

Ø What is a correct/incorrect state upon concurrent updates?

Ø Theoretical formalism to explain these states: Serializability

Ø What protocols/algorithms can ensure a correct state?

Ø Locking-based protocols

Ø Acquire locks to prevent bad state (Pessimistic protocols)

Ø Optimistic protocols

Ø Detect bad state and recover from it

Concurrency Avoidance Ex: Global DB Lock

tim
e

AliceBob

Safe but inefficient. Why?

Product NumInStock

… …

BookA 1

BookB 7

lock DB ✓lock DB X Wait
r (A, 1)

w (A, 0)
release lock

lock DB ✓

Ø Alice and Bob order BookA

Concurrency Avoidance Ex: Global DB Lock

tim
e

AliceBob
Ø Alice orders BookA, Bob orders BookB

Bob had no conflicts; so was “unnecessarily” blocked.

Product NumInStock

… …

BookA 1

BookB 7

lock DB ✓lock DB X Wait

r (A, 1)

w (A, 0)

release lock
lock DB ✓
r (B, 7)
…

Concurrency Avoidance Ex: Record-level Lock

Product NumInStock

… …

BookA 1

BookB 7

AliceBob

Ø Alice, Bob as before want BookA, Carmen orders Book B

tim
e

…

lock: (A) ✓ lock: (A) X Wait

Carmen

lock: (B) ✓
r (A, 1) r (B, 7)

w (A, 0) w (B, 6)

Concurrency Avoidance Ex: Record-level Lock

Product NumInStock

… …

BookA 0

BookB 6

AliceBob

Ø Alice, Bob as before want BookA, Carmen orders Book B

tim
e

…

Safe and achieves parallelism. What can go wrong?

lock: (A) ✓ lock: (A) X Wait

Carmen

lock: (B) ✓
r (A, 1) r (B, 7)

w (A, 0) w (B, 6)

release lock Brelease lock A

lock: (A) ✓

Where There is Locking, There is Deadlocks!

Product NumInStock

… …

BookA 1

BookB 7

AliceBob

Ø Alice, Bob both order both BookA and BookB together

tim
e

How can we detect & avoid deadlocks?

lock: (A) ✓
lock: (B) ✓

lock: (B) X Wait

lock: (A) X Wait

Deadlock!

Where There is Locking, There is Deadlocks!

Product NumInStock

… …

BookA 1

BookB 7

AliceBob

Ø Alice, Bob both order both BookA and BookB together

tim
e

How can we detect & avoid deadlocks?

lock: (A) ✓
lock: (B) ✓

lock: (B) X Wait

lock: (A) X Wait

Deadlock!

Take away: Handling concurrent requests is one of the biggest

challenges in data management!

PR6: Failure & Recovery

Ø What if your disk fails in the middle of an order?
Ø What if your server software fails due to a bug?
Ø What if there is a power outage in the machine storing files?

Product NumInStock

… …

BookA 1

BookB 7

Failure & Recovery

Ø What if your disk fails in the middle of an order?
Ø What if your server software fails due to a bug?
Ø What if there is a power outage in the machine storing files?
Ø Suppose Alice orders both BookA and BookB

w (A, 0)

Product NumInStock

… …

BookA 1

BookB 7

w (B, 6)

Failure & Recovery

Ø What if your disk fails in the middle of an order?
Ø What if your server software fails due to a bug?
Ø What if there is a power outage in the machine storing files?
Ø Suppose Alice orders both BookA and BookB

Product NumInStock

… …

BookA 0

BookB 7

Product NumInStock

… …

BookA 0

BookB 6

✓

X

Before (B, 6) is written failure!
Inconsistent data state!

Take away: How to recover from inconsistent state?w (A, 0)

w (B, 6)

Summary of challenges

1. Physical record design

2. Efficient query algorithms

3. Scalability

4. Data integrity/consistency

5. Concurrent requests

6. Failure & recovery

A database management system
(DBMS) helps us solve all the discussed

problems

27

The birth of DBMS – 1st gen
28

From Hans-J. Schek’s VLDB 2000 slides

The birth of DBMS – 2nd gen
29

From Hans-J. Schek’s VLDB 2000 slides

The birth of DBMS – 3rd gen
30

From Hans-J. Schek’s VLDB 2000 slides

Application Development with a DBMS

Ø Consider the same inventory management application

Ø We will use a Relational DBMS (RDBMS) but can use other DBMSs

too (e.g., a graph database management system)

Ø Ex: PostgreSQL, Oracle, MySQL, SAP HANA, Snowflake…

1. Data Modeling With an RDBMS (1)

Customers

name birthday

Alice 2001/09/08

Bob 2002/05/20

… …

Orders

oID cust product price

O1 2001/09/08 BookA 20

O2 2002/05/20 TVB 100

… … … …

Products

product numInStock

BookA 1

TVB 78

… …

Ø Relational Model: Data is modeled as a set of tables

Ø Much higher-level abstraction than bits/bytes

Example SQL Command in an RDBMS:
CREATE TABLE Customers
 name varchar(255),
 birthdate DATE;

Ø The RDBMS takes care of physical record design: Fixed-length/var-length,
columnar, row, chained etc.

Ø The developer need not know the physical record design.

1. Data Modeling With an RDBMS (2)

Ø Physical Data Independence:

Ø Throughout the lifetime of the app, the RDBMS can change the

physical layout for performance or other reasons and the

applications is oblivious to this and continues working as-is.

Ø E.g:

Ø A new column can be added that changes the record design

Ø A compressed column can be uncompressed

Takeaway: A high-level data model delegates the responsibility of
physical record design and access to these records to the DBMS

2. High-level Query Language (1)

Ø Structured Query Language (SQL)

Ø SQL is so high-level that it’s called a declarative language: i.e., one
in which you can describe the output of the computation but not
how to perform the computation

Ø Recall managers’ question: Who are top paying customers?

SELECT cust, sum(price) as sumPay
FROM Orders
ORDER BY sumPay DESC

Ø No procedural description of how to execute the query:
hash-based, sort-based, what sorting algorithm to use etc.

Orders

oID cust product price

2. High-level Query Language (2)

Ø RDBMS automatically generates an algorithm for the query:

Ø We call those algorithms query plans

SELECT cust, sum(price) as sumPay
FROM Orders
ORDER BY sumPay DESC

Takeaway: A high-level QL delegates the responsibility of finding an
efficient algorithm for queries to the DBMS.

Other efficiency benefits: The DBMS will handle large data and
automatically parallelize these algorithms.

3. Scalability

Ø Two types:

Ø Scale up

Takeaway: RDBMSs typically support scale out and perform scaling
automatically.

App developer need not focus on scalability.

Ø Scale out

4. Integrity Constraints

Ø Recall the bug in Checkout App’s “Checkout As Guest”:
Ø Writes the Customer record

Ø Assume Bob shops again

Ø (Bob, 1999/05/07) is duplicated!

Ø In RDBMSs: add uniqueness constraints (Primary Key Constraints)

CREATE TABLE Customers (name varchar(255), birthdate DATE, PRIMARY KEY (name));

Ø Can enforce other integrity constraints (e.g., foreign key)

Takeaway: DBMSs will enforce the constraint and maintain the data’s
integrity at all times on behalf of the app!

5. Concurrency When Using an RDBMS (1)

Ø Recall Alice & Bob concurrently ordering BookA:
Product NumInStock

… …

BookA 1
… …

Buy_Product_Subroutine(string prodName):
(prod, numInStock) = readProduct(prodName)
if (numInStock > 0):
 writeProduct((prod, numInStock - 1)
else throw(“Cannot buy product!”);

r: (A, 1)

tim
e

r: (A, 0)
w: (A, 0)

r: (A,1)

w:(A,0)
r:(A,0)

r: (A,1)r: (A,1)

w:(A,0)

w:(A,0)

No Book

X
No Book

✓ ✓

5. Concurrency When Using an RDBMS (2)
(Simplified) SQL:
BEGIN TRANSACTION
UPDATE Products
SET numInStock = numInStock - 1
WHERE name = “BookA”

INSERT INTO Orders
VALUES (“Alice”, “BookA”, $20)
COMMIT

r: (A, 1)

tim
e

r: (A, 0)
w: (A, 0)

r: (A,1)

w:(A,0)
r:(A,0)

r: (A,1)r: (A,1)

w:(A,0)

w:(A,0)

Ø Will ensure a correct end state

Ø Will avoid any deadlocks

Ø Will error for Alice or Bob

Take away: DBMS ensures safe
concurrency.

X✓ ✓

6. Backup and Recovery

w (A, 0)

w (B, 6)

Product NumInStock

… …

BookA 0

BookB 7

X

Ø Recall failure scenario: Alice orders both BookA and BookB
Ø Suppose a power failure occurs and the DBMS fails in the middle

of committing the transaction

Product NumInStock

… …

BookA 1

BookB 7

✓

DBMSs use checkpointing and logging to undo
partial changes and

revert back to a consistent state

Take away: DBMSs handle failure recovery

Summary

41

DBMS is an indispensable core system software to develop any

application that stores, queries, or processes data.

A Glimpse of Current DBMS Market

Hundreds of companies producing DBMSs: Many RDBMS/SQL, but
also graph, RDF, Document DB, Key-value stores etc..

Not even including companies to tune, ingest, visualize etc..

4 Turing Award Winners!

• Charles Bachman, 1973

• Edgar F. Codd, 1981

• Jim Gray, 1998

• Michael Stonebraker, 2014

43

Introduced DB Systems

High-level/Declarative Programming:
Relational Data Model & Algebra

Transactions:
concurrent data-manipulation

Relational DBMS
 (e.g. Ingres, Postgres) and

modern DBMSs
 (e.g. C-store, H-store, SciDB)

Outline For Today

44

1. Overview of DBMSs:

1. Challenges with data management

2. How DBMSs help overcome these challenges

• Physical data independence, high level query language,

constraints and transactions

2. Course & Administrative Information

Course components

• Relational databases (Lectures 1-10)
• Relational algebra, SQL, app programming, database

design

• Database internals (Lectures 11-18)
• Storage, indexing, query processing and optimization,

transactions, Concurrency & recovery

45

More about the Teaching Team
• Instructor: Sujaya Maiyya

• Professor in the CS dept
• Email: smaiyya@uwaterloo.ca
• https://cs.uwaterloo.ca/~smaiyya/

• Instructional support coordinator: Sylvie Davies
• Email: sldavies@uwaterloo.ca

• IAs and TAs
• Shubhankar Mohapatra (IA)
• Haseeb Ahmed
• Alexandar William Caton
• Chanaka Lakmal Lokupothagamage Don
• Zhengyuan Dong
• Harrum Noor

• Office hours will be posted on Learn/Piazza

46

https://cs.uwaterloo.ca/~smaiyya/
mailto:sldavies@uwaterloo.ca

Who to reach out to?

• Any course content related questions à reach out
to me

• Regrade requests à To the respective TA and IA

• Approved regrade, late policy, verification of illness
à reach out to Sylvie and cc me

• My work hours: 9-6PM Monday to Friday

47

Textbook

• Database System Concepts (Seventh Edition)
Abraham Silberschatz, Henry F. Forth and
S.Sudarshan, McGraw Hill.

48

Logistics
• Course Website:

• https://cs.uwaterloo.ca/~smaiyya/cs348
• Course schedule, lecture notes

• Learn:
• https://learn.uwaterloo.ca/
• Assignment questions/partial solutions, project info

• Piazza for student discussion, Q&A, TAs info:
• https://piazza.com/class/lvqzlkkmopm1uv
• For student-student discussions

• Work submission: Crowdmark/Marmoset/Learn
• Watch your emails for the links

49

https://cs.uwaterloo.ca/~smaiyya/cs348
https://learn.uwaterloo.ca/
https://piazza.com/class/lvqzlkkmopm1uv

Marking and Late Policies

• Marking and appeals:
• For everything, there will be an appeal deadline that will

be indicated on the front page
• No appeals will be accepted past this date unless you

were sick the entire period until the appeal date

• Late assignments/project deliverables
• Late assignments will be accepted for 48 hours past the

due date, but...
• For each 24 hour past the due date, a 5% penalty will be

applied (cumulatively) for assignments
• For each 24 hour past the due date, a 25% penalty will be

applied (cumulatively) for projects

50

Assessments
• 3 Assignments
• 1 Midterm Exam
• 1 Final Exam
• Group Project (Optional): Choose 1 mark breakdown

• But both exams are mandatory!

Any use of GenAI is the assessments must be cited. You are accountable
for the content and accuracy of all work you submit in this class.

51

Mark Breakdown Project-based Exam-based

3 Assignments 30% 30%

Midterm Exam 10% 30%

Final Exam 20% 40%

Project 40% -

Lectures

• Lecture slides released on Course Website before
Tue/Thur

• Attendance is mandatory

• Lecture format:
• Important announcements (Don’t miss this!)
• Key points and examples
• Exercises with partial solutions

• Will be using lecture materials from
Prof. Xi He’s lectures

52

Project

• Team of 4-5 students (minimum 4, maximum 5)
• DB-supported applications
• Project timeline
• Milestone 0: form a team by Thu, May 23
• Milestone 1: proposal by Thu, Jun 20
• Milestone 2: mid-term report by Tue, Jul 9
• Final: report + demo by Thu, Jul 25

• More details will be released in week 2, but you can
start to brainstorm and find your teammates!
• Members from only 002 and 003 sections are allowed.
• Piazza is a good place to find teammates.

53

54

Project

• Project demos from previous years

55

https://www.dropbox.com/sh/c419517d2d8gqub/AABcYL-Qo03bMV3w9SSv8OaXa?dl=0

What’s next?

• Lecture 2: Relational model and relational algebra

56

